MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbeq12dv Structured version   Visualization version   GIF version

Theorem csbeq12dv 3930
Description: Formula-building inference for class substitution. (Contributed by SN, 3-Nov-2023.)
Hypotheses
Ref Expression
csbeq12dv.1 (𝜑𝐴 = 𝐶)
csbeq12dv.2 (𝜑𝐵 = 𝐷)
Assertion
Ref Expression
csbeq12dv (𝜑𝐴 / 𝑥𝐵 = 𝐶 / 𝑥𝐷)
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)

Proof of Theorem csbeq12dv
StepHypRef Expression
1 csbeq12dv.1 . . 3 (𝜑𝐴 = 𝐶)
21csbeq1d 3925 . 2 (𝜑𝐴 / 𝑥𝐵 = 𝐶 / 𝑥𝐵)
3 csbeq12dv.2 . . 3 (𝜑𝐵 = 𝐷)
43csbeq2dv 3928 . 2 (𝜑𝐶 / 𝑥𝐵 = 𝐶 / 𝑥𝐷)
52, 4eqtrd 2780 1 (𝜑𝐴 / 𝑥𝐵 = 𝐶 / 𝑥𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  csb 3921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-sbc 3805  df-csb 3922
This theorem is referenced by:  bpolylem  16096  selvffval  22160  selvfval  22161  selvval  22162  cbvitgv  25832  mulsval  28153  precsexlemcbv  28248  precsexlem3  28251  ttgval  28901  itgeq12sdv  36185  cbvitgvw2  36214  cbvitgdavw  36247  cbvitgdavw2  36263  poimirlem16  37596  poimirlem17  37597  poimirlem19  37599  poimirlem20  37600  isprimroot  42050  fmpocos  42229  grtri  47791
  Copyright terms: Public domain W3C validator