MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulcmpblnrlem Structured version   Visualization version   GIF version

Theorem mulcmpblnrlem 11101
Description: Lemma used in lemma showing compatibility of multiplication. (Contributed by NM, 4-Sep-1995.) (New usage is discouraged.)
Assertion
Ref Expression
mulcmpblnrlem (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) +P ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅)))) = ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹)) +P ((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)))))

Proof of Theorem mulcmpblnrlem
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7433 . . . . . . . . 9 ((𝐴 +P 𝐷) = (𝐵 +P 𝐶) → ((𝐴 +P 𝐷) ·P 𝐹) = ((𝐵 +P 𝐶) ·P 𝐹))
2 distrpr 11059 . . . . . . . . . 10 (𝐹 ·P (𝐴 +P 𝐷)) = ((𝐹 ·P 𝐴) +P (𝐹 ·P 𝐷))
3 mulcompr 11054 . . . . . . . . . 10 ((𝐴 +P 𝐷) ·P 𝐹) = (𝐹 ·P (𝐴 +P 𝐷))
4 mulcompr 11054 . . . . . . . . . . 11 (𝐴 ·P 𝐹) = (𝐹 ·P 𝐴)
5 mulcompr 11054 . . . . . . . . . . 11 (𝐷 ·P 𝐹) = (𝐹 ·P 𝐷)
64, 5oveq12i 7438 . . . . . . . . . 10 ((𝐴 ·P 𝐹) +P (𝐷 ·P 𝐹)) = ((𝐹 ·P 𝐴) +P (𝐹 ·P 𝐷))
72, 3, 63eqtr4i 2766 . . . . . . . . 9 ((𝐴 +P 𝐷) ·P 𝐹) = ((𝐴 ·P 𝐹) +P (𝐷 ·P 𝐹))
8 distrpr 11059 . . . . . . . . . 10 (𝐹 ·P (𝐵 +P 𝐶)) = ((𝐹 ·P 𝐵) +P (𝐹 ·P 𝐶))
9 mulcompr 11054 . . . . . . . . . 10 ((𝐵 +P 𝐶) ·P 𝐹) = (𝐹 ·P (𝐵 +P 𝐶))
10 mulcompr 11054 . . . . . . . . . . 11 (𝐵 ·P 𝐹) = (𝐹 ·P 𝐵)
11 mulcompr 11054 . . . . . . . . . . 11 (𝐶 ·P 𝐹) = (𝐹 ·P 𝐶)
1210, 11oveq12i 7438 . . . . . . . . . 10 ((𝐵 ·P 𝐹) +P (𝐶 ·P 𝐹)) = ((𝐹 ·P 𝐵) +P (𝐹 ·P 𝐶))
138, 9, 123eqtr4i 2766 . . . . . . . . 9 ((𝐵 +P 𝐶) ·P 𝐹) = ((𝐵 ·P 𝐹) +P (𝐶 ·P 𝐹))
141, 7, 133eqtr3g 2791 . . . . . . . 8 ((𝐴 +P 𝐷) = (𝐵 +P 𝐶) → ((𝐴 ·P 𝐹) +P (𝐷 ·P 𝐹)) = ((𝐵 ·P 𝐹) +P (𝐶 ·P 𝐹)))
1514oveq1d 7441 . . . . . . 7 ((𝐴 +P 𝐷) = (𝐵 +P 𝐶) → (((𝐴 ·P 𝐹) +P (𝐷 ·P 𝐹)) +P (𝐶 ·P 𝑆)) = (((𝐵 ·P 𝐹) +P (𝐶 ·P 𝐹)) +P (𝐶 ·P 𝑆)))
16 addasspr 11053 . . . . . . . 8 (((𝐵 ·P 𝐹) +P (𝐶 ·P 𝐹)) +P (𝐶 ·P 𝑆)) = ((𝐵 ·P 𝐹) +P ((𝐶 ·P 𝐹) +P (𝐶 ·P 𝑆)))
