![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > caovdilem | Structured version Visualization version GIF version |
Description: Lemma used by real number construction. (Contributed by NM, 26-Aug-1995.) |
Ref | Expression |
---|---|
caovdir.1 | ⊢ 𝐴 ∈ V |
caovdir.2 | ⊢ 𝐵 ∈ V |
caovdir.3 | ⊢ 𝐶 ∈ V |
caovdir.com | ⊢ (𝑥𝐺𝑦) = (𝑦𝐺𝑥) |
caovdir.distr | ⊢ (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐹(𝑥𝐺𝑧)) |
caovdl.4 | ⊢ 𝐷 ∈ V |
caovdl.5 | ⊢ 𝐻 ∈ V |
caovdl.ass | ⊢ ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) |
Ref | Expression |
---|---|
caovdilem | ⊢ (((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐷))𝐺𝐻) = ((𝐴𝐺(𝐶𝐺𝐻))𝐹(𝐵𝐺(𝐷𝐺𝐻))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovex 7481 | . . 3 ⊢ (𝐴𝐺𝐶) ∈ V | |
2 | ovex 7481 | . . 3 ⊢ (𝐵𝐺𝐷) ∈ V | |
3 | caovdl.5 | . . 3 ⊢ 𝐻 ∈ V | |
4 | caovdir.com | . . 3 ⊢ (𝑥𝐺𝑦) = (𝑦𝐺𝑥) | |
5 | caovdir.distr | . . 3 ⊢ (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐹(𝑥𝐺𝑧)) | |
6 | 1, 2, 3, 4, 5 | caovdir 7684 | . 2 ⊢ (((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐷))𝐺𝐻) = (((𝐴𝐺𝐶)𝐺𝐻)𝐹((𝐵𝐺𝐷)𝐺𝐻)) |
7 | caovdir.1 | . . . 4 ⊢ 𝐴 ∈ V | |
8 | caovdir.3 | . . . 4 ⊢ 𝐶 ∈ V | |
9 | caovdl.ass | . . . 4 ⊢ ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) | |
10 | 7, 8, 3, 9 | caovass 7650 | . . 3 ⊢ ((𝐴𝐺𝐶)𝐺𝐻) = (𝐴𝐺(𝐶𝐺𝐻)) |
11 | caovdir.2 | . . . 4 ⊢ 𝐵 ∈ V | |
12 | caovdl.4 | . . . 4 ⊢ 𝐷 ∈ V | |
13 | 11, 12, 3, 9 | caovass 7650 | . . 3 ⊢ ((𝐵𝐺𝐷)𝐺𝐻) = (𝐵𝐺(𝐷𝐺𝐻)) |
14 | 10, 13 | oveq12i 7460 | . 2 ⊢ (((𝐴𝐺𝐶)𝐺𝐻)𝐹((𝐵𝐺𝐷)𝐺𝐻)) = ((𝐴𝐺(𝐶𝐺𝐻))𝐹(𝐵𝐺(𝐷𝐺𝐻))) |
15 | 6, 14 | eqtri 2768 | 1 ⊢ (((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐷))𝐺𝐻) = ((𝐴𝐺(𝐶𝐺𝐻))𝐹(𝐵𝐺(𝐷𝐺𝐻))) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 Vcvv 3488 (class class class)co 7448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 |
This theorem is referenced by: caovlem2 7686 axmulass 11226 |
Copyright terms: Public domain | W3C validator |