MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caovdilem Structured version   Visualization version   GIF version

Theorem caovdilem 7507
Description: Lemma used by real number construction. (Contributed by NM, 26-Aug-1995.)
Hypotheses
Ref Expression
caovdir.1 𝐴 ∈ V
caovdir.2 𝐵 ∈ V
caovdir.3 𝐶 ∈ V
caovdir.com (𝑥𝐺𝑦) = (𝑦𝐺𝑥)
caovdir.distr (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐹(𝑥𝐺𝑧))
caovdl.4 𝐷 ∈ V
caovdl.5 𝐻 ∈ V
caovdl.ass ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))
Assertion
Ref Expression
caovdilem (((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐷))𝐺𝐻) = ((𝐴𝐺(𝐶𝐺𝐻))𝐹(𝐵𝐺(𝐷𝐺𝐻)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑥,𝐷,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧   𝑥,𝐺,𝑦,𝑧   𝑥,𝐻,𝑦,𝑧

Proof of Theorem caovdilem
StepHypRef Expression
1 ovex 7308 . . 3 (𝐴𝐺𝐶) ∈ V
2 ovex 7308 . . 3 (𝐵𝐺𝐷) ∈ V
3 caovdl.5 . . 3 𝐻 ∈ V
4 caovdir.com . . 3 (𝑥𝐺𝑦) = (𝑦𝐺𝑥)
5 caovdir.distr . . 3 (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐹(𝑥𝐺𝑧))
61, 2, 3, 4, 5caovdir 7506 . 2 (((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐷))𝐺𝐻) = (((𝐴𝐺𝐶)𝐺𝐻)𝐹((𝐵𝐺𝐷)𝐺𝐻))
7 caovdir.1 . . . 4 𝐴 ∈ V
8 caovdir.3 . . . 4 𝐶 ∈ V
9 caovdl.ass . . . 4 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))
107, 8, 3, 9caovass 7472 . . 3 ((𝐴𝐺𝐶)𝐺𝐻) = (𝐴𝐺(𝐶𝐺𝐻))
11 caovdir.2 . . . 4 𝐵 ∈ V
12 caovdl.4 . . . 4 𝐷 ∈ V
1311, 12, 3, 9caovass 7472 . . 3 ((𝐵𝐺𝐷)𝐺𝐻) = (𝐵𝐺(𝐷𝐺𝐻))
1410, 13oveq12i 7287 . 2 (((𝐴𝐺𝐶)𝐺𝐻)𝐹((𝐵𝐺𝐷)𝐺𝐻)) = ((𝐴𝐺(𝐶𝐺𝐻))𝐹(𝐵𝐺(𝐷𝐺𝐻)))
156, 14eqtri 2766 1 (((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐷))𝐺𝐻) = ((𝐴𝐺(𝐶𝐺𝐻))𝐹(𝐵𝐺(𝐷𝐺𝐻)))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2106  Vcvv 3432  (class class class)co 7275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-nul 5230
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-iota 6391  df-fv 6441  df-ov 7278
This theorem is referenced by:  caovlem2  7508  axmulass  10913
  Copyright terms: Public domain W3C validator