Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > csbeq12dv | Structured version Visualization version GIF version |
Description: Formula-building inference for class substitution. (Contributed by SN, 3-Nov-2023.) |
Ref | Expression |
---|---|
csbeq12dv.1 | ⊢ (𝜑 → 𝐴 = 𝐶) |
csbeq12dv.2 | ⊢ (𝜑 → 𝐵 = 𝐷) |
Ref | Expression |
---|---|
csbeq12dv | ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐶 / 𝑥⦌𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbeq12dv.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐶) | |
2 | 1 | csbeq1d 3836 | . 2 ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐶 / 𝑥⦌𝐵) |
3 | csbeq12dv.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐷) | |
4 | 3 | csbeq2dv 3839 | . 2 ⊢ (𝜑 → ⦋𝐶 / 𝑥⦌𝐵 = ⦋𝐶 / 𝑥⦌𝐷) |
5 | 2, 4 | eqtrd 2778 | 1 ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐶 / 𝑥⦌𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ⦋csb 3832 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-sbc 3717 df-csb 3833 |
This theorem is referenced by: bpolylem 15758 selvffval 21326 selvfval 21327 selvval 21328 ttgval 27236 poimirlem16 35793 poimirlem17 35794 poimirlem19 35796 poimirlem20 35797 |
Copyright terms: Public domain | W3C validator |