Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climinf2mpt Structured version   Visualization version   GIF version

Theorem climinf2mpt 45751
Description: A bounded below, monotonic nonincreasing sequence converges to the infimum of its range. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
climinf2mpt.p 𝑘𝜑
climinf2mpt.j 𝑗𝜑
climinf2mpt.m (𝜑𝑀 ∈ ℤ)
climinf2mpt.z 𝑍 = (ℤ𝑀)
climinf2mpt.b ((𝜑𝑘𝑍) → 𝐵 ∈ ℝ)
climinf2mpt.c (𝑘 = 𝑗𝐵 = 𝐶)
climinf2mpt.l ((𝜑𝑘𝑍𝑗 = (𝑘 + 1)) → 𝐶𝐵)
climinf2mpt.e (𝜑 → (𝑘𝑍𝐵) ∈ dom ⇝ )
Assertion
Ref Expression
climinf2mpt (𝜑 → (𝑘𝑍𝐵) ⇝ inf(ran (𝑘𝑍𝐵), ℝ*, < ))
Distinct variable groups:   𝐵,𝑗   𝐶,𝑘   𝑗,𝑍,𝑘
Allowed substitution hints:   𝜑(𝑗,𝑘)   𝐵(𝑘)   𝐶(𝑗)   𝑀(𝑗,𝑘)

Proof of Theorem climinf2mpt
Dummy variables 𝑖 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1915 . 2 𝑖𝜑
2 nfcv 2894 . 2 𝑖(𝑘𝑍𝐵)
3 climinf2mpt.z . 2 𝑍 = (ℤ𝑀)
4 climinf2mpt.m . 2 (𝜑𝑀 ∈ ℤ)
5 climinf2mpt.p . . 3 𝑘𝜑
6 climinf2mpt.b . . 3 ((𝜑𝑘𝑍) → 𝐵 ∈ ℝ)
75, 6fmptd2f 45271 . 2 (𝜑 → (𝑘𝑍𝐵):𝑍⟶ℝ)
8 nfv 1915 . . . . . . 7 𝑘 𝑖𝑍
95, 8nfan 1900 . . . . . 6 𝑘(𝜑𝑖𝑍)
10 nfv 1915 . . . . . 6 𝑘(𝑖 + 1) / 𝑗𝐶𝑖 / 𝑗𝐶
119, 10nfim 1897 . . . . 5 𝑘((𝜑𝑖𝑍) → (𝑖 + 1) / 𝑗𝐶𝑖 / 𝑗𝐶)
12 eleq1 2819 . . . . . . 7 (𝑘 = 𝑖 → (𝑘𝑍𝑖𝑍))
1312anbi2d 630 . . . . . 6 (𝑘 = 𝑖 → ((𝜑𝑘𝑍) ↔ (𝜑𝑖𝑍)))
14 oveq1 7353 . . . . . . . 8 (𝑘 = 𝑖 → (𝑘 + 1) = (𝑖 + 1))
1514csbeq1d 3854 . . . . . . 7 (𝑘 = 𝑖(𝑘 + 1) / 𝑗𝐶 = (𝑖 + 1) / 𝑗𝐶)
16 eqidd 2732 . . . . . . . 8 (𝑘 = 𝑖𝐵 = 𝐵)
17 csbcow 3865 . . . . . . . . . . 11 𝑘 / 𝑗𝑗 / 𝑘𝐵 = 𝑘 / 𝑘𝐵
18 csbid 3863 . . . . . . . . . . 11 𝑘 / 𝑘𝐵 = 𝐵
1917, 18eqtr2i 2755 . . . . . . . . . 10 𝐵 = 𝑘 / 𝑗𝑗 / 𝑘𝐵
20 nfcv 2894 . . . . . . . . . . . . 13 𝑗𝐵