17 oveq2 7434 . . . . . . . . . 10 ((𝐹 +P 𝑆) = (𝐺 +P 𝑅) → (𝐶 ·P (𝐹 +P 𝑆)) = (𝐶 ·P (𝐺 +P 𝑅)))
18 distrpr 11059 . . . . . . . . . 10 (𝐶 ·P (𝐹 +P 𝑆)) = ((𝐶 ·P 𝐹) +P (𝐶 ·P 𝑆))
19 distrpr 11059 . . . . . . . . . 10 (𝐶 ·P (𝐺 +P 𝑅)) = ((𝐶 ·P 𝐺) +P (𝐶 ·P 𝑅))
2017, 18, 193eqtr3g 2791 . . . . . . . . 9 ((𝐹 +P 𝑆) = (𝐺 +P 𝑅) → ((𝐶 ·P 𝐹) +P (𝐶 ·P 𝑆)) = ((𝐶 ·P 𝐺) +P (𝐶 ·P 𝑅)))
2120oveq2d 7442 . . . . . . . 8 ((𝐹 +P 𝑆) = (𝐺 +P 𝑅) → ((𝐵 ·P 𝐹) +P ((𝐶 ·P 𝐹) +P (𝐶 ·P 𝑆))) = ((𝐵 ·P 𝐹) +P ((𝐶 ·P 𝐺) +P (𝐶 ·P 𝑅))))
2216, 21eqtrid 2780 . . . . . . 7 ((𝐹 +P 𝑆) = (𝐺 +P 𝑅) → (((𝐵 ·P 𝐹) +P (𝐶 ·P 𝐹)) +P (𝐶 ·P 𝑆)) = ((𝐵 ·P 𝐹) +P ((𝐶 ·P 𝐺) +P (𝐶 ·P 𝑅))))
2315, 22sylan9eq 2788 . . . . . 6 (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → (((𝐴 ·P 𝐹) +P (𝐷 ·P 𝐹)) +P (𝐶 ·P 𝑆)) = ((𝐵 ·P 𝐹) +P ((𝐶 ·P 𝐺) +P (𝐶 ·P 𝑅))))
24 ovex 7459 . . . . . . 7 (𝐴 ·P 𝐹) ∈ V
25 ovex 7459 . . . . . . 7 (𝐷 ·P 𝐹) ∈ V
26 ovex 7459 . . . . . . 7 (𝐶 ·P 𝑆) ∈ V
27 addcompr 11052 . . . . . . 7 (𝑥 +P 𝑦) = (𝑦 +P 𝑥)
28 addasspr 11053 . . . . . . 7 ((𝑥 +P 𝑦) +P 𝑧) = (𝑥 +P (𝑦 +P 𝑧))
2924, 25, 26, 27, 28caov32 7654 . . . . . 6 (((𝐴 ·P 𝐹) +P (𝐷 ·P 𝐹)) +P (𝐶 ·P 𝑆)) = (((𝐴 ·P 𝐹) +P (𝐶 ·P 𝑆)) +P (𝐷 ·P 𝐹))
30 ovex 7459 . . . . . . 7 (𝐵 ·P 𝐹) ∈ V
31 ovex 7459 . . . . . . 7 (𝐶 ·P 𝐺) ∈ V
32 ovex 7459 . . . . . . 7 (𝐶 ·P 𝑅) ∈ V
3330, 31, 32, 27, 28caov12 7655 . . . . . 6 ((𝐵 ·P 𝐹) +P ((𝐶 ·P 𝐺) +P (𝐶 ·P 𝑅))) = ((𝐶 ·P 𝐺) +P ((𝐵 ·P 𝐹) +P (𝐶 ·P 𝑅)))
3423, 29, 333eqtr3g 2791 . . . . 5 (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → (((𝐴 ·P 𝐹) +P (𝐶 ·P 𝑆)) +P (𝐷 ·P 𝐹)) = ((𝐶 ·P 𝐺) +P ((𝐵 ·P 𝐹) +P (𝐶 ·P 𝑅))))
3534oveq2d 7442 . . . 4 (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → (((𝐵 ·P 𝐺) +P (𝐷 ·P 𝑅)) +P (((𝐴 ·P 𝐹) +P (𝐶 ·P 𝑆)) +P (𝐷 ·P 𝐹))) = (((𝐵 ·P 𝐺) +P (𝐷 ·P 𝑅)) +P ((𝐶 ·P 𝐺) +P ((𝐵 ·P 𝐹) +P (𝐶 ·P 𝑅)))))
36 oveq2 7434 . . . . . . . . . . 11 ((𝐹 +P 𝑆) = (𝐺 +P 𝑅) → (𝐷 ·P (𝐹 +P 𝑆)) = (𝐷 ·P (𝐺 +P 𝑅)))
37 distrpr 11059 . . . . . . . . . . 11 (𝐷 ·P (𝐹 +P 𝑆)) = ((𝐷 ·P 𝐹) +P (𝐷 ·P 𝑆))
