![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > caovdir | Structured version Visualization version GIF version |
Description: Reverse distributive law. (Contributed by NM, 26-Aug-1995.) |
Ref | Expression |
---|---|
caovdir.1 | ⊢ 𝐴 ∈ V |
caovdir.2 | ⊢ 𝐵 ∈ V |
caovdir.3 | ⊢ 𝐶 ∈ V |
caovdir.com | ⊢ (𝑥𝐺𝑦) = (𝑦𝐺𝑥) |
caovdir.distr | ⊢ (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐹(𝑥𝐺𝑧)) |
Ref | Expression |
---|---|
caovdir | ⊢ ((𝐴𝐹𝐵)𝐺𝐶) = ((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caovdir.3 | . . 3 ⊢ 𝐶 ∈ V | |
2 | caovdir.1 | . . 3 ⊢ 𝐴 ∈ V | |
3 | caovdir.2 | . . 3 ⊢ 𝐵 ∈ V | |
4 | caovdir.distr | . . 3 ⊢ (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐹(𝑥𝐺𝑧)) | |
5 | 1, 2, 3, 4 | caovdi 7625 | . 2 ⊢ (𝐶𝐺(𝐴𝐹𝐵)) = ((𝐶𝐺𝐴)𝐹(𝐶𝐺𝐵)) |
6 | ovex 7441 | . . 3 ⊢ (𝐴𝐹𝐵) ∈ V | |
7 | caovdir.com | . . 3 ⊢ (𝑥𝐺𝑦) = (𝑦𝐺𝑥) | |
8 | 1, 6, 7 | caovcom 7603 | . 2 ⊢ (𝐶𝐺(𝐴𝐹𝐵)) = ((𝐴𝐹𝐵)𝐺𝐶) |
9 | 1, 2, 7 | caovcom 7603 | . . 3 ⊢ (𝐶𝐺𝐴) = (𝐴𝐺𝐶) |
10 | 1, 3, 7 | caovcom 7603 | . . 3 ⊢ (𝐶𝐺𝐵) = (𝐵𝐺𝐶) |
11 | 9, 10 | oveq12i 7420 | . 2 ⊢ ((𝐶𝐺𝐴)𝐹(𝐶𝐺𝐵)) = ((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐶)) |
12 | 5, 8, 11 | 3eqtr3i 2768 | 1 ⊢ ((𝐴𝐹𝐵)𝐺𝐶) = ((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∈ wcel 2106 Vcvv 3474 (class class class)co 7408 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-nul 5306 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-iota 6495 df-fv 6551 df-ov 7411 |
This theorem is referenced by: caovdilem 7641 adderpqlem 10948 addassnq 10952 prlem934 11027 prlem936 11041 recexsrlem 11097 mulgt0sr 11099 |
Copyright terms: Public domain | W3C validator |