| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > caovdir | Structured version Visualization version GIF version | ||
| Description: Reverse distributive law. (Contributed by NM, 26-Aug-1995.) |
| Ref | Expression |
|---|---|
| caovdir.1 | ⊢ 𝐴 ∈ V |
| caovdir.2 | ⊢ 𝐵 ∈ V |
| caovdir.3 | ⊢ 𝐶 ∈ V |
| caovdir.com | ⊢ (𝑥𝐺𝑦) = (𝑦𝐺𝑥) |
| caovdir.distr | ⊢ (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐹(𝑥𝐺𝑧)) |
| Ref | Expression |
|---|---|
| caovdir | ⊢ ((𝐴𝐹𝐵)𝐺𝐶) = ((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caovdir.3 | . . 3 ⊢ 𝐶 ∈ V | |
| 2 | caovdir.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 3 | caovdir.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 4 | caovdir.distr | . . 3 ⊢ (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐹(𝑥𝐺𝑧)) | |
| 5 | 1, 2, 3, 4 | caovdi 7631 | . 2 ⊢ (𝐶𝐺(𝐴𝐹𝐵)) = ((𝐶𝐺𝐴)𝐹(𝐶𝐺𝐵)) |
| 6 | ovex 7443 | . . 3 ⊢ (𝐴𝐹𝐵) ∈ V | |
| 7 | caovdir.com | . . 3 ⊢ (𝑥𝐺𝑦) = (𝑦𝐺𝑥) | |
| 8 | 1, 6, 7 | caovcom 7609 | . 2 ⊢ (𝐶𝐺(𝐴𝐹𝐵)) = ((𝐴𝐹𝐵)𝐺𝐶) |
| 9 | 1, 2, 7 | caovcom 7609 | . . 3 ⊢ (𝐶𝐺𝐴) = (𝐴𝐺𝐶) |
| 10 | 1, 3, 7 | caovcom 7609 | . . 3 ⊢ (𝐶𝐺𝐵) = (𝐵𝐺𝐶) |
| 11 | 9, 10 | oveq12i 7422 | . 2 ⊢ ((𝐶𝐺𝐴)𝐹(𝐶𝐺𝐵)) = ((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐶)) |
| 12 | 5, 8, 11 | 3eqtr3i 2767 | 1 ⊢ ((𝐴𝐹𝐵)𝐺𝐶) = ((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3464 (class class class)co 7410 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-nul 5281 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-iota 6489 df-fv 6544 df-ov 7413 |
| This theorem is referenced by: caovdilem 7647 adderpqlem 10973 addassnq 10977 prlem934 11052 prlem936 11066 recexsrlem 11122 mulgt0sr 11124 |
| Copyright terms: Public domain | W3C validator |