21 nfcv 2894 . . . . . . . . . . . . 13 𝑘𝐶
22 climinf2mpt.c . . . . . . . . . . . . 13 (𝑘 = 𝑗𝐵 = 𝐶)
2320, 21, 22cbvcsbw 3860 . . . . . . . . . . . 12 𝑗 / 𝑘𝐵 = 𝑗 / 𝑗𝐶
24 csbid 3863 . . . . . . . . . . . 12 𝑗 / 𝑗𝐶 = 𝐶
2523, 24eqtri 2754 . . . . . . . . . . 11 𝑗 / 𝑘𝐵 = 𝐶
2625csbeq2i 3858 . . . . . . . . . 10 𝑘 / 𝑗𝑗 / 𝑘𝐵 = 𝑘 / 𝑗𝐶
2719, 26eqtri 2754 . . . . . . . . 9 𝐵 = 𝑘 / 𝑗𝐶
2827a1i 11 . . . . . . . 8 (𝑘 = 𝑖𝐵 = 𝑘 / 𝑗𝐶)
29 csbeq1 3853 . . . . . . . 8 (𝑘 = 𝑖𝑘 / 𝑗𝐶 = 𝑖 / 𝑗𝐶)
3016, 28, 293eqtrd 2770 . . . . . . 7 (𝑘 = 𝑖𝐵 = 𝑖 / 𝑗𝐶)
3115, 30breq12d 5104 . . . . . 6 (𝑘 = 𝑖 → ((𝑘 + 1) / 𝑗𝐶𝐵(𝑖 + 1) / 𝑗𝐶𝑖 / 𝑗𝐶))
3213, 31imbi12d 344 . . . . 5 (𝑘 = 𝑖 → (((𝜑𝑘𝑍) → (𝑘 + 1) / 𝑗𝐶𝐵) ↔ ((𝜑𝑖𝑍) → (𝑖 + 1) / 𝑗𝐶𝑖 / 𝑗𝐶)))
33 simpl 482 . . . . . 6 ((𝜑𝑘𝑍) → 𝜑)
34 simpr 484 . . . . . 6 ((𝜑𝑘𝑍) → 𝑘𝑍)
35 eqidd 2732 . . . . . 6 ((𝜑𝑘𝑍) → (𝑘 + 1) = (𝑘 + 1))
36 climinf2mpt.j . . . . . . . . 9 𝑗𝜑
37 nfv 1915 . . . . . . . . 9 𝑗 𝑘𝑍
38 nfv 1915 . . . . . . . . 9 𝑗(𝑘 + 1) = (𝑘 + 1)
3936, 37, 38nf3an 1902 . . . . . . . 8 𝑗(𝜑𝑘𝑍 ∧ (𝑘 + 1) = (𝑘 + 1))
40 nfcsb1v 3874 . . . . . . . . 9 𝑗(𝑘 + 1) / 𝑗𝐶
41 nfcv 2894 . . . . . . . . 9 𝑗
4240, 41, 20nfbr 5138 . . . . . . . 8 𝑗(𝑘 + 1) / 𝑗𝐶𝐵
4339, 42nfim 1897 . . . . . . 7 𝑗((𝜑𝑘𝑍 ∧ (𝑘 + 1) = (𝑘 + 1)) → (𝑘 + 1) / 𝑗𝐶𝐵)
44 ovex 7379 . . . . . . 7 (𝑘 + 1) ∈ V
45 eqeq1 2735 . . . . . . . . 9 (𝑗 = (𝑘 + 1) → (𝑗 = (𝑘 + 1) ↔ (𝑘 + 1) = (𝑘 + 1)))
46453anbi3d 1444 . . . . . . . 8 (𝑗 = (𝑘 + 1) → ((𝜑𝑘𝑍𝑗 = (𝑘 + 1)) ↔ (𝜑𝑘𝑍 ∧ (𝑘 + 1) = (𝑘 + 1))))
47 csbeq1a 3864 . . . . . . . . 9 (𝑗 = (𝑘 + 1) → 𝐶 = (𝑘 + 1) / 𝑗𝐶)
4847breq1d 5101 . . . . . . . 8 (𝑗 = (𝑘 + 1) → (𝐶𝐵(𝑘 + 1) / 𝑗𝐶𝐵))
