MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulcmpblnrlem Structured version   Visualization version   GIF version

Theorem mulcmpblnrlem 10229
Description: Lemma used in lemma showing compatibility of multiplication. (Contributed by NM, 4-Sep-1995.) (New usage is discouraged.)
Assertion
Ref Expression
mulcmpblnrlem (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) +P ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅)))) = ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹)) +P ((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)))))

Proof of Theorem mulcmpblnrlem
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 6931 . . . . . . . . 9 ((𝐴 +P 𝐷) = (𝐵 +P 𝐶) → ((𝐴 +P 𝐷) ·P 𝐹) = ((𝐵 +P 𝐶) ·P 𝐹))
2 distrpr 10187 . . . . . . . . . 10 (𝐹 ·P (𝐴 +P 𝐷)) = ((𝐹 ·P 𝐴) +P (𝐹 ·P 𝐷))
3 mulcompr 10182 . . . . . . . . . 10 ((𝐴 +P 𝐷) ·P 𝐹) = (𝐹 ·P (𝐴 +P 𝐷))
4 mulcompr 10182 . . . . . . . . . . 11 (𝐴 ·P 𝐹) = (𝐹 ·P 𝐴)
5 mulcompr 10182 . . . . . . . . . . 11 (𝐷 ·P 𝐹) = (𝐹 ·P 𝐷)
64, 5oveq12i 6936 . . . . . . . . . 10 ((𝐴 ·P 𝐹) +P (𝐷 ·P 𝐹)) = ((𝐹 ·P 𝐴) +P (𝐹 ·P 𝐷))
72, 3, 63eqtr4i 2812 . . . . . . . . 9 ((𝐴 +P 𝐷) ·P 𝐹) = ((𝐴 ·P 𝐹) +P (𝐷 ·P 𝐹))
8 distrpr 10187 . . . . . . . . . 10 (𝐹 ·P (𝐵 +P 𝐶)) = ((𝐹 ·P 𝐵) +P (𝐹 ·P 𝐶))
9 mulcompr 10182 . . . . . . . . . 10 ((𝐵 +P 𝐶) ·P 𝐹) = (𝐹 ·P (𝐵 +P 𝐶))
10 mulcompr 10182 . . . . . . . . . . 11 (𝐵 ·P 𝐹) = (𝐹 ·P 𝐵)
11 mulcompr 10182 . . . . . . . . . . 11 (𝐶 ·P 𝐹) = (𝐹 ·P 𝐶)
1210, 11oveq12i 6936 . . . . . . . . . 10 ((𝐵 ·P 𝐹) +P (𝐶 ·P 𝐹)) = ((𝐹 ·P 𝐵) +P (𝐹 ·P 𝐶))
138, 9, 123eqtr4i 2812 . . . . . . . . 9 ((𝐵 +P 𝐶) ·P 𝐹) = ((𝐵 ·P 𝐹) +P (𝐶 ·P 𝐹))
141, 7, 133eqtr3g 2837 . . . . . . . 8 ((𝐴 +P 𝐷) = (𝐵 +P 𝐶) → ((𝐴 ·P 𝐹) +P (𝐷 ·P 𝐹)) = ((𝐵 ·P 𝐹) +P (𝐶 ·P 𝐹)))
1514oveq1d 6939 . . . . . . 7 ((𝐴 +P 𝐷) = (𝐵 +P 𝐶) → (((𝐴 ·P 𝐹) +P (𝐷 ·P 𝐹)) +P (𝐶 ·P 𝑆)) = (((𝐵 ·P 𝐹) +P (𝐶 ·P 𝐹)) +P (𝐶 ·P 𝑆)))
16 addasspr 10181 . . . . . . . 8 (((𝐵 ·P 𝐹) +P (𝐶 ·P 𝐹)) +P (𝐶 ·P 𝑆)) = ((𝐵 ·P 𝐹) +P ((𝐶 ·P 𝐹) +P (𝐶 ·P 𝑆)))