38 distrpr 11059 . . . . . . . . . . 11 (𝐷 ·P (𝐺 +P 𝑅)) = ((𝐷 ·P 𝐺) +P (𝐷 ·P 𝑅))
3936, 37, 383eqtr3g 2791 . . . . . . . . . 10 ((𝐹 +P 𝑆) = (𝐺 +P 𝑅) → ((𝐷 ·P 𝐹) +P (𝐷 ·P 𝑆)) = ((𝐷 ·P 𝐺) +P (𝐷 ·P 𝑅)))
4039oveq2d 7442 . . . . . . . . 9 ((𝐹 +P 𝑆) = (𝐺 +P 𝑅) → ((𝐴 ·P 𝐺) +P ((𝐷 ·P 𝐹) +P (𝐷 ·P 𝑆))) = ((𝐴 ·P 𝐺) +P ((𝐷 ·P 𝐺) +P (𝐷 ·P 𝑅))))
41 addasspr 11053 . . . . . . . . 9 (((𝐴 ·P 𝐺) +P (𝐷 ·P 𝐺)) +P (𝐷 ·P 𝑅)) = ((𝐴 ·P 𝐺) +P ((𝐷 ·P 𝐺) +P (𝐷 ·P 𝑅)))
4240, 41eqtr4di 2786 . . . . . . . 8 ((𝐹 +P 𝑆) = (𝐺 +P 𝑅) → ((𝐴 ·P 𝐺) +P ((𝐷 ·P 𝐹) +P (𝐷 ·P 𝑆))) = (((𝐴 ·P 𝐺) +P (𝐷 ·P 𝐺)) +P (𝐷 ·P 𝑅)))
43 oveq1 7433 . . . . . . . . . 10 ((𝐴 +P 𝐷) = (𝐵 +P 𝐶) → ((𝐴 +P 𝐷) ·P 𝐺) = ((𝐵 +P 𝐶) ·P 𝐺))
44 distrpr 11059 . . . . . . . . . . 11 (𝐺 ·P (𝐴 +P 𝐷)) = ((𝐺 ·P 𝐴) +P (𝐺 ·P 𝐷))
45 mulcompr 11054 . . . . . . . . . . 11 ((𝐴 +P 𝐷) ·P 𝐺) = (𝐺 ·P (𝐴 +P 𝐷))
46 mulcompr 11054 . . . . . . . . . . . 12 (𝐴 ·P 𝐺) = (𝐺 ·P 𝐴)
47 mulcompr 11054 . . . . . . . . . . . 12 (𝐷 ·P 𝐺) = (𝐺 ·P 𝐷)
4846, 47oveq12i 7438 . . . . . . . . . . 11 ((𝐴 ·P 𝐺) +P (𝐷 ·P 𝐺)) = ((𝐺 ·P 𝐴) +P (𝐺 ·P 𝐷))
4944, 45, 483eqtr4i 2766 . . . . . . . . . 10 ((𝐴 +P 𝐷) ·P 𝐺) = ((𝐴 ·P 𝐺) +P (𝐷 ·P 𝐺))
50 distrpr 11059 . . . . . . . . . . 11 (𝐺 ·P (𝐵 +P 𝐶)) = ((𝐺 ·P 𝐵) +P (𝐺 ·P 𝐶))
51 mulcompr 11054 . . . . . . . . . . 11 ((𝐵 +P 𝐶) ·P 𝐺) = (𝐺 ·P (𝐵 +P 𝐶))
52 mulcompr 11054 . . . . . . . . . . . 12 (𝐵 ·P 𝐺) = (𝐺 ·P 𝐵)
53 mulcompr 11054 . . . . . . . . . . . 12 (𝐶 ·P 𝐺) = (𝐺 ·P 𝐶)
5452, 53oveq12i 7438 . . . . . . . . . . 11 ((𝐵 ·P 𝐺) +P (𝐶 ·P 𝐺)) = ((𝐺 ·P 𝐵) +P (𝐺 ·P 𝐶))
5550, 51, 543eqtr4i 2766 . . . . . . . . . 10 ((𝐵 +P 𝐶) ·P 𝐺) = ((𝐵 ·P 𝐺) +P (𝐶 ·P 𝐺))
5643, 49, 553eqtr3g 2791 . . . . . . . . 9 ((𝐴 +P 𝐷) = (𝐵 +P 𝐶) → ((𝐴 ·P 𝐺) +P (𝐷 ·P 𝐺)) = ((𝐵 ·P 𝐺) +P (𝐶 ·P 𝐺)))
5756oveq1d 7441 . . . . . . . 8 ((𝐴 +P 𝐷) = (𝐵 +P 𝐶) → (((𝐴 ·P 𝐺) +P (𝐷 ·P 𝐺)) +P (𝐷 ·P 𝑅)) = (((𝐵 ·P 𝐺) +P (𝐶 ·P 𝐺)) +P (𝐷 ·P 𝑅)))
5842, 57sylan9eqr 2790 . . . . . . 7 (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → ((𝐴 ·P 𝐺) +P ((𝐷 ·P 𝐹) +P (𝐷 ·P 𝑆))) = (((𝐵 ·P 𝐺) +P (𝐶 ·P 𝐺)) +P (𝐷 ·P 𝑅)))
