| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | biid 261 | . . . . . 6
⊢ (𝐴 ⊆
(ℤ≥‘𝑚) ↔ 𝐴 ⊆ (ℤ≥‘𝑚)) | 
| 2 |  | cbvprod.2 | . . . . . . . . . . . . . 14
⊢
Ⅎ𝑘𝐴 | 
| 3 | 2 | nfcri 2896 | . . . . . . . . . . . . 13
⊢
Ⅎ𝑘 𝑗 ∈ 𝐴 | 
| 4 |  | cbvprod.4 | . . . . . . . . . . . . 13
⊢
Ⅎ𝑘𝐵 | 
| 5 |  | nfcv 2904 | . . . . . . . . . . . . 13
⊢
Ⅎ𝑘1 | 
| 6 | 3, 4, 5 | nfif 4555 | . . . . . . . . . . . 12
⊢
Ⅎ𝑘if(𝑗 ∈ 𝐴, 𝐵, 1) | 
| 7 |  | cbvprod.3 | . . . . . . . . . . . . . 14
⊢
Ⅎ𝑗𝐴 | 
| 8 | 7 | nfcri 2896 | . . . . . . . . . . . . 13
⊢
Ⅎ𝑗 𝑘 ∈ 𝐴 | 
| 9 |  | cbvprod.5 | . . . . . . . . . . . . 13
⊢
Ⅎ𝑗𝐶 | 
| 10 |  | nfcv 2904 | . . . . . . . . . . . . 13
⊢
Ⅎ𝑗1 | 
| 11 | 8, 9, 10 | nfif 4555 | . . . . . . . . . . . 12
⊢
Ⅎ𝑗if(𝑘 ∈ 𝐴, 𝐶, 1) | 
| 12 |  | eleq1w 2823 | . . . . . . . . . . . . 13
⊢ (𝑗 = 𝑘 → (𝑗 ∈ 𝐴 ↔ 𝑘 ∈ 𝐴)) | 
| 13 |  | cbvprod.1 | . . . . . . . . . . . . 13
⊢ (𝑗 = 𝑘 → 𝐵 = 𝐶) | 
| 14 | 12, 13 | ifbieq1d 4549 | . . . . . . . . . . . 12
⊢ (𝑗 = 𝑘 → if(𝑗 ∈ 𝐴, 𝐵, 1) = if(𝑘 ∈ 𝐴, 𝐶, 1)) | 
| 15 | 6, 11, 14 | cbvmpt 5252 | . . . . . . . . . . 11
⊢ (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐵, 1)) = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1)) | 
| 16 |  | seqeq3 14048 | . . . . . . . . . . 11
⊢ ((𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐵, 1)) = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1)) → seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐵, 1))) = seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1)))) | 
| 17 | 15, 16 | ax-mp 5 | . . . . . . . . . 10
⊢ seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐵, 1))) = seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) | 
| 18 | 17 | breq1i 5149 | . . . . . . . . 9
⊢ (seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦 ↔ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑦) | 
| 19 | 18 | anbi2i 623 | . . . . . . . 8
⊢ ((𝑦 ≠ 0 ∧ seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ↔ (𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑦)) | 
| 20 | 19 | exbii 1847 | . . . . . . 7
⊢
(∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ↔ ∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑦)) | 
| 21 | 20 | rexbii 3093 | . . . . . 6
⊢
(∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ↔ ∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑦)) | 
| 22 |  | seqeq3 14048 | . . . . . . . 8
⊢ ((𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐵, 1)) = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1)) → seq𝑚( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐵, 1))) = seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1)))) | 
| 23 | 15, 22 | ax-mp 5 | . . . . . . 7
⊢ seq𝑚( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐵, 1))) = seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) | 
| 24 | 23 | breq1i 5149 | . . . . . 6
⊢ (seq𝑚( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥 ↔ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑥) | 
| 25 | 1, 21, 24 | 3anbi123i 1155 | . . . . 5
⊢ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥) ↔ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑥)) | 
| 26 | 25 | rexbii 3093 | . . . 4
⊢
(∃𝑚 ∈
ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥) ↔ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑥)) | 
| 27 | 4, 9, 13 | cbvcsbw 3908 | . . . . . . . . . . 11
⊢
⦋(𝑓‘𝑛) / 𝑗⦌𝐵 = ⦋(𝑓‘𝑛) / 𝑘⦌𝐶 | 
| 28 | 27 | mpteq2i 5246 | . . . . . . . . . 10
⊢ (𝑛 ∈ ℕ ↦
⦋(𝑓‘𝑛) / 𝑗⦌𝐵) = (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶) | 
| 29 |  | seqeq3 14048 | . . . . . . . . . 10
⊢ ((𝑛 ∈ ℕ ↦
⦋(𝑓‘𝑛) / 𝑗⦌𝐵) = (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶) → seq1( · , (𝑛 ∈ ℕ ↦
⦋(𝑓‘𝑛) / 𝑗⦌𝐵)) = seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶))) | 
| 30 | 28, 29 | ax-mp 5 | . . . . . . . . 9
⊢ seq1(
· , (𝑛 ∈
ℕ ↦ ⦋(𝑓‘𝑛) / 𝑗⦌𝐵)) = seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶)) | 
| 31 | 30 | fveq1i 6906 | . . . . . . . 8
⊢ (seq1(
· , (𝑛 ∈
ℕ ↦ ⦋(𝑓‘𝑛) / 𝑗⦌𝐵))‘𝑚) = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶))‘𝑚) | 
| 32 | 31 | eqeq2i 2749 | . . . . . . 7
⊢ (𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦
⦋(𝑓‘𝑛) / 𝑗⦌𝐵))‘𝑚) ↔ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶))‘𝑚)) | 
| 33 | 32 | anbi2i 623 | . . . . . 6
⊢ ((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑗⦌𝐵))‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶))‘𝑚))) | 
| 34 | 33 | exbii 1847 | . . . . 5
⊢
(∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑗⦌𝐵))‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶))‘𝑚))) | 
| 35 | 34 | rexbii 3093 | . . . 4
⊢
(∃𝑚 ∈
ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑗⦌𝐵))‘𝑚)) ↔ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶))‘𝑚))) | 
| 36 | 26, 35 | orbi12i 914 | . . 3
⊢
((∃𝑚 ∈
ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑗⦌𝐵))‘𝑚))) ↔ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶))‘𝑚)))) | 
| 37 | 36 | iotabii 6545 | . 2
⊢
(℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑗⦌𝐵))‘𝑚)))) = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶))‘𝑚)))) | 
| 38 |  | df-prod 15941 | . 2
⊢
∏𝑗 ∈
𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑗⦌𝐵))‘𝑚)))) | 
| 39 |  | df-prod 15941 | . 2
⊢
∏𝑘 ∈
𝐴 𝐶 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶))‘𝑚)))) | 
| 40 | 37, 38, 39 | 3eqtr4i 2774 | 1
⊢
∏𝑗 ∈
𝐴 𝐵 = ∏𝑘 ∈ 𝐴 𝐶 |