4946, 48imbi12d 344 . . . . . . 7 (𝑗 = (𝑘 + 1) → (((𝜑𝑘𝑍𝑗 = (𝑘 + 1)) → 𝐶𝐵) ↔ ((𝜑𝑘𝑍 ∧ (𝑘 + 1) = (𝑘 + 1)) → (𝑘 + 1) / 𝑗𝐶𝐵)))
50 climinf2mpt.l . . . . . . 7 ((𝜑𝑘𝑍𝑗 = (𝑘 + 1)) → 𝐶𝐵)
5143, 44, 49, 50vtoclf 3519 . . . . . 6 ((𝜑𝑘𝑍 ∧ (𝑘 + 1) = (𝑘 + 1)) → (𝑘 + 1) / 𝑗𝐶𝐵)
5233, 34, 35, 51syl3anc 1373 . . . . 5 ((𝜑𝑘𝑍) → (𝑘 + 1) / 𝑗𝐶𝐵)
5311, 32, 52chvarfv 2243 . . . 4 ((𝜑𝑖𝑍) → (𝑖 + 1) / 𝑗𝐶𝑖 / 𝑗𝐶)
5420, 21, 22cbvcsbw 3860 . . . . . 6 (𝑖 + 1) / 𝑘𝐵 = (𝑖 + 1) / 𝑗𝐶
5554a1i 11 . . . . 5 ((𝜑𝑖𝑍) → (𝑖 + 1) / 𝑘𝐵 = (𝑖 + 1) / 𝑗𝐶)
56 eqidd 2732 . . . . 5 ((𝜑𝑖𝑍) → 𝑖 / 𝑗𝐶 = 𝑖 / 𝑗𝐶)
5755, 56breq12d 5104 . . . 4 ((𝜑𝑖𝑍) → ((𝑖 + 1) / 𝑘𝐵𝑖 / 𝑗𝐶(𝑖 + 1) / 𝑗𝐶𝑖 / 𝑗𝐶))
5853, 57mpbird 257 . . 3 ((𝜑𝑖𝑍) → (𝑖 + 1) / 𝑘𝐵𝑖 / 𝑗𝐶)
593peano2uzs 12797 . . . . . 6 (𝑖𝑍 → (𝑖 + 1) ∈ 𝑍)
6059adantl 481 . . . . 5 ((𝜑𝑖𝑍) → (𝑖 + 1) ∈ 𝑍)
61 nfv 1915 . . . . . . . . 9 𝑘(𝑖 + 1) ∈ 𝑍
625, 61nfan 1900 . . . . . . . 8 𝑘(𝜑 ∧ (𝑖 + 1) ∈ 𝑍)
63 nfcv 2894 . . . . . . . . . 10 𝑘(𝑖 + 1)
6463nfcsb1 3873 . . . . . . . . 9 𝑘(𝑖 + 1) / 𝑘𝐵
6564nfel1 2911 . . . . . . . 8 𝑘(𝑖 + 1) / 𝑘𝐵 ∈ ℝ
6662, 65nfim 1897 . . . . . . 7 𝑘((𝜑 ∧ (𝑖 + 1) ∈ 𝑍) → (𝑖 + 1) / 𝑘𝐵 ∈ ℝ)
67 ovex 7379 . . . . . . 7 (𝑖 + 1) ∈ V
68 eleq1 2819 . . . . . . . . 9 (𝑘 = (𝑖 + 1) → (𝑘𝑍 ↔ (𝑖 + 1) ∈ 𝑍))
6968anbi2d 630 . . . . . . . 8 (𝑘 = (𝑖 + 1) → ((𝜑𝑘𝑍) ↔ (𝜑 ∧ (𝑖 + 1) ∈ 𝑍)))
70 csbeq1a 3864 . . . . . . . . 9 (𝑘 = (𝑖 + 1) → 𝐵 = (𝑖 + 1) / 𝑘𝐵)
7170eleq1d 2816 . . . . . . . 8 (𝑘 = (𝑖 + 1) → (𝐵 ∈ ℝ ↔ (𝑖 + 1) / 𝑘𝐵 ∈ ℝ))
7269, 71imbi12d 344 . . . . . . 7 (𝑘 = (𝑖 + 1) → (((𝜑𝑘𝑍) → 𝐵 ∈ ℝ) ↔ ((𝜑 ∧ (𝑖 + 1) ∈ 𝑍) → (𝑖 + 1) / 𝑘𝐵 ∈ ℝ)))
7366, 67, 72, 6vtoclf 3519 . . . . . 6 ((𝜑 ∧ (𝑖 + 1) ∈ 𝑍) → (𝑖 + 1) / 𝑘𝐵 ∈ ℝ)
7459, 73sylan2 593 . . . . 5 ((𝜑𝑖𝑍) → (𝑖 + 1) / 𝑘𝐵 ∈ ℝ)
