MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caovass Structured version   Visualization version   GIF version

Theorem caovass 7633
Description: Convert an operation associative law to class notation. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 26-May-2014.)
Hypotheses
Ref Expression
caovass.1 𝐴 ∈ V
caovass.2 𝐵 ∈ V
caovass.3 𝐶 ∈ V
caovass.4 ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))
Assertion
Ref Expression
caovass ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧

Proof of Theorem caovass
StepHypRef Expression
1 caovass.1 . 2 𝐴 ∈ V
2 caovass.2 . 2 𝐵 ∈ V
3 caovass.3 . 2 𝐶 ∈ V
4 tru 1541 . . 3
5 caovass.4 . . . . 5 ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))
65a1i 11 . . . 4 ((⊤ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)))
76caovassg 7631 . . 3 ((⊤ ∧ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V)) → ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶)))
84, 7mpan 690 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) → ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶)))
91, 2, 3, 8mp3an 1460 1 ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶))
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1086   = wceq 1537  wtru 1538  wcel 2106  Vcvv 3478  (class class class)co 7431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-iota 6516  df-fv 6571  df-ov 7434
This theorem is referenced by:  caov32  7660  caov12  7661  caov31  7662  caov13  7663  caov4  7664  caov411  7665  caovdilem  7668  caovmo  7670
  Copyright terms: Public domain W3C validator