59 ovex 7459 . . . . . . . 8 (𝐴 ·P 𝐺) ∈ V
60 ovex 7459 . . . . . . . 8 (𝐷 ·P 𝑆) ∈ V
6159, 25, 60, 27, 28caov12 7655 . . . . . . 7 ((𝐴 ·P 𝐺) +P ((𝐷 ·P 𝐹) +P (𝐷 ·P 𝑆))) = ((𝐷 ·P 𝐹) +P ((𝐴 ·P 𝐺) +P (𝐷 ·P 𝑆)))
62 ovex 7459 . . . . . . . 8 (𝐵 ·P 𝐺) ∈ V
63 ovex 7459 . . . . . . . 8 (𝐷 ·P 𝑅) ∈ V
6462, 31, 63, 27, 28caov32 7654 . . . . . . 7 (((𝐵 ·P 𝐺) +P (𝐶 ·P 𝐺)) +P (𝐷 ·P 𝑅)) = (((𝐵 ·P 𝐺) +P (𝐷 ·P 𝑅)) +P (𝐶 ·P 𝐺))
6558, 61, 643eqtr3g 2791 . . . . . 6 (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → ((𝐷 ·P 𝐹) +P ((𝐴 ·P 𝐺) +P (𝐷 ·P 𝑆))) = (((𝐵 ·P 𝐺) +P (𝐷 ·P 𝑅)) +P (𝐶 ·P 𝐺)))
6665oveq1d 7441 . . . . 5 (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → (((𝐷 ·P 𝐹) +P ((𝐴 ·P 𝐺) +P (𝐷 ·P 𝑆))) +P ((𝐵 ·P 𝐹) +P (𝐶 ·P 𝑅))) = ((((𝐵 ·P 𝐺) +P (𝐷 ·P 𝑅)) +P (𝐶 ·P 𝐺)) +P ((𝐵 ·P 𝐹) +P (𝐶 ·P 𝑅))))
67 addasspr 11053 . . . . 5 ((((𝐵 ·P 𝐺) +P (𝐷 ·P 𝑅)) +P (𝐶 ·P 𝐺)) +P ((𝐵 ·P 𝐹) +P (𝐶 ·P 𝑅))) = (((𝐵 ·P 𝐺) +P (𝐷 ·P 𝑅)) +P ((𝐶 ·P 𝐺) +P ((𝐵 ·P 𝐹) +P (𝐶 ·P 𝑅))))
6866, 67eqtrdi 2784 . . . 4 (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → (((𝐷 ·P 𝐹) +P ((𝐴 ·P 𝐺) +P (𝐷 ·P 𝑆))) +P ((𝐵 ·P 𝐹) +P (𝐶 ·P 𝑅))) = (((𝐵 ·P 𝐺) +P (𝐷 ·P 𝑅)) +P ((𝐶 ·P 𝐺) +P ((𝐵 ·P 𝐹) +P (𝐶 ·P 𝑅)))))
6935, 68eqtr4d 2771 . . 3 (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → (((𝐵 ·P 𝐺) +P (𝐷 ·P 𝑅)) +P (((𝐴 ·P 𝐹) +P (𝐶 ·P 𝑆)) +P (𝐷 ·P 𝐹))) = (((𝐷 ·P 𝐹) +P ((𝐴 ·P 𝐺) +P (𝐷 ·P 𝑆))) +P ((𝐵 ·P 𝐹) +P (𝐶 ·P 𝑅))))
70 ovex 7459 . . . 4 ((𝐵 ·P 𝐺) +P (𝐷 ·P 𝑅)) ∈ V
71 ovex 7459 . . . 4 ((𝐴 ·P 𝐹) +P (𝐶 ·P 𝑆)) ∈ V
7270, 71, 25, 27, 28caov13 7657 . . 3 (((𝐵 ·P 𝐺) +P (𝐷 ·P 𝑅)) +P (((𝐴 ·P 𝐹) +P (𝐶 ·P 𝑆)) +P (𝐷 ·P 𝐹))) = ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐹) +P (𝐶 ·P 𝑆)) +P ((𝐵 ·P 𝐺) +P (𝐷 ·P 𝑅))))
73 addasspr 11053 . . 3 (((𝐷 ·P 𝐹) +P ((𝐴 ·P 𝐺) +P (𝐷 ·P 𝑆))) +P ((𝐵 ·P 𝐹) +P (𝐶 ·P 𝑅))) = ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐺) +P (𝐷 ·P 𝑆)) +P ((𝐵 ·P 𝐹) +P (𝐶 ·P 𝑅))))
