Proof of Theorem caovlem2
Step | Hyp | Ref
| Expression |
1 | | ovex 7288 |
. . 3
⊢ (𝐴𝐺(𝐶𝐺𝐻)) ∈ V |
2 | | ovex 7288 |
. . 3
⊢ (𝐵𝐺(𝐷𝐺𝐻)) ∈ V |
3 | | ovex 7288 |
. . 3
⊢ (𝐴𝐺(𝐷𝐺𝑅)) ∈ V |
4 | | caovdl2.com |
. . 3
⊢ (𝑥𝐹𝑦) = (𝑦𝐹𝑥) |
5 | | caovdl2.ass |
. . 3
⊢ ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)) |
6 | | ovex 7288 |
. . 3
⊢ (𝐵𝐺(𝐶𝐺𝑅)) ∈ V |
7 | 1, 2, 3, 4, 5, 6 | caov42 7483 |
. 2
⊢ (((𝐴𝐺(𝐶𝐺𝐻))𝐹(𝐵𝐺(𝐷𝐺𝐻)))𝐹((𝐴𝐺(𝐷𝐺𝑅))𝐹(𝐵𝐺(𝐶𝐺𝑅)))) = (((𝐴𝐺(𝐶𝐺𝐻))𝐹(𝐴𝐺(𝐷𝐺𝑅)))𝐹((𝐵𝐺(𝐶𝐺𝑅))𝐹(𝐵𝐺(𝐷𝐺𝐻)))) |
8 | | caovdir.1 |
. . . 4
⊢ 𝐴 ∈ V |
9 | | caovdir.2 |
. . . 4
⊢ 𝐵 ∈ V |
10 | | caovdir.3 |
. . . 4
⊢ 𝐶 ∈ V |
11 | | caovdir.com |
. . . 4
⊢ (𝑥𝐺𝑦) = (𝑦𝐺𝑥) |
12 | | caovdir.distr |
. . . 4
⊢ (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐹(𝑥𝐺𝑧)) |
13 | | caovdl.4 |
. . . 4
⊢ 𝐷 ∈ V |
14 | | caovdl.5 |
. . . 4
⊢ 𝐻 ∈ V |
15 | | caovdl.ass |
. . . 4
⊢ ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) |
16 | 8, 9, 10, 11, 12, 13, 14, 15 | caovdilem 7485 |
. . 3
⊢ (((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐷))𝐺𝐻) = ((𝐴𝐺(𝐶𝐺𝐻))𝐹(𝐵𝐺(𝐷𝐺𝐻))) |
17 | | caovdl2.6 |
. . . 4
⊢ 𝑅 ∈ V |
18 | 8, 9, 13, 11, 12, 10, 17, 15 | caovdilem 7485 |
. . 3
⊢ (((𝐴𝐺𝐷)𝐹(𝐵𝐺𝐶))𝐺𝑅) = ((𝐴𝐺(𝐷𝐺𝑅))𝐹(𝐵𝐺(𝐶𝐺𝑅))) |
19 | 16, 18 | oveq12i 7267 |
. 2
⊢ ((((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐷))𝐺𝐻)𝐹(((𝐴𝐺𝐷)𝐹(𝐵𝐺𝐶))𝐺𝑅)) = (((𝐴𝐺(𝐶𝐺𝐻))𝐹(𝐵𝐺(𝐷𝐺𝐻)))𝐹((𝐴𝐺(𝐷𝐺𝑅))𝐹(𝐵𝐺(𝐶𝐺𝑅)))) |
20 | | ovex 7288 |
. . . 4
⊢ (𝐶𝐺𝐻) ∈ V |
21 | | ovex 7288 |
. . . 4
⊢ (𝐷𝐺𝑅) ∈ V |
22 | 8, 20, 21, 12 | caovdi 7469 |
. . 3
⊢ (𝐴𝐺((𝐶𝐺𝐻)𝐹(𝐷𝐺𝑅))) = ((𝐴𝐺(𝐶𝐺𝐻))𝐹(𝐴𝐺(𝐷𝐺𝑅))) |
23 | | ovex 7288 |
. . . 4
⊢ (𝐶𝐺𝑅) ∈ V |
24 | | ovex 7288 |
. . . 4
⊢ (𝐷𝐺𝐻) ∈ V |
25 | 9, 23, 24, 12 | caovdi 7469 |
. . 3
⊢ (𝐵𝐺((𝐶𝐺𝑅)𝐹(𝐷𝐺𝐻))) = ((𝐵𝐺(𝐶𝐺𝑅))𝐹(𝐵𝐺(𝐷𝐺𝐻))) |
26 | 22, 25 | oveq12i 7267 |
. 2
⊢ ((𝐴𝐺((𝐶𝐺𝐻)𝐹(𝐷𝐺𝑅)))𝐹(𝐵𝐺((𝐶𝐺𝑅)𝐹(𝐷𝐺𝐻)))) = (((𝐴𝐺(𝐶𝐺𝐻))𝐹(𝐴𝐺(𝐷𝐺𝑅)))𝐹((𝐵𝐺(𝐶𝐺𝑅))𝐹(𝐵𝐺(𝐷𝐺𝐻)))) |
27 | 7, 19, 26 | 3eqtr4i 2776 |
1
⊢ ((((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐷))𝐺𝐻)𝐹(((𝐴𝐺𝐷)𝐹(𝐵𝐺𝐶))𝐺𝑅)) = ((𝐴𝐺((𝐶𝐺𝐻)𝐹(𝐷𝐺𝑅)))𝐹(𝐵𝐺((𝐶𝐺𝑅)𝐹(𝐷𝐺𝐻)))) |