| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbeq12dv | Structured version Visualization version GIF version | ||
| Description: Formula-building inference for class substitution. (Contributed by SN, 3-Nov-2023.) |
| Ref | Expression |
|---|---|
| csbeq12dv.1 | ⊢ (𝜑 → 𝐴 = 𝐶) |
| csbeq12dv.2 | ⊢ (𝜑 → 𝐵 = 𝐷) |
| Ref | Expression |
|---|---|
| csbeq12dv | ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐶 / 𝑥⦌𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq12dv.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐶) | |
| 2 | 1 | csbeq1d 3869 | . 2 ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐶 / 𝑥⦌𝐵) |
| 3 | csbeq12dv.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐷) | |
| 4 | 3 | csbeq2dv 3872 | . 2 ⊢ (𝜑 → ⦋𝐶 / 𝑥⦌𝐵 = ⦋𝐶 / 𝑥⦌𝐷) |
| 5 | 2, 4 | eqtrd 2765 | 1 ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐶 / 𝑥⦌𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ⦋csb 3865 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-sbc 3757 df-csb 3866 |
| This theorem is referenced by: bpolylem 16021 selvffval 22027 selvfval 22028 selvval 22029 cbvitgv 25685 mulsval 28019 precsexlemcbv 28115 precsexlem3 28118 ttgval 28809 itgeq12sdv 36214 cbvitgvw2 36243 cbvitgdavw 36276 cbvitgdavw2 36292 poimirlem16 37637 poimirlem17 37638 poimirlem19 37640 poimirlem20 37641 isprimroot 42088 fmpocos 42229 grtri 47943 dfswapf2 49254 dfinito4 49494 |
| Copyright terms: Public domain | W3C validator |