MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caovdilem Structured version   Visualization version   GIF version

Theorem caovdilem 7656
Description: Lemma used by real number construction. (Contributed by NM, 26-Aug-1995.)
Hypotheses
Ref Expression
caovdir.1 𝐴 ∈ V
caovdir.2 𝐵 ∈ V
caovdir.3 𝐶 ∈ V
caovdir.com (𝑥𝐺𝑦) = (𝑦𝐺𝑥)
caovdir.distr (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐹(𝑥𝐺𝑧))
caovdl.4 𝐷 ∈ V
caovdl.5 𝐻 ∈ V
caovdl.ass ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))
Assertion
Ref Expression
caovdilem (((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐷))𝐺𝐻) = ((𝐴𝐺(𝐶𝐺𝐻))𝐹(𝐵𝐺(𝐷𝐺𝐻)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑥,𝐷,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧   𝑥,𝐺,𝑦,𝑧   𝑥,𝐻,𝑦,𝑧

Proof of Theorem caovdilem
StepHypRef Expression
1 ovex 7452 . . 3 (𝐴𝐺𝐶) ∈ V
2 ovex 7452 . . 3 (𝐵𝐺𝐷) ∈ V
3 caovdl.5 . . 3 𝐻 ∈ V
4 caovdir.com . . 3 (𝑥𝐺𝑦) = (𝑦𝐺𝑥)
5 caovdir.distr . . 3 (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐹(𝑥𝐺𝑧))
61, 2, 3, 4, 5caovdir 7655 . 2 (((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐷))𝐺𝐻) = (((𝐴𝐺𝐶)𝐺𝐻)𝐹((𝐵𝐺𝐷)𝐺𝐻))
7 caovdir.1 . . . 4 𝐴 ∈ V
8 caovdir.3 . . . 4 𝐶 ∈ V
9 caovdl.ass . . . 4 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))
107, 8, 3, 9caovass 7621 . . 3 ((𝐴𝐺𝐶)𝐺𝐻) = (𝐴𝐺(𝐶𝐺𝐻))
11 caovdir.2 . . . 4 𝐵 ∈ V
12 caovdl.4 . . . 4 𝐷 ∈ V
1311, 12, 3, 9caovass 7621 . . 3 ((𝐵𝐺𝐷)𝐺𝐻) = (𝐵𝐺(𝐷𝐺𝐻))
1410, 13oveq12i 7431 . 2 (((𝐴𝐺𝐶)𝐺𝐻)𝐹((𝐵𝐺𝐷)𝐺𝐻)) = ((𝐴𝐺(𝐶𝐺𝐻))𝐹(𝐵𝐺(𝐷𝐺𝐻)))
156, 14eqtri 2753 1 (((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐷))𝐺𝐻) = ((𝐴𝐺(𝐶𝐺𝐻))𝐹(𝐵𝐺(𝐷𝐺𝐻)))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  wcel 2098  Vcvv 3461  (class class class)co 7419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696  ax-nul 5307
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ne 2930  df-ral 3051  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-iota 6501  df-fv 6557  df-ov 7422
This theorem is referenced by:  caovlem2  7657  axmulass  11182
  Copyright terms: Public domain W3C validator