Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climinf2mpt Structured version   Visualization version   GIF version

Theorem climinf2mpt 45670
Description: A bounded below, monotonic nonincreasing sequence converges to the infimum of its range. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
climinf2mpt.p 𝑘𝜑
climinf2mpt.j 𝑗𝜑
climinf2mpt.m (𝜑𝑀 ∈ ℤ)
climinf2mpt.z 𝑍 = (ℤ𝑀)
climinf2mpt.b ((𝜑𝑘𝑍) → 𝐵 ∈ ℝ)
climinf2mpt.c (𝑘 = 𝑗𝐵 = 𝐶)
climinf2mpt.l ((𝜑𝑘𝑍𝑗 = (𝑘 + 1)) → 𝐶𝐵)
climinf2mpt.e (𝜑 → (𝑘𝑍𝐵) ∈ dom ⇝ )
Assertion
Ref Expression
climinf2mpt (𝜑 → (𝑘𝑍𝐵) ⇝ inf(ran (𝑘𝑍𝐵), ℝ*, < ))
Distinct variable groups:   𝐵,𝑗   𝐶,𝑘   𝑗,𝑍,𝑘
Allowed substitution hints:   𝜑(𝑗,𝑘)   𝐵(𝑘)   𝐶(𝑗)   𝑀(𝑗,𝑘)

Proof of Theorem climinf2mpt
Dummy variables 𝑖 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1912 . 2 𝑖𝜑
2 nfcv 2903 . 2 𝑖(𝑘𝑍𝐵)
3 climinf2mpt.z . 2 𝑍 = (ℤ𝑀)
4 climinf2mpt.m . 2 (𝜑𝑀 ∈ ℤ)
5 climinf2mpt.p . . 3 𝑘𝜑
6 climinf2mpt.b . . 3 ((𝜑𝑘𝑍) → 𝐵 ∈ ℝ)
75, 6fmptd2f 45178 . 2 (𝜑 → (𝑘𝑍𝐵):𝑍⟶ℝ)
8 nfv 1912 . . . . . . 7 𝑘 𝑖𝑍
95, 8nfan 1897 . . . . . 6 𝑘(𝜑𝑖𝑍)
10 nfv 1912 . . . . . 6 𝑘(𝑖 + 1) / 𝑗𝐶𝑖 / 𝑗𝐶
119, 10nfim 1894 . . . . 5 𝑘((𝜑𝑖𝑍) → (𝑖 + 1) / 𝑗𝐶𝑖 / 𝑗𝐶)
12 eleq1 2827 . . . . . . 7 (𝑘 = 𝑖 → (𝑘𝑍𝑖𝑍))
1312anbi2d 630 . . . . . 6 (𝑘 = 𝑖 → ((𝜑𝑘𝑍) ↔ (𝜑𝑖𝑍)))
14 oveq1 7438 . . . . . . . 8 (𝑘 = 𝑖 → (𝑘 + 1) = (𝑖 + 1))
1514csbeq1d 3912 . . . . . . 7 (𝑘 = 𝑖(𝑘 + 1) / 𝑗𝐶 = (𝑖 + 1) / 𝑗𝐶)
16 eqidd 2736 . . . . . . . 8 (𝑘 = 𝑖𝐵 = 𝐵)
17 csbcow 3923 . . . . . . . . . . 11 𝑘 / 𝑗𝑗 / 𝑘𝐵 = 𝑘 / 𝑘𝐵
18 csbid 3921 . . . . . . . . . . 11 𝑘 / 𝑘𝐵 = 𝐵
1917, 18eqtr2i 2764 . . . . . . . . . 10 𝐵 = 𝑘 / 𝑗𝑗 / 𝑘𝐵