17 oveq2 6932 . . . . . . . . . 10 ((𝐹 +P 𝑆) = (𝐺 +P 𝑅) → (𝐶 ·P (𝐹 +P 𝑆)) = (𝐶 ·P (𝐺 +P 𝑅)))
18 distrpr 10187 . . . . . . . . . 10 (𝐶 ·P (𝐹 +P 𝑆)) = ((𝐶 ·P 𝐹) +P (𝐶 ·P 𝑆))
19 distrpr 10187 . . . . . . . . . 10 (𝐶 ·P (𝐺 +P 𝑅)) = ((𝐶 ·P 𝐺) +P (𝐶 ·P 𝑅))
2017, 18, 193eqtr3g 2837 . . . . . . . . 9 ((𝐹 +P 𝑆) = (𝐺 +P 𝑅) → ((𝐶 ·P 𝐹) +P (𝐶 ·P 𝑆)) = ((𝐶 ·P 𝐺) +P (𝐶 ·P 𝑅)))
2120oveq2d 6940 . . . . . . . 8 ((𝐹 +P 𝑆) = (𝐺 +P 𝑅) → ((𝐵 ·P 𝐹) +P ((𝐶 ·P 𝐹) +P (𝐶 ·P 𝑆))) = ((𝐵 ·P 𝐹) +P ((𝐶 ·P 𝐺) +P (𝐶 ·P 𝑅))))
2216, 21syl5eq 2826 . . . . . . 7 ((𝐹 +P 𝑆) = (𝐺 +P 𝑅) → (((𝐵 ·P 𝐹) +P (𝐶 ·P 𝐹)) +P (𝐶 ·P 𝑆)) = ((𝐵 ·P 𝐹) +P ((𝐶 ·P 𝐺) +P (𝐶 ·P 𝑅))))
2315, 22sylan9eq 2834 . . . . . 6 (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → (((𝐴 ·P 𝐹) +P (𝐷 ·P 𝐹)) +P (𝐶 ·P 𝑆)) = ((𝐵 ·P 𝐹) +P ((𝐶 ·P 𝐺) +P (𝐶 ·P 𝑅))))
24 ovex 6956 . . . . . . 7 (𝐴 ·P 𝐹) ∈ V
25 ovex 6956 . . . . . . 7 (𝐷 ·P 𝐹) ∈ V
26 ovex 6956 . . . . . . 7 (𝐶 ·P 𝑆) ∈ V
27 addcompr 10180 . . . . . . 7 (𝑥 +P 𝑦) = (𝑦 +P 𝑥)
28 addasspr 10181 . . . . . . 7 ((𝑥 +P 𝑦) +P 𝑧) = (𝑥 +P (𝑦 +P 𝑧))
2924, 25, 26, 27, 28caov32 7140 . . . . . 6 (((𝐴 ·P 𝐹) +P (𝐷 ·P 𝐹)) +P (𝐶 ·P 𝑆)) = (((𝐴 ·P 𝐹) +P (𝐶 ·P 𝑆)) +P (𝐷 ·P 𝐹))
30 ovex 6956 . . . . . . 7 (𝐵 ·P 𝐹) ∈ V
31 ovex 6956 . . . . . . 7 (𝐶 ·P 𝐺) ∈ V
32 ovex 6956 . . . . . . 7 (𝐶 ·P 𝑅) ∈ V
3330, 31, 32, 27, 28caov12 7141 . . . . . 6 ((𝐵 ·P 𝐹) +P ((𝐶 ·P 𝐺) +P (𝐶 ·P 𝑅))) = ((𝐶 ·P 𝐺) +P ((𝐵 ·P 𝐹) +P (𝐶 ·P 𝑅)))
3423, 29, 333eqtr3g 2837 . . . . 5 (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → (((𝐴 ·P 𝐹) +P (𝐶 ·P 𝑆)) +P (𝐷 ·P 𝐹)) = ((𝐶 ·P 𝐺) +P ((𝐵 ·P 𝐹) +P (𝐶 ·P 𝑅))))
3534oveq2d 6940 . . . 4 (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → (((𝐵 ·P 𝐺) +P (𝐷 ·P 𝑅)) +P (((𝐴 ·P 𝐹) +P (𝐶 ·P 𝑆)) +P (𝐷 ·P 𝐹))) = (((𝐵 ·P 𝐺) +P (𝐷 ·P 𝑅)) +P ((𝐶 ·P 𝐺) +P ((𝐵 ·P 𝐹) +P (𝐶 ·P 𝑅)))))
36 oveq2 6932 . . . . . . . . . . 11 ((𝐹 +P 𝑆) = (𝐺 +P 𝑅) → (𝐷 ·P (𝐹 +P 𝑆)) = (𝐷 ·P (𝐺 +P 𝑅)))
37 distrpr 10187 . . . . . . . . . . 11 (𝐷 ·P (𝐹 +P 𝑆)) = ((𝐷 ·P 𝐹) +P (𝐷 ·P 𝑆))
