| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > caov4 | Structured version Visualization version GIF version | ||
| Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.) |
| Ref | Expression |
|---|---|
| caov.1 | ⊢ 𝐴 ∈ V |
| caov.2 | ⊢ 𝐵 ∈ V |
| caov.3 | ⊢ 𝐶 ∈ V |
| caov.com | ⊢ (𝑥𝐹𝑦) = (𝑦𝐹𝑥) |
| caov.ass | ⊢ ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)) |
| caov.4 | ⊢ 𝐷 ∈ V |
| Ref | Expression |
|---|---|
| caov4 | ⊢ ((𝐴𝐹𝐵)𝐹(𝐶𝐹𝐷)) = ((𝐴𝐹𝐶)𝐹(𝐵𝐹𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caov.2 | . . . 4 ⊢ 𝐵 ∈ V | |
| 2 | caov.3 | . . . 4 ⊢ 𝐶 ∈ V | |
| 3 | caov.4 | . . . 4 ⊢ 𝐷 ∈ V | |
| 4 | caov.com | . . . 4 ⊢ (𝑥𝐹𝑦) = (𝑦𝐹𝑥) | |
| 5 | caov.ass | . . . 4 ⊢ ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)) | |
| 6 | 1, 2, 3, 4, 5 | caov12 7574 | . . 3 ⊢ (𝐵𝐹(𝐶𝐹𝐷)) = (𝐶𝐹(𝐵𝐹𝐷)) |
| 7 | 6 | oveq2i 7357 | . 2 ⊢ (𝐴𝐹(𝐵𝐹(𝐶𝐹𝐷))) = (𝐴𝐹(𝐶𝐹(𝐵𝐹𝐷))) |
| 8 | caov.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 9 | ovex 7379 | . . 3 ⊢ (𝐶𝐹𝐷) ∈ V | |
| 10 | 8, 1, 9, 5 | caovass 7546 | . 2 ⊢ ((𝐴𝐹𝐵)𝐹(𝐶𝐹𝐷)) = (𝐴𝐹(𝐵𝐹(𝐶𝐹𝐷))) |
| 11 | ovex 7379 | . . 3 ⊢ (𝐵𝐹𝐷) ∈ V | |
| 12 | 8, 2, 11, 5 | caovass 7546 | . 2 ⊢ ((𝐴𝐹𝐶)𝐹(𝐵𝐹𝐷)) = (𝐴𝐹(𝐶𝐹(𝐵𝐹𝐷))) |
| 13 | 7, 10, 12 | 3eqtr4i 2764 | 1 ⊢ ((𝐴𝐹𝐵)𝐹(𝐶𝐹𝐷)) = ((𝐴𝐹𝐶)𝐹(𝐵𝐹𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 Vcvv 3436 (class class class)co 7346 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5242 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-iota 6437 df-fv 6489 df-ov 7349 |
| This theorem is referenced by: caov42 7579 ecopovtrn 8744 adderpqlem 10845 mulerpqlem 10846 ltmnq 10863 reclem3pr 10940 mulcmpblnrlem 10961 distrsr 10982 ltasr 10991 mulgt0sr 10996 axdistr 11049 |
| Copyright terms: Public domain | W3C validator |