![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > caov4 | Structured version Visualization version GIF version |
Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.) |
Ref | Expression |
---|---|
caov.1 | ⊢ 𝐴 ∈ V |
caov.2 | ⊢ 𝐵 ∈ V |
caov.3 | ⊢ 𝐶 ∈ V |
caov.com | ⊢ (𝑥𝐹𝑦) = (𝑦𝐹𝑥) |
caov.ass | ⊢ ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)) |
caov.4 | ⊢ 𝐷 ∈ V |
Ref | Expression |
---|---|
caov4 | ⊢ ((𝐴𝐹𝐵)𝐹(𝐶𝐹𝐷)) = ((𝐴𝐹𝐶)𝐹(𝐵𝐹𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caov.2 | . . . 4 ⊢ 𝐵 ∈ V | |
2 | caov.3 | . . . 4 ⊢ 𝐶 ∈ V | |
3 | caov.4 | . . . 4 ⊢ 𝐷 ∈ V | |
4 | caov.com | . . . 4 ⊢ (𝑥𝐹𝑦) = (𝑦𝐹𝑥) | |
5 | caov.ass | . . . 4 ⊢ ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)) | |
6 | 1, 2, 3, 4, 5 | caov12 7643 | . . 3 ⊢ (𝐵𝐹(𝐶𝐹𝐷)) = (𝐶𝐹(𝐵𝐹𝐷)) |
7 | 6 | oveq2i 7425 | . 2 ⊢ (𝐴𝐹(𝐵𝐹(𝐶𝐹𝐷))) = (𝐴𝐹(𝐶𝐹(𝐵𝐹𝐷))) |
8 | caov.1 | . . 3 ⊢ 𝐴 ∈ V | |
9 | ovex 7447 | . . 3 ⊢ (𝐶𝐹𝐷) ∈ V | |
10 | 8, 1, 9, 5 | caovass 7615 | . 2 ⊢ ((𝐴𝐹𝐵)𝐹(𝐶𝐹𝐷)) = (𝐴𝐹(𝐵𝐹(𝐶𝐹𝐷))) |
11 | ovex 7447 | . . 3 ⊢ (𝐵𝐹𝐷) ∈ V | |
12 | 8, 2, 11, 5 | caovass 7615 | . 2 ⊢ ((𝐴𝐹𝐶)𝐹(𝐵𝐹𝐷)) = (𝐴𝐹(𝐶𝐹(𝐵𝐹𝐷))) |
13 | 7, 10, 12 | 3eqtr4i 2765 | 1 ⊢ ((𝐴𝐹𝐵)𝐹(𝐶𝐹𝐷)) = ((𝐴𝐹𝐶)𝐹(𝐵𝐹𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ∈ wcel 2099 Vcvv 3469 (class class class)co 7414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 ax-nul 5300 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-ne 2936 df-ral 3057 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-iota 6494 df-fv 6550 df-ov 7417 |
This theorem is referenced by: caov42 7648 ecopovtrn 8832 adderpqlem 10971 mulerpqlem 10972 ltmnq 10989 reclem3pr 11066 mulcmpblnrlem 11087 distrsr 11108 ltasr 11117 mulgt0sr 11122 axdistr 11175 |
Copyright terms: Public domain | W3C validator |