38 distrpr 10187 . . . . . . . . . . 11 (𝐷 ·P (𝐺 +P 𝑅)) = ((𝐷 ·P 𝐺) +P (𝐷 ·P 𝑅))
3936, 37, 383eqtr3g 2837 . . . . . . . . . 10 ((𝐹 +P 𝑆) = (𝐺 +P 𝑅) → ((𝐷 ·P 𝐹) +P (𝐷 ·P 𝑆)) = ((𝐷 ·P 𝐺) +P (𝐷 ·P 𝑅)))
4039oveq2d 6940 . . . . . . . . 9 ((𝐹 +P 𝑆) = (𝐺 +P 𝑅) → ((𝐴 ·P 𝐺) +P ((𝐷 ·P 𝐹) +P (𝐷 ·P 𝑆))) = ((𝐴 ·P 𝐺) +P ((𝐷 ·P 𝐺) +P (𝐷 ·P 𝑅))))
41 addasspr 10181 . . . . . . . . 9 (((𝐴 ·P 𝐺) +P (𝐷 ·P 𝐺)) +P (𝐷 ·P 𝑅)) = ((𝐴 ·P 𝐺) +P ((𝐷 ·P 𝐺) +P (𝐷 ·P 𝑅)))
4240, 41syl6eqr 2832 . . . . . . . 8 ((𝐹 +P 𝑆) = (𝐺 +P 𝑅) → ((𝐴 ·P 𝐺) +P ((𝐷 ·P 𝐹) +P (𝐷 ·P 𝑆))) = (((𝐴 ·P 𝐺) +P (𝐷 ·P 𝐺)) +P (𝐷 ·P 𝑅)))
43 oveq1 6931 . . . . . . . . . 10 ((𝐴 +P 𝐷) = (𝐵 +P 𝐶) → ((𝐴 +P 𝐷) ·P 𝐺) = ((𝐵 +P 𝐶) ·P 𝐺))
44 distrpr 10187 . . . . . . . . . . 11 (𝐺 ·P (𝐴 +P 𝐷)) = ((𝐺 ·P 𝐴) +P (𝐺 ·P 𝐷))
45 mulcompr 10182 . . . . . . . . . . 11 ((𝐴 +P 𝐷) ·P 𝐺) = (𝐺 ·P (𝐴 +P 𝐷))
46 mulcompr 10182 . . . . . . . . . . . 12 (𝐴 ·P 𝐺) = (𝐺 ·P 𝐴)
47 mulcompr 10182 . . . . . . . . . . . 12 (𝐷 ·P 𝐺) = (𝐺 ·P 𝐷)
4846, 47oveq12i 6936 . . . . . . . . . . 11 ((𝐴 ·P 𝐺) +P (𝐷 ·P 𝐺)) = ((𝐺 ·P 𝐴) +P (𝐺 ·P 𝐷))
4944, 45, 483eqtr4i 2812 . . . . . . . . . 10 ((𝐴 +P 𝐷) ·P 𝐺) = ((𝐴 ·P 𝐺) +P (𝐷 ·P 𝐺))
50 distrpr 10187 . . . . . . . . . . 11 (𝐺 ·P (𝐵 +P 𝐶)) = ((𝐺 ·P 𝐵) +P (𝐺 ·P 𝐶))
51 mulcompr 10182 . . . . . . . . . . 11 ((𝐵 +P 𝐶) ·P 𝐺) = (𝐺 ·P (𝐵 +P 𝐶))
52 mulcompr 10182 . . . . . . . . . . . 12 (𝐵 ·P 𝐺) = (𝐺 ·P 𝐵)
53 mulcompr 10182 . . . . . . . . . . . 12 (𝐶 ·P 𝐺) = (𝐺 ·P 𝐶)
5452, 53oveq12i 6936 . . . . . . . . . . 11 ((𝐵 ·P 𝐺) +P (𝐶 ·P 𝐺)) = ((𝐺 ·P 𝐵) +P (𝐺 ·P 𝐶))
5550, 51, 543eqtr4i 2812 . . . . . . . . . 10 ((𝐵 +P 𝐶) ·P 𝐺) = ((𝐵 ·P 𝐺) +P (𝐶 ·P 𝐺))
5643, 49, 553eqtr3g 2837 . . . . . . . . 9 ((𝐴 +P 𝐷) = (𝐵 +P 𝐶) → ((𝐴 ·P 𝐺) +P (𝐷 ·P 𝐺)) = ((𝐵 ·P 𝐺) +P (𝐶 ·P 𝐺)))
5756oveq1d 6939 . . . . . . . 8 ((𝐴 +P 𝐷) = (𝐵 +P 𝐶) → (((𝐴 ·P 𝐺) +P (𝐷 ·P 𝐺)) +P (𝐷 ·P 𝑅)) = (((𝐵 ·P 𝐺) +P (𝐶 ·P 𝐺)) +P (𝐷 ·P 𝑅)))
5842, 57sylan9eqr 2836 . . . . . . 7 (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → ((𝐴 ·P 𝐺) +P ((𝐷 ·P 𝐹) +P (𝐷 ·P 𝑆))) = (((𝐵 ·P 𝐺) +P (𝐶 ·P 𝐺)) +P (𝐷 ·P 𝑅)))
