MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbeq12dv Structured version   Visualization version   GIF version

Theorem csbeq12dv 3837
Description: Formula-building inference for class substitution. (Contributed by SN, 3-Nov-2023.)
Hypotheses
Ref Expression
csbeq12dv.1 (𝜑𝐴 = 𝐶)
csbeq12dv.2 (𝜑𝐵 = 𝐷)
Assertion
Ref Expression
csbeq12dv (𝜑𝐴 / 𝑥𝐵 = 𝐶 / 𝑥𝐷)
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)

Proof of Theorem csbeq12dv
StepHypRef Expression
1 csbeq12dv.1 . . 3 (𝜑𝐴 = 𝐶)
21csbeq1d 3832 . 2 (𝜑𝐴 / 𝑥𝐵 = 𝐶 / 𝑥𝐵)
3 csbeq12dv.2 . . 3 (𝜑𝐵 = 𝐷)
43csbeq2dv 3835 . 2 (𝜑𝐶 / 𝑥𝐵 = 𝐶 / 𝑥𝐷)
52, 4eqtrd 2778 1 (𝜑𝐴 / 𝑥𝐵 = 𝐶 / 𝑥𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  csb 3828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-sbc 3712  df-csb 3829
This theorem is referenced by:  bpolylem  15686  selvffval  21236  selvfval  21237  selvval  21238  poimirlem16  35720  poimirlem17  35721  poimirlem19  35723  poimirlem20  35724
  Copyright terms: Public domain W3C validator