20 nfcv 2903 . . . . . . . . . . . . 13 𝑗𝐵
21 nfcv 2903 . . . . . . . . . . . . 13 𝑘𝐶
22 climinf2mpt.c . . . . . . . . . . . . 13 (𝑘 = 𝑗𝐵 = 𝐶)
2320, 21, 22cbvcsbw 3918 . . . . . . . . . . . 12 𝑗 / 𝑘𝐵 = 𝑗 / 𝑗𝐶
24 csbid 3921 . . . . . . . . . . . 12 𝑗 / 𝑗𝐶 = 𝐶
2523, 24eqtri 2763 . . . . . . . . . . 11 𝑗 / 𝑘𝐵 = 𝐶
2625csbeq2i 3916 . . . . . . . . . 10 𝑘 / 𝑗𝑗 / 𝑘𝐵 = 𝑘 / 𝑗𝐶
2719, 26eqtri 2763 . . . . . . . . 9 𝐵 = 𝑘 / 𝑗𝐶
2827a1i 11 . . . . . . . 8 (𝑘 = 𝑖𝐵 = 𝑘 / 𝑗𝐶)
29 csbeq1 3911 . . . . . . . 8 (𝑘 = 𝑖𝑘 / 𝑗𝐶 = 𝑖 / 𝑗𝐶)
3016, 28, 293eqtrd 2779 . . . . . . 7 (𝑘 = 𝑖𝐵 = 𝑖 / 𝑗𝐶)
3115, 30breq12d 5161 . . . . . 6 (𝑘 = 𝑖 → ((𝑘 + 1) / 𝑗𝐶𝐵(𝑖 + 1) / 𝑗𝐶𝑖 / 𝑗𝐶))
3213, 31imbi12d 344 . . . . 5 (𝑘 = 𝑖 → (((𝜑𝑘𝑍) → (𝑘 + 1) / 𝑗𝐶𝐵) ↔ ((𝜑𝑖𝑍) → (𝑖 + 1) / 𝑗𝐶𝑖 / 𝑗𝐶)))
33 simpl 482 . . . . . 6 ((𝜑𝑘𝑍) → 𝜑)
34 simpr 484 . . . . . 6 ((𝜑𝑘𝑍) → 𝑘𝑍)
35 eqidd 2736 . . . . . 6 ((𝜑𝑘𝑍) → (𝑘 + 1) = (𝑘 + 1))
36 climinf2mpt.j . . . . . . . . 9 𝑗𝜑
37 nfv 1912 . . . . . . . . 9 𝑗 𝑘𝑍
38 nfv 1912 . . . . . . . . 9 𝑗(𝑘 + 1) = (𝑘 + 1)
3936, 37, 38nf3an 1899 . . . . . . . 8 𝑗(𝜑𝑘𝑍 ∧ (𝑘 + 1) = (𝑘 + 1))
40 nfcsb1v 3933 . . . . . . . . 9 𝑗(𝑘 + 1) / 𝑗𝐶
41 nfcv 2903 . . . . . . . . 9 𝑗
4240, 41, 20nfbr 5195 . . . . . . . 8 𝑗(𝑘 + 1) / 𝑗𝐶𝐵
4339, 42nfim 1894 . . . . . . 7 𝑗((𝜑𝑘𝑍 ∧ (𝑘 + 1) = (𝑘 + 1)) → (𝑘 + 1) / 𝑗𝐶𝐵)
44 ovex 7464 . . . . . . 7 (𝑘 + 1) ∈ V
45 eqeq1 2739 . . . . . . . . 9 (𝑗 = (𝑘 + 1) → (𝑗 = (𝑘 + 1) ↔ (𝑘 + 1) = (𝑘 + 1)))
46453anbi3d 1441 . . . . . . . 8 (𝑗 = (𝑘 + 1) → ((𝜑𝑘𝑍𝑗 = (𝑘 + 1)) ↔ (𝜑𝑘𝑍 ∧ (𝑘 + 1) = (𝑘 + 1))))
47 csbeq1a 3922 . . . . . . . . 9 (𝑗 = (𝑘 + 1) → 𝐶 = (𝑘 + 1) / 𝑗𝐶)
4847breq1d 5158 . . . . . . . 8 (𝑗 = (𝑘 + 1) → (𝐶𝐵(𝑘 + 1) / 𝑗𝐶𝐵))