59 ovex 6956 . . . . . . . 8 (𝐴 ·P 𝐺) ∈ V
60 ovex 6956 . . . . . . . 8 (𝐷 ·P 𝑆) ∈ V
6159, 25, 60, 27, 28caov12 7141 . . . . . . 7 ((𝐴 ·P 𝐺) +P ((𝐷 ·P 𝐹) +P (𝐷 ·P 𝑆))) = ((𝐷 ·P 𝐹) +P ((𝐴 ·P 𝐺) +P (𝐷 ·P 𝑆)))
62 ovex 6956 . . . . . . . 8 (𝐵 ·P 𝐺) ∈ V
63 ovex 6956 . . . . . . . 8 (𝐷 ·P 𝑅) ∈ V
6462, 31, 63, 27, 28caov32 7140 . . . . . . 7 (((𝐵 ·P 𝐺) +P (𝐶 ·P 𝐺)) +P (𝐷 ·P 𝑅)) = (((𝐵 ·P 𝐺) +P (𝐷 ·P 𝑅)) +P (𝐶 ·P 𝐺))
6558, 61, 643eqtr3g 2837 . . . . . 6 (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → ((𝐷 ·P 𝐹) +P ((𝐴 ·P 𝐺) +P (𝐷 ·P 𝑆))) = (((𝐵 ·P 𝐺) +P (𝐷 ·P 𝑅)) +P (𝐶 ·P 𝐺)))
6665oveq1d 6939 . . . . 5 (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → (((𝐷 ·P 𝐹) +P ((𝐴 ·P 𝐺) +P (𝐷 ·P 𝑆))) +P ((𝐵 ·P 𝐹) +P (𝐶 ·P 𝑅))) = ((((𝐵 ·P 𝐺) +P (𝐷 ·P 𝑅)) +P (𝐶 ·P 𝐺)) +P ((𝐵 ·P 𝐹) +P (𝐶 ·P 𝑅))))
67 addasspr 10181 . . . . 5 ((((𝐵 ·P 𝐺) +P (𝐷 ·P 𝑅)) +P (𝐶 ·P 𝐺)) +P ((𝐵 ·P 𝐹) +P (𝐶 ·P 𝑅))) = (((𝐵 ·P 𝐺) +P (𝐷 ·P 𝑅)) +P ((𝐶 ·P 𝐺) +P ((𝐵 ·P 𝐹) +P (𝐶 ·P 𝑅))))
6866, 67syl6eq 2830 . . . 4 (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → (((𝐷 ·P 𝐹) +P ((𝐴 ·P 𝐺) +P (𝐷 ·P 𝑆))) +P ((𝐵 ·P 𝐹) +P (𝐶 ·P 𝑅))) = (((𝐵 ·P 𝐺) +P (𝐷 ·P 𝑅)) +P ((𝐶 ·P 𝐺) +P ((𝐵 ·P 𝐹) +P (𝐶 ·P 𝑅)))))
6935, 68eqtr4d 2817 . . 3 (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → (((𝐵 ·P 𝐺) +P (𝐷 ·P 𝑅)) +P (((𝐴 ·P 𝐹) +P (𝐶 ·P 𝑆)) +P (𝐷 ·P 𝐹))) = (((𝐷 ·P 𝐹) +P ((𝐴 ·P 𝐺) +P (𝐷 ·P 𝑆))) +P ((𝐵 ·P 𝐹) +P (𝐶 ·P 𝑅))))
70 ovex 6956 . . . 4 ((𝐵 ·P 𝐺) +P (𝐷 ·P 𝑅)) ∈ V
71 ovex 6956 . . . 4 ((𝐴 ·P 𝐹) +P (𝐶 ·P 𝑆)) ∈ V
7270, 71, 25, 27, 28caov13 7143 . . 3 (((𝐵 ·P 𝐺) +P (𝐷 ·P 𝑅)) +P (((𝐴 ·P 𝐹) +P (𝐶 ·P 𝑆)) +P (𝐷 ·P 𝐹))) = ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐹) +P (𝐶 ·P 𝑆)) +P ((𝐵 ·P 𝐺) +P (𝐷 ·P 𝑅))))
73 addasspr 10181 . . 3 (((𝐷 ·P 𝐹) +P ((𝐴 ·P 𝐺) +P (𝐷 ·P 𝑆))) +P ((𝐵 ·P 𝐹) +P (𝐶 ·P 𝑅))) = ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐺) +P (𝐷 ·P 𝑆)) +P ((𝐵 ·P 𝐹) +P (𝐶 ·P 𝑅))))
