| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbeq12dv | Structured version Visualization version GIF version | ||
| Description: Formula-building inference for class substitution. (Contributed by SN, 3-Nov-2023.) |
| Ref | Expression |
|---|---|
| csbeq12dv.1 | ⊢ (𝜑 → 𝐴 = 𝐶) |
| csbeq12dv.2 | ⊢ (𝜑 → 𝐵 = 𝐷) |
| Ref | Expression |
|---|---|
| csbeq12dv | ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐶 / 𝑥⦌𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq12dv.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐶) | |
| 2 | 1 | csbeq1d 3855 | . 2 ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐶 / 𝑥⦌𝐵) |
| 3 | csbeq12dv.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐷) | |
| 4 | 3 | csbeq2dv 3858 | . 2 ⊢ (𝜑 → ⦋𝐶 / 𝑥⦌𝐵 = ⦋𝐶 / 𝑥⦌𝐷) |
| 5 | 2, 4 | eqtrd 2764 | 1 ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐶 / 𝑥⦌𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ⦋csb 3851 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-sbc 3743 df-csb 3852 |
| This theorem is referenced by: bpolylem 15955 selvffval 22018 selvfval 22019 selvval 22020 cbvitgv 25676 mulsval 28019 precsexlemcbv 28115 precsexlem3 28118 ttgval 28824 itgeq12sdv 36213 cbvitgvw2 36242 cbvitgdavw 36275 cbvitgdavw2 36291 poimirlem16 37636 poimirlem17 37637 poimirlem19 37639 poimirlem20 37640 isprimroot 42086 fmpocos 42227 grtri 47944 dfswapf2 49266 dfinito4 49506 |
| Copyright terms: Public domain | W3C validator |