| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbeq12dv | Structured version Visualization version GIF version | ||
| Description: Formula-building inference for class substitution. (Contributed by SN, 3-Nov-2023.) |
| Ref | Expression |
|---|---|
| csbeq12dv.1 | ⊢ (𝜑 → 𝐴 = 𝐶) |
| csbeq12dv.2 | ⊢ (𝜑 → 𝐵 = 𝐷) |
| Ref | Expression |
|---|---|
| csbeq12dv | ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐶 / 𝑥⦌𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq12dv.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐶) | |
| 2 | 1 | csbeq1d 3849 | . 2 ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐶 / 𝑥⦌𝐵) |
| 3 | csbeq12dv.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐷) | |
| 4 | 3 | csbeq2dv 3852 | . 2 ⊢ (𝜑 → ⦋𝐶 / 𝑥⦌𝐵 = ⦋𝐶 / 𝑥⦌𝐷) |
| 5 | 2, 4 | eqtrd 2766 | 1 ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐶 / 𝑥⦌𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ⦋csb 3845 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-sbc 3737 df-csb 3846 |
| This theorem is referenced by: bpolylem 15955 selvffval 22048 selvfval 22049 selvval 22050 cbvitgv 25705 mulsval 28048 precsexlemcbv 28144 precsexlem3 28147 ttgval 28853 itgeq12sdv 36263 cbvitgvw2 36292 cbvitgdavw 36325 cbvitgdavw2 36341 poimirlem16 37675 poimirlem17 37676 poimirlem19 37678 poimirlem20 37679 isprimroot 42185 fmpocos 42326 grtri 48039 dfswapf2 49361 dfinito4 49601 |
| Copyright terms: Public domain | W3C validator |