7469, 72, 733eqtr3g 2791 . 2 (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐹) +P (𝐶 ·P 𝑆)) +P ((𝐵 ·P 𝐺) +P (𝐷 ·P 𝑅)))) = ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐺) +P (𝐷 ·P 𝑆)) +P ((𝐵 ·P 𝐹) +P (𝐶 ·P 𝑅)))))
7524, 26, 62, 27, 28, 63caov4 7658 . . 3 (((𝐴 ·P 𝐹) +P (𝐶 ·P 𝑆)) +P ((𝐵 ·P 𝐺) +P (𝐷 ·P 𝑅))) = (((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) +P ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅)))
7675oveq2i 7437 . 2 ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐹) +P (𝐶 ·P 𝑆)) +P ((𝐵 ·P 𝐺) +P (𝐷 ·P 𝑅)))) = ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) +P ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅))))
7759, 60, 30, 27, 28, 32caov42 7660 . . 3 (((𝐴 ·P 𝐺) +P (𝐷 ·P 𝑆)) +P ((𝐵 ·P 𝐹) +P (𝐶 ·P 𝑅))) = (((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹)) +P ((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)))
7877oveq2i 7437 . 2 ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐺) +P (𝐷 ·P 𝑆)) +P ((𝐵 ·P 𝐹) +P (𝐶 ·P 𝑅)))) = ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹)) +P ((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆))))
7974, 76, 783eqtr3g 2791 1 (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) +P ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅)))) = ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹)) +P ((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  (class class class)co 7426   +P cpp 10892   ·P cmp 10893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-inf2 9672
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-1st 7999  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-oadd 8497  df-omul 8498  df-er 8731  df-ni 10903  df-pli 10904  df-mi 10905  df-lti 10906  df-plpq 10939  df-mpq 10940  df-ltpq 10941  df-enq 10942  df-nq 10943  df-erq 10944  df-plq 10945  df-mq 10946  df-1nq 10947  df-rq 10948  df-ltnq 10949  df-np 11012  df-plp 11014  df-mp 11015
This theorem is referenced by:  mulcmpblnr  11102
  Copyright terms: Public domain W3C validator