Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > caovdir | Structured version Visualization version GIF version |
Description: Reverse distributive law. (Contributed by NM, 26-Aug-1995.) |
Ref | Expression |
---|---|
caovdir.1 | ⊢ 𝐴 ∈ V |
caovdir.2 | ⊢ 𝐵 ∈ V |
caovdir.3 | ⊢ 𝐶 ∈ V |
caovdir.com | ⊢ (𝑥𝐺𝑦) = (𝑦𝐺𝑥) |
caovdir.distr | ⊢ (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐹(𝑥𝐺𝑧)) |
Ref | Expression |
---|---|
caovdir | ⊢ ((𝐴𝐹𝐵)𝐺𝐶) = ((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caovdir.3 | . . 3 ⊢ 𝐶 ∈ V | |
2 | caovdir.1 | . . 3 ⊢ 𝐴 ∈ V | |
3 | caovdir.2 | . . 3 ⊢ 𝐵 ∈ V | |
4 | caovdir.distr | . . 3 ⊢ (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐹(𝑥𝐺𝑧)) | |
5 | 1, 2, 3, 4 | caovdi 7363 | . 2 ⊢ (𝐶𝐺(𝐴𝐹𝐵)) = ((𝐶𝐺𝐴)𝐹(𝐶𝐺𝐵)) |
6 | ovex 7183 | . . 3 ⊢ (𝐴𝐹𝐵) ∈ V | |
7 | caovdir.com | . . 3 ⊢ (𝑥𝐺𝑦) = (𝑦𝐺𝑥) | |
8 | 1, 6, 7 | caovcom 7341 | . 2 ⊢ (𝐶𝐺(𝐴𝐹𝐵)) = ((𝐴𝐹𝐵)𝐺𝐶) |
9 | 1, 2, 7 | caovcom 7341 | . . 3 ⊢ (𝐶𝐺𝐴) = (𝐴𝐺𝐶) |
10 | 1, 3, 7 | caovcom 7341 | . . 3 ⊢ (𝐶𝐺𝐵) = (𝐵𝐺𝐶) |
11 | 9, 10 | oveq12i 7162 | . 2 ⊢ ((𝐶𝐺𝐴)𝐹(𝐶𝐺𝐵)) = ((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐶)) |
12 | 5, 8, 11 | 3eqtr3i 2789 | 1 ⊢ ((𝐴𝐹𝐵)𝐺𝐶) = ((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1538 ∈ wcel 2111 Vcvv 3409 (class class class)co 7150 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-nul 5176 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-ral 3075 df-rex 3076 df-v 3411 df-sbc 3697 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-br 5033 df-iota 6294 df-fv 6343 df-ov 7153 |
This theorem is referenced by: caovdilem 7379 adderpqlem 10414 addassnq 10418 prlem934 10493 prlem936 10507 recexsrlem 10563 mulgt0sr 10565 |
Copyright terms: Public domain | W3C validator |