Proof of Theorem caovlem2
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | ovex 7465 | . . 3
⊢ (𝐴𝐺(𝐶𝐺𝐻)) ∈ V | 
| 2 |  | ovex 7465 | . . 3
⊢ (𝐵𝐺(𝐷𝐺𝐻)) ∈ V | 
| 3 |  | ovex 7465 | . . 3
⊢ (𝐴𝐺(𝐷𝐺𝑅)) ∈ V | 
| 4 |  | caovdl2.com | . . 3
⊢ (𝑥𝐹𝑦) = (𝑦𝐹𝑥) | 
| 5 |  | caovdl2.ass | . . 3
⊢ ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)) | 
| 6 |  | ovex 7465 | . . 3
⊢ (𝐵𝐺(𝐶𝐺𝑅)) ∈ V | 
| 7 | 1, 2, 3, 4, 5, 6 | caov42 7667 | . 2
⊢ (((𝐴𝐺(𝐶𝐺𝐻))𝐹(𝐵𝐺(𝐷𝐺𝐻)))𝐹((𝐴𝐺(𝐷𝐺𝑅))𝐹(𝐵𝐺(𝐶𝐺𝑅)))) = (((𝐴𝐺(𝐶𝐺𝐻))𝐹(𝐴𝐺(𝐷𝐺𝑅)))𝐹((𝐵𝐺(𝐶𝐺𝑅))𝐹(𝐵𝐺(𝐷𝐺𝐻)))) | 
| 8 |  | caovdir.1 | . . . 4
⊢ 𝐴 ∈ V | 
| 9 |  | caovdir.2 | . . . 4
⊢ 𝐵 ∈ V | 
| 10 |  | caovdir.3 | . . . 4
⊢ 𝐶 ∈ V | 
| 11 |  | caovdir.com | . . . 4
⊢ (𝑥𝐺𝑦) = (𝑦𝐺𝑥) | 
| 12 |  | caovdir.distr | . . . 4
⊢ (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐹(𝑥𝐺𝑧)) | 
| 13 |  | caovdl.4 | . . . 4
⊢ 𝐷 ∈ V | 
| 14 |  | caovdl.5 | . . . 4
⊢ 𝐻 ∈ V | 
| 15 |  | caovdl.ass | . . . 4
⊢ ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) | 
| 16 | 8, 9, 10, 11, 12, 13, 14, 15 | caovdilem 7669 | . . 3
⊢ (((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐷))𝐺𝐻) = ((𝐴𝐺(𝐶𝐺𝐻))𝐹(𝐵𝐺(𝐷𝐺𝐻))) | 
| 17 |  | caovdl2.6 | . . . 4
⊢ 𝑅 ∈ V | 
| 18 | 8, 9, 13, 11, 12, 10, 17, 15 | caovdilem 7669 | . . 3
⊢ (((𝐴𝐺𝐷)𝐹(𝐵𝐺𝐶))𝐺𝑅) = ((𝐴𝐺(𝐷𝐺𝑅))𝐹(𝐵𝐺(𝐶𝐺𝑅))) | 
| 19 | 16, 18 | oveq12i 7444 | . 2
⊢ ((((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐷))𝐺𝐻)𝐹(((𝐴𝐺𝐷)𝐹(𝐵𝐺𝐶))𝐺𝑅)) = (((𝐴𝐺(𝐶𝐺𝐻))𝐹(𝐵𝐺(𝐷𝐺𝐻)))𝐹((𝐴𝐺(𝐷𝐺𝑅))𝐹(𝐵𝐺(𝐶𝐺𝑅)))) | 
| 20 |  | ovex 7465 | . . . 4
⊢ (𝐶𝐺𝐻) ∈ V | 
| 21 |  | ovex 7465 | . . . 4
⊢ (𝐷𝐺𝑅) ∈ V | 
| 22 | 8, 20, 21, 12 | caovdi 7653 | . . 3
⊢ (𝐴𝐺((𝐶𝐺𝐻)𝐹(𝐷𝐺𝑅))) = ((𝐴𝐺(𝐶𝐺𝐻))𝐹(𝐴𝐺(𝐷𝐺𝑅))) | 
| 23 |  | ovex 7465 | . . . 4
⊢ (𝐶𝐺𝑅) ∈ V | 
| 24 |  | ovex 7465 | . . . 4
⊢ (𝐷𝐺𝐻) ∈ V | 
| 25 | 9, 23, 24, 12 | caovdi 7653 | . . 3
⊢ (𝐵𝐺((𝐶𝐺𝑅)𝐹(𝐷𝐺𝐻))) = ((𝐵𝐺(𝐶𝐺𝑅))𝐹(𝐵𝐺(𝐷𝐺𝐻))) | 
| 26 | 22, 25 | oveq12i 7444 | . 2
⊢ ((𝐴𝐺((𝐶𝐺𝐻)𝐹(𝐷𝐺𝑅)))𝐹(𝐵𝐺((𝐶𝐺𝑅)𝐹(𝐷𝐺𝐻)))) = (((𝐴𝐺(𝐶𝐺𝐻))𝐹(𝐴𝐺(𝐷𝐺𝑅)))𝐹((𝐵𝐺(𝐶𝐺𝑅))𝐹(𝐵𝐺(𝐷𝐺𝐻)))) | 
| 27 | 7, 19, 26 | 3eqtr4i 2774 | 1
⊢ ((((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐷))𝐺𝐻)𝐹(((𝐴𝐺𝐷)𝐹(𝐵𝐺𝐶))𝐺𝑅)) = ((𝐴𝐺((𝐶𝐺𝐻)𝐹(𝐷𝐺𝑅)))𝐹(𝐵𝐺((𝐶𝐺𝑅)𝐹(𝐷𝐺𝐻)))) |