75 eqid 2731 . . . . . 6 (𝑘𝑍𝐵) = (𝑘𝑍𝐵)
7663, 64, 70, 75fvmptf 6950 . . . . 5 (((𝑖 + 1) ∈ 𝑍(𝑖 + 1) / 𝑘𝐵 ∈ ℝ) → ((𝑘𝑍𝐵)‘(𝑖 + 1)) = (𝑖 + 1) / 𝑘𝐵)
7760, 74, 76syl2anc 584 . . . 4 ((𝜑𝑖𝑍) → ((𝑘𝑍𝐵)‘(𝑖 + 1)) = (𝑖 + 1) / 𝑘𝐵)
78 simpr 484 . . . . 5 ((𝜑𝑖𝑍) → 𝑖𝑍)
79 nfv 1915 . . . . . . . 8 𝑗 𝑖𝑍
8036, 79nfan 1900 . . . . . . 7 𝑗(𝜑𝑖𝑍)
81 nfcsb1v 3874 . . . . . . . 8 𝑗𝑖 / 𝑗𝐶
82 nfcv 2894 . . . . . . . 8 𝑗
8381, 82nfel 2909 . . . . . . 7 𝑗𝑖 / 𝑗𝐶 ∈ ℝ
8480, 83nfim 1897 . . . . . 6 𝑗((𝜑𝑖𝑍) → 𝑖 / 𝑗𝐶 ∈ ℝ)
85 eleq1 2819 . . . . . . . 8 (𝑗 = 𝑖 → (𝑗𝑍𝑖𝑍))
8685anbi2d 630 . . . . . . 7 (𝑗 = 𝑖 → ((𝜑𝑗𝑍) ↔ (𝜑𝑖𝑍)))
87 csbeq1a 3864 . . . . . . . 8 (𝑗 = 𝑖𝐶 = 𝑖 / 𝑗𝐶)
8887eleq1d 2816 . . . . . . 7 (𝑗 = 𝑖 → (𝐶 ∈ ℝ ↔ 𝑖 / 𝑗𝐶 ∈ ℝ))
8986, 88imbi12d 344 . . . . . 6 (𝑗 = 𝑖 → (((𝜑𝑗𝑍) → 𝐶 ∈ ℝ) ↔ ((𝜑𝑖𝑍) → 𝑖 / 𝑗𝐶 ∈ ℝ)))
90 nfv 1915 . . . . . . . . 9 𝑘 𝑗𝑍
915, 90nfan 1900 . . . . . . . 8 𝑘(𝜑𝑗𝑍)
92 nfv 1915 . . . . . . . 8 𝑘 𝐶 ∈ ℝ
9391, 92nfim 1897 . . . . . . 7 𝑘((𝜑𝑗𝑍) → 𝐶 ∈ ℝ)
94 eleq1 2819 . . . . . . . . 9 (𝑘 = 𝑗 → (𝑘𝑍𝑗𝑍))
9594anbi2d 630 . . . . . . . 8 (𝑘 = 𝑗 → ((𝜑𝑘𝑍) ↔ (𝜑𝑗𝑍)))
9622eleq1d 2816 . . . . . . . 8 (𝑘 = 𝑗 → (𝐵 ∈ ℝ ↔ 𝐶 ∈ ℝ))
9795, 96imbi12d 344 . . . . . . 7 (𝑘 = 𝑗 → (((𝜑𝑘𝑍) → 𝐵 ∈ ℝ) ↔ ((𝜑𝑗𝑍) → 𝐶 ∈ ℝ)))
9893, 97, 6chvarfv 2243 . . . . . 6 ((𝜑𝑗𝑍) → 𝐶 ∈ ℝ)
9984, 89, 98chvarfv 2243 . . . . 5 ((𝜑𝑖𝑍) → 𝑖 / 𝑗𝐶 ∈ ℝ)
100 nfcv 2894 . . . . . 6 𝑘𝑖
101 nfcv 2894 . . . . . 6 𝑘𝑖 / 𝑗𝐶
102100, 101, 30, 75fvmptf 6950 . . . . 5 ((𝑖𝑍𝑖 / 𝑗𝐶 ∈ ℝ) → ((𝑘𝑍𝐵)‘𝑖) = 𝑖 / 𝑗𝐶)
10378, 99, 102syl2anc 584 . . . 4 ((𝜑𝑖𝑍) → ((𝑘𝑍𝐵)‘𝑖) = 𝑖 / 𝑗𝐶)
10477, 103breq12d 5104 . . 3 ((𝜑𝑖𝑍) → (((𝑘𝑍𝐵)‘(𝑖 + 1)) ≤ ((𝑘𝑍𝐵)‘𝑖) ↔ (𝑖 + 1) / 𝑘𝐵𝑖 / 𝑗𝐶))
10558, 104mpbird 257 . 2 ((𝜑𝑖𝑍) → ((𝑘𝑍𝐵)‘(𝑖 + 1)) ≤ ((𝑘𝑍𝐵)‘𝑖))
