![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbeq12dv | Structured version Visualization version GIF version |
Description: Formula-building inference for class substitution. (Contributed by SN, 3-Nov-2023.) |
Ref | Expression |
---|---|
csbeq12dv.1 | ⊢ (𝜑 → 𝐴 = 𝐶) |
csbeq12dv.2 | ⊢ (𝜑 → 𝐵 = 𝐷) |
Ref | Expression |
---|---|
csbeq12dv | ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐶 / 𝑥⦌𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbeq12dv.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐶) | |
2 | 1 | csbeq1d 3925 | . 2 ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐶 / 𝑥⦌𝐵) |
3 | csbeq12dv.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐷) | |
4 | 3 | csbeq2dv 3928 | . 2 ⊢ (𝜑 → ⦋𝐶 / 𝑥⦌𝐵 = ⦋𝐶 / 𝑥⦌𝐷) |
5 | 2, 4 | eqtrd 2780 | 1 ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐶 / 𝑥⦌𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ⦋csb 3921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-sbc 3805 df-csb 3922 |
This theorem is referenced by: bpolylem 16096 selvffval 22160 selvfval 22161 selvval 22162 cbvitgv 25832 mulsval 28153 precsexlemcbv 28248 precsexlem3 28251 ttgval 28901 itgeq12sdv 36185 cbvitgvw2 36214 cbvitgdavw 36247 cbvitgdavw2 36263 poimirlem16 37596 poimirlem17 37597 poimirlem19 37599 poimirlem20 37600 isprimroot 42050 fmpocos 42229 grtri 47791 |
Copyright terms: Public domain | W3C validator |