| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > caovdilem | Structured version Visualization version GIF version | ||
| Description: Lemma used by real number construction. (Contributed by NM, 26-Aug-1995.) |
| Ref | Expression |
|---|---|
| caovdir.1 | ⊢ 𝐴 ∈ V |
| caovdir.2 | ⊢ 𝐵 ∈ V |
| caovdir.3 | ⊢ 𝐶 ∈ V |
| caovdir.com | ⊢ (𝑥𝐺𝑦) = (𝑦𝐺𝑥) |
| caovdir.distr | ⊢ (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐹(𝑥𝐺𝑧)) |
| caovdl.4 | ⊢ 𝐷 ∈ V |
| caovdl.5 | ⊢ 𝐻 ∈ V |
| caovdl.ass | ⊢ ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) |
| Ref | Expression |
|---|---|
| caovdilem | ⊢ (((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐷))𝐺𝐻) = ((𝐴𝐺(𝐶𝐺𝐻))𝐹(𝐵𝐺(𝐷𝐺𝐻))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovex 7379 | . . 3 ⊢ (𝐴𝐺𝐶) ∈ V | |
| 2 | ovex 7379 | . . 3 ⊢ (𝐵𝐺𝐷) ∈ V | |
| 3 | caovdl.5 | . . 3 ⊢ 𝐻 ∈ V | |
| 4 | caovdir.com | . . 3 ⊢ (𝑥𝐺𝑦) = (𝑦𝐺𝑥) | |
| 5 | caovdir.distr | . . 3 ⊢ (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐹(𝑥𝐺𝑧)) | |
| 6 | 1, 2, 3, 4, 5 | caovdir 7580 | . 2 ⊢ (((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐷))𝐺𝐻) = (((𝐴𝐺𝐶)𝐺𝐻)𝐹((𝐵𝐺𝐷)𝐺𝐻)) |
| 7 | caovdir.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 8 | caovdir.3 | . . . 4 ⊢ 𝐶 ∈ V | |
| 9 | caovdl.ass | . . . 4 ⊢ ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) | |
| 10 | 7, 8, 3, 9 | caovass 7546 | . . 3 ⊢ ((𝐴𝐺𝐶)𝐺𝐻) = (𝐴𝐺(𝐶𝐺𝐻)) |
| 11 | caovdir.2 | . . . 4 ⊢ 𝐵 ∈ V | |
| 12 | caovdl.4 | . . . 4 ⊢ 𝐷 ∈ V | |
| 13 | 11, 12, 3, 9 | caovass 7546 | . . 3 ⊢ ((𝐵𝐺𝐷)𝐺𝐻) = (𝐵𝐺(𝐷𝐺𝐻)) |
| 14 | 10, 13 | oveq12i 7358 | . 2 ⊢ (((𝐴𝐺𝐶)𝐺𝐻)𝐹((𝐵𝐺𝐷)𝐺𝐻)) = ((𝐴𝐺(𝐶𝐺𝐻))𝐹(𝐵𝐺(𝐷𝐺𝐻))) |
| 15 | 6, 14 | eqtri 2754 | 1 ⊢ (((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐷))𝐺𝐻) = ((𝐴𝐺(𝐶𝐺𝐻))𝐹(𝐵𝐺(𝐷𝐺𝐻))) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 Vcvv 3436 (class class class)co 7346 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5242 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-iota 6437 df-fv 6489 df-ov 7349 |
| This theorem is referenced by: caovlem2 7582 axmulass 11048 |
| Copyright terms: Public domain | W3C validator |