| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > caov4 | Structured version Visualization version GIF version | ||
| Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.) |
| Ref | Expression |
|---|---|
| caov.1 | ⊢ 𝐴 ∈ V |
| caov.2 | ⊢ 𝐵 ∈ V |
| caov.3 | ⊢ 𝐶 ∈ V |
| caov.com | ⊢ (𝑥𝐹𝑦) = (𝑦𝐹𝑥) |
| caov.ass | ⊢ ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)) |
| caov.4 | ⊢ 𝐷 ∈ V |
| Ref | Expression |
|---|---|
| caov4 | ⊢ ((𝐴𝐹𝐵)𝐹(𝐶𝐹𝐷)) = ((𝐴𝐹𝐶)𝐹(𝐵𝐹𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caov.2 | . . . 4 ⊢ 𝐵 ∈ V | |
| 2 | caov.3 | . . . 4 ⊢ 𝐶 ∈ V | |
| 3 | caov.4 | . . . 4 ⊢ 𝐷 ∈ V | |
| 4 | caov.com | . . . 4 ⊢ (𝑥𝐹𝑦) = (𝑦𝐹𝑥) | |
| 5 | caov.ass | . . . 4 ⊢ ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)) | |
| 6 | 1, 2, 3, 4, 5 | caov12 7617 | . . 3 ⊢ (𝐵𝐹(𝐶𝐹𝐷)) = (𝐶𝐹(𝐵𝐹𝐷)) |
| 7 | 6 | oveq2i 7398 | . 2 ⊢ (𝐴𝐹(𝐵𝐹(𝐶𝐹𝐷))) = (𝐴𝐹(𝐶𝐹(𝐵𝐹𝐷))) |
| 8 | caov.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 9 | ovex 7420 | . . 3 ⊢ (𝐶𝐹𝐷) ∈ V | |
| 10 | 8, 1, 9, 5 | caovass 7589 | . 2 ⊢ ((𝐴𝐹𝐵)𝐹(𝐶𝐹𝐷)) = (𝐴𝐹(𝐵𝐹(𝐶𝐹𝐷))) |
| 11 | ovex 7420 | . . 3 ⊢ (𝐵𝐹𝐷) ∈ V | |
| 12 | 8, 2, 11, 5 | caovass 7589 | . 2 ⊢ ((𝐴𝐹𝐶)𝐹(𝐵𝐹𝐷)) = (𝐴𝐹(𝐶𝐹(𝐵𝐹𝐷))) |
| 13 | 7, 10, 12 | 3eqtr4i 2762 | 1 ⊢ ((𝐴𝐹𝐵)𝐹(𝐶𝐹𝐷)) = ((𝐴𝐹𝐶)𝐹(𝐵𝐹𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3447 (class class class)co 7387 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5261 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 |
| This theorem is referenced by: caov42 7622 ecopovtrn 8793 adderpqlem 10907 mulerpqlem 10908 ltmnq 10925 reclem3pr 11002 mulcmpblnrlem 11023 distrsr 11044 ltasr 11053 mulgt0sr 11058 axdistr 11111 |
| Copyright terms: Public domain | W3C validator |