4946, 48imbi12d 344 . . . . . . 7 (𝑗 = (𝑘 + 1) → (((𝜑𝑘𝑍𝑗 = (𝑘 + 1)) → 𝐶𝐵) ↔ ((𝜑𝑘𝑍 ∧ (𝑘 + 1) = (𝑘 + 1)) → (𝑘 + 1) / 𝑗𝐶𝐵)))
50 climinf2mpt.l . . . . . . 7 ((𝜑𝑘𝑍𝑗 = (𝑘 + 1)) → 𝐶𝐵)
5143, 44, 49, 50vtoclf 3564 . . . . . 6 ((𝜑𝑘𝑍 ∧ (𝑘 + 1) = (𝑘 + 1)) → (𝑘 + 1) / 𝑗𝐶𝐵)
5233, 34, 35, 51syl3anc 1370 . . . . 5 ((𝜑𝑘𝑍) → (𝑘 + 1) / 𝑗𝐶𝐵)
5311, 32, 52chvarfv 2238 . . . 4 ((𝜑𝑖𝑍) → (𝑖 + 1) / 𝑗𝐶𝑖 / 𝑗𝐶)
5420, 21, 22cbvcsbw 3918 . . . . . 6 (𝑖 + 1) / 𝑘𝐵 = (𝑖 + 1) / 𝑗𝐶
5554a1i 11 . . . . 5 ((𝜑𝑖𝑍) → (𝑖 + 1) / 𝑘𝐵 = (𝑖 + 1) / 𝑗𝐶)
56 eqidd 2736 . . . . 5 ((𝜑𝑖𝑍) → 𝑖 / 𝑗𝐶 = 𝑖 / 𝑗𝐶)
5755, 56breq12d 5161 . . . 4 ((𝜑𝑖𝑍) → ((𝑖 + 1) / 𝑘𝐵𝑖 / 𝑗𝐶(𝑖 + 1) / 𝑗𝐶𝑖 / 𝑗𝐶))
5853, 57mpbird 257 . . 3 ((𝜑𝑖𝑍) → (𝑖 + 1) / 𝑘𝐵𝑖 / 𝑗𝐶)
593peano2uzs 12942 . . . . . 6 (𝑖𝑍 → (𝑖 + 1) ∈ 𝑍)
6059adantl 481 . . . . 5 ((𝜑𝑖𝑍) → (𝑖 + 1) ∈ 𝑍)
61 nfv 1912 . . . . . . . . 9 𝑘(𝑖 + 1) ∈ 𝑍
625, 61nfan 1897 . . . . . . . 8 𝑘(𝜑 ∧ (𝑖 + 1) ∈ 𝑍)
63 nfcv 2903 . . . . . . . . . 10 𝑘(𝑖 + 1)
6463nfcsb1 3932 . . . . . . . . 9 𝑘(𝑖 + 1) / 𝑘𝐵
6564nfel1 2920 . . . . . . . 8 𝑘(𝑖 + 1) / 𝑘𝐵 ∈ ℝ
6662, 65nfim 1894 . . . . . . 7 𝑘((𝜑 ∧ (𝑖 + 1) ∈ 𝑍) → (𝑖 + 1) / 𝑘𝐵 ∈ ℝ)
67 ovex 7464 . . . . . . 7 (𝑖 + 1) ∈ V
68 eleq1 2827 . . . . . . . . 9 (𝑘 = (𝑖 + 1) → (𝑘𝑍 ↔ (𝑖 + 1) ∈ 𝑍))
6968anbi2d 630 . . . . . . . 8 (𝑘 = (𝑖 + 1) → ((𝜑𝑘𝑍) ↔ (𝜑 ∧ (𝑖 + 1) ∈ 𝑍)))
70 csbeq1a 3922 . . . . . . . . 9 (𝑘 = (𝑖 + 1) → 𝐵 = (𝑖 + 1) / 𝑘𝐵)
7170eleq1d 2824 . . . . . . . 8 (𝑘 = (𝑖 + 1) → (𝐵 ∈ ℝ ↔ (𝑖 + 1) / 𝑘𝐵 ∈ ℝ))
7269, 71imbi12d 344 . . . . . . 7 (𝑘 = (𝑖 + 1) → (((𝜑𝑘𝑍) → 𝐵 ∈ ℝ) ↔ ((𝜑 ∧ (𝑖 + 1) ∈ 𝑍) → (𝑖 + 1) / 𝑘𝐵 ∈ ℝ)))
7366, 67, 72, 6vtoclf 3564 . . . . . 6 ((𝜑 ∧ (𝑖 + 1) ∈ 𝑍) → (𝑖 + 1) / 𝑘𝐵 ∈ ℝ)