106 climinf2mpt.e . . . . 5 (𝜑 → (𝑘𝑍𝐵) ∈ dom ⇝ )
107103, 99eqeltrd 2831 . . . . . . 7 ((𝜑𝑖𝑍) → ((𝑘𝑍𝐵)‘𝑖) ∈ ℝ)
108107recnd 11137 . . . . . 6 ((𝜑𝑖𝑍) → ((𝑘𝑍𝐵)‘𝑖) ∈ ℂ)
109108ralrimiva 3124 . . . . 5 (𝜑 → ∀𝑖𝑍 ((𝑘𝑍𝐵)‘𝑖) ∈ ℂ)
1102, 3climbddf 45724 . . . . 5 ((𝑀 ∈ ℤ ∧ (𝑘𝑍𝐵) ∈ dom ⇝ ∧ ∀𝑖𝑍 ((𝑘𝑍𝐵)‘𝑖) ∈ ℂ) → ∃𝑥 ∈ ℝ ∀𝑖𝑍 (abs‘((𝑘𝑍𝐵)‘𝑖)) ≤ 𝑥)
1114, 106, 109, 110syl3anc 1373 . . . 4 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑖𝑍 (abs‘((𝑘𝑍𝐵)‘𝑖)) ≤ 𝑥)
1121, 107rexabsle2 45464 . . . 4 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑖𝑍 (abs‘((𝑘𝑍𝐵)‘𝑖)) ≤ 𝑥 ↔ (∃𝑥 ∈ ℝ ∀𝑖𝑍 ((𝑘𝑍𝐵)‘𝑖) ≤ 𝑥 ∧ ∃𝑥 ∈ ℝ ∀𝑖𝑍 𝑥 ≤ ((𝑘𝑍𝐵)‘𝑖))))
113111, 112mpbid 232 . . 3 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑖𝑍 ((𝑘𝑍𝐵)‘𝑖) ≤ 𝑥 ∧ ∃𝑥 ∈ ℝ ∀𝑖𝑍 𝑥 ≤ ((𝑘𝑍𝐵)‘𝑖)))
114113simprd 495 . 2 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑖𝑍 𝑥 ≤ ((𝑘𝑍𝐵)‘𝑖))
1151, 2, 3, 4, 7, 105, 114climinf2 45744 1 (𝜑 → (𝑘𝑍𝐵) ⇝ inf(ran (𝑘𝑍𝐵), ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wnf 1784  wcel 2111  wral 3047  wrex 3056  csb 3850   class class class wbr 5091  cmpt 5172  dom cdm 5616  ran crn 5617  cfv 6481  (class class class)co 7346  infcinf 9325  cc 11001  cr 11002  1c1 11004   + caddc 11006  *cxr 11142   < clt 11143  cle 11144  cz 12465  cuz 12729  abscabs 15138  cli 15388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-3 12186  df-n0 12379  df-z 12466  df-uz 12730  df-rp 12888  df-fz 13405  df-seq 13906  df-exp 13966  df-cj 15003  df-re 15004  df-im 15005  df-sqrt 15139  df-abs 15140  df-clim 15392
This theorem is referenced by:  smflimsuplem4  46860
  Copyright terms: Public domain W3C validator