![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > caovdir | Structured version Visualization version GIF version |
Description: Reverse distributive law. (Contributed by NM, 26-Aug-1995.) |
Ref | Expression |
---|---|
caovdir.1 | ⊢ 𝐴 ∈ V |
caovdir.2 | ⊢ 𝐵 ∈ V |
caovdir.3 | ⊢ 𝐶 ∈ V |
caovdir.com | ⊢ (𝑥𝐺𝑦) = (𝑦𝐺𝑥) |
caovdir.distr | ⊢ (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐹(𝑥𝐺𝑧)) |
Ref | Expression |
---|---|
caovdir | ⊢ ((𝐴𝐹𝐵)𝐺𝐶) = ((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caovdir.3 | . . 3 ⊢ 𝐶 ∈ V | |
2 | caovdir.1 | . . 3 ⊢ 𝐴 ∈ V | |
3 | caovdir.2 | . . 3 ⊢ 𝐵 ∈ V | |
4 | caovdir.distr | . . 3 ⊢ (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐹(𝑥𝐺𝑧)) | |
5 | 1, 2, 3, 4 | caovdi 7001 | . 2 ⊢ (𝐶𝐺(𝐴𝐹𝐵)) = ((𝐶𝐺𝐴)𝐹(𝐶𝐺𝐵)) |
6 | ovex 6824 | . . 3 ⊢ (𝐴𝐹𝐵) ∈ V | |
7 | caovdir.com | . . 3 ⊢ (𝑥𝐺𝑦) = (𝑦𝐺𝑥) | |
8 | 1, 6, 7 | caovcom 6979 | . 2 ⊢ (𝐶𝐺(𝐴𝐹𝐵)) = ((𝐴𝐹𝐵)𝐺𝐶) |
9 | 1, 2, 7 | caovcom 6979 | . . 3 ⊢ (𝐶𝐺𝐴) = (𝐴𝐺𝐶) |
10 | 1, 3, 7 | caovcom 6979 | . . 3 ⊢ (𝐶𝐺𝐵) = (𝐵𝐺𝐶) |
11 | 9, 10 | oveq12i 6806 | . 2 ⊢ ((𝐶𝐺𝐴)𝐹(𝐶𝐺𝐵)) = ((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐶)) |
12 | 5, 8, 11 | 3eqtr3i 2801 | 1 ⊢ ((𝐴𝐹𝐵)𝐺𝐶) = ((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1631 ∈ wcel 2145 Vcvv 3351 (class class class)co 6794 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-nul 4924 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 829 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3589 df-dif 3727 df-un 3729 df-in 3731 df-ss 3738 df-nul 4065 df-if 4227 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4576 df-br 4788 df-iota 5995 df-fv 6040 df-ov 6797 |
This theorem is referenced by: caovdilem 7017 adderpqlem 9979 addassnq 9983 prlem934 10058 prlem936 10072 recexsrlem 10127 mulgt0sr 10129 |
Copyright terms: Public domain | W3C validator |