7459, 73sylan2 593 . . . . 5 ((𝜑𝑖𝑍) → (𝑖 + 1) / 𝑘𝐵 ∈ ℝ)
75 eqid 2735 . . . . . 6 (𝑘𝑍𝐵) = (𝑘𝑍𝐵)
7663, 64, 70, 75fvmptf 7037 . . . . 5 (((𝑖 + 1) ∈ 𝑍(𝑖 + 1) / 𝑘𝐵 ∈ ℝ) → ((𝑘𝑍𝐵)‘(𝑖 + 1)) = (𝑖 + 1) / 𝑘𝐵)
7760, 74, 76syl2anc 584 . . . 4 ((𝜑𝑖𝑍) → ((𝑘𝑍𝐵)‘(𝑖 + 1)) = (𝑖 + 1) / 𝑘𝐵)
78 simpr 484 . . . . 5 ((𝜑𝑖𝑍) → 𝑖𝑍)
79 nfv 1912 . . . . . . . 8 𝑗 𝑖𝑍
8036, 79nfan 1897 . . . . . . 7 𝑗(𝜑𝑖𝑍)
81 nfcsb1v 3933 . . . . . . . 8 𝑗𝑖 / 𝑗𝐶
82 nfcv 2903 . . . . . . . 8 𝑗
8381, 82nfel 2918 . . . . . . 7 𝑗𝑖 / 𝑗𝐶 ∈ ℝ
8480, 83nfim 1894 . . . . . 6 𝑗((𝜑𝑖𝑍) → 𝑖 / 𝑗𝐶 ∈ ℝ)
85 eleq1 2827 . . . . . . . 8 (𝑗 = 𝑖 → (𝑗𝑍𝑖𝑍))
8685anbi2d 630 . . . . . . 7 (𝑗 = 𝑖 → ((𝜑𝑗𝑍) ↔ (𝜑𝑖𝑍)))
87 csbeq1a 3922 . . . . . . . 8 (𝑗 = 𝑖𝐶 = 𝑖 / 𝑗𝐶)
8887eleq1d 2824 . . . . . . 7 (𝑗 = 𝑖 → (𝐶 ∈ ℝ ↔ 𝑖 / 𝑗𝐶 ∈ ℝ))
8986, 88imbi12d 344 . . . . . 6 (𝑗 = 𝑖 → (((𝜑𝑗𝑍) → 𝐶 ∈ ℝ) ↔ ((𝜑𝑖𝑍) → 𝑖 / 𝑗𝐶 ∈ ℝ)))
90 nfv 1912 . . . . . . . . 9 𝑘 𝑗𝑍
915, 90nfan 1897 . . . . . . . 8 𝑘(𝜑𝑗𝑍)
92 nfv 1912 . . . . . . . 8 𝑘 𝐶 ∈ ℝ
9391, 92nfim 1894 . . . . . . 7 𝑘((𝜑𝑗𝑍) → 𝐶 ∈ ℝ)
94 eleq1 2827 . . . . . . . . 9 (𝑘 = 𝑗 → (𝑘𝑍𝑗𝑍))
9594anbi2d 630 . . . . . . . 8 (𝑘 = 𝑗 → ((𝜑𝑘𝑍) ↔ (𝜑𝑗𝑍)))
9622eleq1d 2824 . . . . . . . 8 (𝑘 = 𝑗 → (𝐵 ∈ ℝ ↔ 𝐶 ∈ ℝ))
9795, 96imbi12d 344 . . . . . . 7 (𝑘 = 𝑗 → (((𝜑𝑘𝑍) → 𝐵 ∈ ℝ) ↔ ((𝜑𝑗𝑍) → 𝐶 ∈ ℝ)))
9893, 97, 6chvarfv 2238 . . . . . 6 ((𝜑𝑗𝑍) → 𝐶 ∈ ℝ)
9984, 89, 98chvarfv 2238 . . . . 5 ((𝜑𝑖𝑍) → 𝑖 / 𝑗𝐶 ∈ ℝ)
100 nfcv 2903 . . . . . 6 𝑘𝑖
101 nfcv 2903 . . . . . 6 𝑘𝑖 / 𝑗𝐶
102100, 101, 30, 75fvmptf 7037 . . . . 5 ((𝑖𝑍𝑖 / 𝑗𝐶 ∈ ℝ) → ((𝑘𝑍𝐵)‘𝑖) = 𝑖 / 𝑗𝐶)
10378, 99, 102syl2anc 584 . . . 4 ((𝜑𝑖𝑍) → ((𝑘𝑍𝐵)‘𝑖) = 𝑖 / 𝑗𝐶)
