| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbeq12dv | Structured version Visualization version GIF version | ||
| Description: Formula-building inference for class substitution. (Contributed by SN, 3-Nov-2023.) |
| Ref | Expression |
|---|---|
| csbeq12dv.1 | ⊢ (𝜑 → 𝐴 = 𝐶) |
| csbeq12dv.2 | ⊢ (𝜑 → 𝐵 = 𝐷) |
| Ref | Expression |
|---|---|
| csbeq12dv | ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐶 / 𝑥⦌𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq12dv.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐶) | |
| 2 | 1 | csbeq1d 3878 | . 2 ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐶 / 𝑥⦌𝐵) |
| 3 | csbeq12dv.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐷) | |
| 4 | 3 | csbeq2dv 3881 | . 2 ⊢ (𝜑 → ⦋𝐶 / 𝑥⦌𝐵 = ⦋𝐶 / 𝑥⦌𝐷) |
| 5 | 2, 4 | eqtrd 2770 | 1 ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐶 / 𝑥⦌𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ⦋csb 3874 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-sbc 3766 df-csb 3875 |
| This theorem is referenced by: bpolylem 16062 selvffval 22069 selvfval 22070 selvval 22071 cbvitgv 25728 mulsval 28052 precsexlemcbv 28147 precsexlem3 28150 ttgval 28800 itgeq12sdv 36183 cbvitgvw2 36212 cbvitgdavw 36245 cbvitgdavw2 36261 poimirlem16 37606 poimirlem17 37607 poimirlem19 37609 poimirlem20 37610 isprimroot 42052 fmpocos 42232 grtri 47900 dfswapf2 49095 dfinito4 49301 |
| Copyright terms: Public domain | W3C validator |