Step | Hyp | Ref
| Expression |
1 | | biid 261 |
. . . . . 6
⊢ (𝐴 ⊆
(ℤ≥‘𝑚) ↔ 𝐴 ⊆ (ℤ≥‘𝑚)) |
2 | | cbvprod.2 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑘𝐴 |
3 | 2 | nfcri 2892 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘 𝑗 ∈ 𝐴 |
4 | | cbvprod.4 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘𝐵 |
5 | | nfcv 2905 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘1 |
6 | 3, 4, 5 | nfif 4495 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘if(𝑗 ∈ 𝐴, 𝐵, 1) |
7 | | cbvprod.3 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑗𝐴 |
8 | 7 | nfcri 2892 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑗 𝑘 ∈ 𝐴 |
9 | | cbvprod.5 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑗𝐶 |
10 | | nfcv 2905 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑗1 |
11 | 8, 9, 10 | nfif 4495 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑗if(𝑘 ∈ 𝐴, 𝐶, 1) |
12 | | eleq1w 2819 |
. . . . . . . . . . . . 13
⊢ (𝑗 = 𝑘 → (𝑗 ∈ 𝐴 ↔ 𝑘 ∈ 𝐴)) |
13 | | cbvprod.1 |
. . . . . . . . . . . . 13
⊢ (𝑗 = 𝑘 → 𝐵 = 𝐶) |
14 | 12, 13 | ifbieq1d 4489 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝑘 → if(𝑗 ∈ 𝐴, 𝐵, 1) = if(𝑘 ∈ 𝐴, 𝐶, 1)) |
15 | 6, 11, 14 | cbvmpt 5192 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐵, 1)) = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1)) |
16 | | seqeq3 13776 |
. . . . . . . . . . 11
⊢ ((𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐵, 1)) = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1)) → seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐵, 1))) = seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1)))) |
17 | 15, 16 | ax-mp 5 |
. . . . . . . . . 10
⊢ seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐵, 1))) = seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) |
18 | 17 | breq1i 5088 |
. . . . . . . . 9
⊢ (seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦 ↔ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑦) |
19 | 18 | anbi2i 624 |
. . . . . . . 8
⊢ ((𝑦 ≠ 0 ∧ seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ↔ (𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑦)) |
20 | 19 | exbii 1848 |
. . . . . . 7
⊢
(∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ↔ ∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑦)) |
21 | 20 | rexbii 3094 |
. . . . . 6
⊢
(∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ↔ ∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑦)) |
22 | | seqeq3 13776 |
. . . . . . . 8
⊢ ((𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐵, 1)) = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1)) → seq𝑚( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐵, 1))) = seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1)))) |
23 | 15, 22 | ax-mp 5 |
. . . . . . 7
⊢ seq𝑚( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐵, 1))) = seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) |
24 | 23 | breq1i 5088 |
. . . . . 6
⊢ (seq𝑚( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥 ↔ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑥) |
25 | 1, 21, 24 | 3anbi123i 1155 |
. . . . 5
⊢ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥) ↔ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑥)) |
26 | 25 | rexbii 3094 |
. . . 4
⊢
(∃𝑚 ∈
ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥) ↔ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑥)) |
27 | 4, 9, 13 | cbvcsbw 3847 |
. . . . . . . . . . 11
⊢
⦋(𝑓‘𝑛) / 𝑗⦌𝐵 = ⦋(𝑓‘𝑛) / 𝑘⦌𝐶 |
28 | 27 | mpteq2i 5186 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ ↦
⦋(𝑓‘𝑛) / 𝑗⦌𝐵) = (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶) |
29 | | seqeq3 13776 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ℕ ↦
⦋(𝑓‘𝑛) / 𝑗⦌𝐵) = (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶) → seq1( · , (𝑛 ∈ ℕ ↦
⦋(𝑓‘𝑛) / 𝑗⦌𝐵)) = seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶))) |
30 | 28, 29 | ax-mp 5 |
. . . . . . . . 9
⊢ seq1(
· , (𝑛 ∈
ℕ ↦ ⦋(𝑓‘𝑛) / 𝑗⦌𝐵)) = seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶)) |
31 | 30 | fveq1i 6805 |
. . . . . . . 8
⊢ (seq1(
· , (𝑛 ∈
ℕ ↦ ⦋(𝑓‘𝑛) / 𝑗⦌𝐵))‘𝑚) = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶))‘𝑚) |
32 | 31 | eqeq2i 2749 |
. . . . . . 7
⊢ (𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦
⦋(𝑓‘𝑛) / 𝑗⦌𝐵))‘𝑚) ↔ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶))‘𝑚)) |
33 | 32 | anbi2i 624 |
. . . . . 6
⊢ ((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑗⦌𝐵))‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶))‘𝑚))) |
34 | 33 | exbii 1848 |
. . . . 5
⊢
(∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑗⦌𝐵))‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶))‘𝑚))) |
35 | 34 | rexbii 3094 |
. . . 4
⊢
(∃𝑚 ∈
ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑗⦌𝐵))‘𝑚)) ↔ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶))‘𝑚))) |
36 | 26, 35 | orbi12i 913 |
. . 3
⊢
((∃𝑚 ∈
ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑗⦌𝐵))‘𝑚))) ↔ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶))‘𝑚)))) |
37 | 36 | iotabii 6443 |
. 2
⊢
(℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑗⦌𝐵))‘𝑚)))) = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶))‘𝑚)))) |
38 | | df-prod 15665 |
. 2
⊢
∏𝑗 ∈
𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑗⦌𝐵))‘𝑚)))) |
39 | | df-prod 15665 |
. 2
⊢
∏𝑘 ∈
𝐴 𝐶 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐶))‘𝑚)))) |
40 | 37, 38, 39 | 3eqtr4i 2774 |
1
⊢
∏𝑗 ∈
𝐴 𝐵 = ∏𝑘 ∈ 𝐴 𝐶 |