Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > csbeq12dv | Structured version Visualization version GIF version |
Description: Formula-building inference for class substitution. (Contributed by SN, 3-Nov-2023.) |
Ref | Expression |
---|---|
csbeq12dv.1 | ⊢ (𝜑 → 𝐴 = 𝐶) |
csbeq12dv.2 | ⊢ (𝜑 → 𝐵 = 𝐷) |
Ref | Expression |
---|---|
csbeq12dv | ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐶 / 𝑥⦌𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbeq12dv.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐶) | |
2 | 1 | csbeq1d 3832 | . 2 ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐶 / 𝑥⦌𝐵) |
3 | csbeq12dv.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐷) | |
4 | 3 | csbeq2dv 3835 | . 2 ⊢ (𝜑 → ⦋𝐶 / 𝑥⦌𝐵 = ⦋𝐶 / 𝑥⦌𝐷) |
5 | 2, 4 | eqtrd 2778 | 1 ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐶 / 𝑥⦌𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ⦋csb 3828 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-sbc 3712 df-csb 3829 |
This theorem is referenced by: bpolylem 15686 selvffval 21236 selvfval 21237 selvval 21238 poimirlem16 35720 poimirlem17 35721 poimirlem19 35723 poimirlem20 35724 |
Copyright terms: Public domain | W3C validator |