| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbeq12dv | Structured version Visualization version GIF version | ||
| Description: Formula-building inference for class substitution. (Contributed by SN, 3-Nov-2023.) |
| Ref | Expression |
|---|---|
| csbeq12dv.1 | ⊢ (𝜑 → 𝐴 = 𝐶) |
| csbeq12dv.2 | ⊢ (𝜑 → 𝐵 = 𝐷) |
| Ref | Expression |
|---|---|
| csbeq12dv | ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐶 / 𝑥⦌𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq12dv.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐶) | |
| 2 | 1 | csbeq1d 3863 | . 2 ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐶 / 𝑥⦌𝐵) |
| 3 | csbeq12dv.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐷) | |
| 4 | 3 | csbeq2dv 3866 | . 2 ⊢ (𝜑 → ⦋𝐶 / 𝑥⦌𝐵 = ⦋𝐶 / 𝑥⦌𝐷) |
| 5 | 2, 4 | eqtrd 2764 | 1 ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐶 / 𝑥⦌𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ⦋csb 3859 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-sbc 3751 df-csb 3860 |
| This theorem is referenced by: bpolylem 15991 selvffval 22054 selvfval 22055 selvval 22056 cbvitgv 25712 mulsval 28053 precsexlemcbv 28149 precsexlem3 28152 ttgval 28856 itgeq12sdv 36201 cbvitgvw2 36230 cbvitgdavw 36263 cbvitgdavw2 36279 poimirlem16 37624 poimirlem17 37625 poimirlem19 37627 poimirlem20 37628 isprimroot 42075 fmpocos 42216 grtri 47933 dfswapf2 49244 dfinito4 49484 |
| Copyright terms: Public domain | W3C validator |