10477, 103breq12d 5161 . . 3 ((𝜑𝑖𝑍) → (((𝑘𝑍𝐵)‘(𝑖 + 1)) ≤ ((𝑘𝑍𝐵)‘𝑖) ↔ (𝑖 + 1) / 𝑘𝐵𝑖 / 𝑗𝐶))
10558, 104mpbird 257 . 2 ((𝜑𝑖𝑍) → ((𝑘𝑍𝐵)‘(𝑖 + 1)) ≤ ((𝑘𝑍𝐵)‘𝑖))
106 climinf2mpt.e . . . . 5 (𝜑 → (𝑘𝑍𝐵) ∈ dom ⇝ )
107103, 99eqeltrd 2839 . . . . . . 7 ((𝜑𝑖𝑍) → ((𝑘𝑍𝐵)‘𝑖) ∈ ℝ)
108107recnd 11287 . . . . . 6 ((𝜑𝑖𝑍) → ((𝑘𝑍𝐵)‘𝑖) ∈ ℂ)
109108ralrimiva 3144 . . . . 5 (𝜑 → ∀𝑖𝑍 ((𝑘𝑍𝐵)‘𝑖) ∈ ℂ)
1102, 3climbddf 45643 . . . . 5 ((𝑀 ∈ ℤ ∧ (𝑘𝑍𝐵) ∈ dom ⇝ ∧ ∀𝑖𝑍 ((𝑘𝑍𝐵)‘𝑖) ∈ ℂ) → ∃𝑥 ∈ ℝ ∀𝑖𝑍 (abs‘((𝑘𝑍𝐵)‘𝑖)) ≤ 𝑥)
1114, 106, 109, 110syl3anc 1370 . . . 4 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑖𝑍 (abs‘((𝑘𝑍𝐵)‘𝑖)) ≤ 𝑥)
1121, 107rexabsle2 45377 . . . 4 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑖𝑍 (abs‘((𝑘𝑍𝐵)‘𝑖)) ≤ 𝑥 ↔ (∃𝑥 ∈ ℝ ∀𝑖𝑍 ((𝑘𝑍𝐵)‘𝑖) ≤ 𝑥 ∧ ∃𝑥 ∈ ℝ ∀𝑖𝑍 𝑥 ≤ ((𝑘𝑍𝐵)‘𝑖))))
113111, 112mpbid 232 . . 3 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑖𝑍 ((𝑘𝑍𝐵)‘𝑖) ≤ 𝑥 ∧ ∃𝑥 ∈ ℝ ∀𝑖𝑍 𝑥 ≤ ((𝑘𝑍𝐵)‘𝑖)))
114113simprd 495 . 2 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑖𝑍 𝑥 ≤ ((𝑘𝑍𝐵)‘𝑖))
1151, 2, 3, 4, 7, 105, 114climinf2 45663 1 (𝜑 → (𝑘𝑍𝐵) ⇝ inf(ran (𝑘𝑍𝐵), ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wnf 1780  wcel 2106  wral 3059  wrex 3068  csb 3908   class class class wbr 5148  cmpt 5231  dom cdm 5689  ran crn 5690  cfv 6563  (class class class)co 7431  infcinf 9479  cc 11151  cr 11152  1c1 11154   + caddc 11156  *cxr 11292   < clt 11293  cle 11294  cz 12611  cuz 12876  abscabs 15270  cli 15517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fz 13545  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521
This theorem is referenced by:  smflimsuplem4  46779
  Copyright terms: Public domain W3C validator