7469, 72, 733eqtr3g 2837 . 2 (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐹) +P (𝐶 ·P 𝑆)) +P ((𝐵 ·P 𝐺) +P (𝐷 ·P 𝑅)))) = ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐺) +P (𝐷 ·P 𝑆)) +P ((𝐵 ·P 𝐹) +P (𝐶 ·P 𝑅)))))
7524, 26, 62, 27, 28, 63caov4 7144 . . 3 (((𝐴 ·P 𝐹) +P (𝐶 ·P 𝑆)) +P ((𝐵 ·P 𝐺) +P (𝐷 ·P 𝑅))) = (((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) +P ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅)))
7675oveq2i 6935 . 2 ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐹) +P (𝐶 ·P 𝑆)) +P ((𝐵 ·P 𝐺) +P (𝐷 ·P 𝑅)))) = ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) +P ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅))))
7759, 60, 30, 27, 28, 32caov42 7146 . . 3 (((𝐴 ·P 𝐺) +P (𝐷 ·P 𝑆)) +P ((𝐵 ·P 𝐹) +P (𝐶 ·P 𝑅))) = (((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹)) +P ((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)))
7877oveq2i 6935 . 2 ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐺) +P (𝐷 ·P 𝑆)) +P ((𝐵 ·P 𝐹) +P (𝐶 ·P 𝑅)))) = ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹)) +P ((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆))))
7974, 76, 783eqtr3g 2837 1 (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) +P ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅)))) = ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹)) +P ((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1601  (class class class)co 6924   +P cpp 10020   ·P cmp 10021
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-inf2 8837
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-om 7346  df-1st 7447  df-2nd 7448  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-1o 7845  df-oadd 7849  df-omul 7850  df-er 8028  df-ni 10031  df-pli 10032  df-mi 10033  df-lti 10034  df-plpq 10067  df-mpq 10068  df-ltpq 10069  df-enq 10070  df-nq 10071  df-erq 10072  df-plq 10073  df-mq 10074  df-1nq 10075  df-rq 10076  df-ltnq 10077  df-np 10140  df-plp 10142  df-mp 10143
This theorem is referenced by:  mulcmpblnr  10230
  Copyright terms: Public domain W3C validator