![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbeq12dv | Structured version Visualization version GIF version |
Description: Formula-building inference for class substitution. (Contributed by SN, 3-Nov-2023.) |
Ref | Expression |
---|---|
csbeq12dv.1 | ⊢ (𝜑 → 𝐴 = 𝐶) |
csbeq12dv.2 | ⊢ (𝜑 → 𝐵 = 𝐷) |
Ref | Expression |
---|---|
csbeq12dv | ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐶 / 𝑥⦌𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbeq12dv.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐶) | |
2 | 1 | csbeq1d 3898 | . 2 ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐶 / 𝑥⦌𝐵) |
3 | csbeq12dv.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐷) | |
4 | 3 | csbeq2dv 3901 | . 2 ⊢ (𝜑 → ⦋𝐶 / 𝑥⦌𝐵 = ⦋𝐶 / 𝑥⦌𝐷) |
5 | 2, 4 | eqtrd 2771 | 1 ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐶 / 𝑥⦌𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ⦋csb 3894 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-12 2170 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-sbc 3779 df-csb 3895 |
This theorem is referenced by: bpolylem 15997 selvffval 21899 selvfval 21900 selvval 21901 mulsval 27801 precsexlemcbv 27888 precsexlem3 27891 ttgval 28390 poimirlem16 36808 poimirlem17 36809 poimirlem19 36811 poimirlem20 36812 fmpocos 41363 |
Copyright terms: Public domain | W3C validator |