Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  measiuns Structured version   Visualization version   GIF version

Theorem measiuns 34201
Description: The measure of the union of a collection of sets, expressed as the sum of a disjoint set. This is used as a lemma for both measiun 34202 and meascnbl 34203. (Contributed by Thierry Arnoux, 22-Jan-2017.) (Proof shortened by Thierry Arnoux, 7-Feb-2017.)
Hypotheses
Ref Expression
measiuns.0 𝑛𝐵
measiuns.1 (𝑛 = 𝑘𝐴 = 𝐵)
measiuns.2 (𝜑 → (𝑁 = ℕ ∨ 𝑁 = (1..^𝐼)))
measiuns.3 (𝜑𝑀 ∈ (measures‘𝑆))
measiuns.4 ((𝜑𝑛𝑁) → 𝐴𝑆)
Assertion
Ref Expression
measiuns (𝜑 → (𝑀 𝑛𝑁 𝐴) = Σ*𝑛𝑁(𝑀‘(𝐴 𝑘 ∈ (1..^𝑛)𝐵)))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑛,𝐼   𝑛,𝑀   𝑘,𝑁,𝑛   𝑆,𝑘,𝑛   𝜑,𝑘,𝑛
Allowed substitution hints:   𝐴(𝑛)   𝐵(𝑘,𝑛)   𝑀(𝑘)

Proof of Theorem measiuns
StepHypRef Expression
1 measiuns.0 . . . 4 𝑛𝐵
2 measiuns.1 . . . 4 (𝑛 = 𝑘𝐴 = 𝐵)
3 measiuns.2 . . . 4 (𝜑 → (𝑁 = ℕ ∨ 𝑁 = (1..^𝐼)))
41, 2, 3iundisjcnt 32772 . . 3 (𝜑 𝑛𝑁 𝐴 = 𝑛𝑁 (𝐴 𝑘 ∈ (1..^𝑛)𝐵))
54fveq2d 6844 . 2 (𝜑 → (𝑀 𝑛𝑁 𝐴) = (𝑀 𝑛𝑁 (𝐴 𝑘 ∈ (1..^𝑛)𝐵)))
6 measiuns.3 . . 3 (𝜑𝑀 ∈ (measures‘𝑆))
7 measbase 34181 . . . . . . 7 (𝑀 ∈ (measures‘𝑆) → 𝑆 ran sigAlgebra)
86, 7syl 17 . . . . . 6 (𝜑𝑆 ran sigAlgebra)
98adantr 480 . . . . 5 ((𝜑𝑛𝑁) → 𝑆 ran sigAlgebra)
10 measiuns.4 . . . . 5 ((𝜑𝑛𝑁) → 𝐴𝑆)
11 simpll 766 . . . . . . . 8 (((𝜑𝑛𝑁) ∧ 𝑘 ∈ (1..^𝑛)) → 𝜑)
12 fzossnn 13650 . . . . . . . . . . 11 (1..^𝑛) ⊆ ℕ
13 simpr 484 . . . . . . . . . . 11 (((𝜑𝑛𝑁) ∧ 𝑁 = ℕ) → 𝑁 = ℕ)
1412, 13sseqtrrid 3987 . . . . . . . . . 10 (((𝜑𝑛𝑁) ∧ 𝑁 = ℕ) → (1..^𝑛) ⊆ 𝑁)
15 simplr 768 . . . . . . . . . . . . 13 (((𝜑𝑛𝑁) ∧ 𝑁 = (1..^𝐼)) → 𝑛𝑁)
16 simpr 484 . . . . . . . . . . . . 13 (((𝜑𝑛𝑁) ∧ 𝑁 = (1..^𝐼)) → 𝑁 = (1..^𝐼))
1715, 16eleqtrd 2830 . . . . . . . . . . . 12 (((𝜑𝑛𝑁) ∧ 𝑁 = (1..^𝐼)) → 𝑛 ∈ (1..^𝐼))
18 elfzouz2 13613 . . . . . . . . . . . 12 (𝑛 ∈ (1..^𝐼) → 𝐼 ∈ (ℤ𝑛))
19 fzoss2 13626 . . . . . . . . . . . 12 (𝐼 ∈ (ℤ𝑛) → (1..^𝑛) ⊆ (1..^𝐼))
2017, 18, 193syl 18 . . . . . . . . . . 11 (((𝜑𝑛𝑁) ∧ 𝑁 = (1..^𝐼)) → (1..^𝑛) ⊆ (1..^𝐼))
2120, 16sseqtrrd 3981 . . . . . . . . . 10 (((𝜑𝑛𝑁) ∧ 𝑁 = (1..^𝐼)) → (1..^𝑛) ⊆ 𝑁)
223adantr 480 . . . . . . . . . 10 ((𝜑𝑛𝑁) → (𝑁 = ℕ ∨ 𝑁 = (1..^𝐼)))
2314, 21, 22mpjaodan 960 . . . . . . . . 9 ((𝜑𝑛𝑁) → (1..^𝑛) ⊆ 𝑁)
2423sselda 3943 . . . . . . . 8 (((𝜑𝑛𝑁) ∧ 𝑘 ∈ (1..^𝑛)) → 𝑘𝑁)
2510sbimi 2075 . . . . . . . . 9 ([𝑘 / 𝑛](𝜑𝑛𝑁) → [𝑘 / 𝑛]𝐴𝑆)
26 sban 2081 . . . . . . . . . 10 ([𝑘 / 𝑛](𝜑𝑛𝑁) ↔ ([𝑘 / 𝑛]𝜑 ∧ [𝑘 / 𝑛]𝑛𝑁))
27 sbv 2089 . . . . . . . . . . 11 ([𝑘 / 𝑛]𝜑𝜑)
28 clelsb1 2855 . . . . . . . . . . 11 ([𝑘 / 𝑛]𝑛𝑁𝑘𝑁)
2927, 28anbi12i 628 . . . . . . . . . 10 (([𝑘 / 𝑛]𝜑 ∧ [𝑘 / 𝑛]𝑛𝑁) ↔ (𝜑𝑘𝑁))
3026, 29bitri 275 . . . . . . . . 9 ([𝑘 / 𝑛](𝜑𝑛𝑁) ↔ (𝜑𝑘𝑁))
31 sbsbc 3754 . . . . . . . . . 10 ([𝑘 / 𝑛]𝐴𝑆[𝑘 / 𝑛]𝐴𝑆)
32 sbcel1g 4375 . . . . . . . . . . 11 (𝑘 ∈ V → ([𝑘 / 𝑛]𝐴𝑆𝑘 / 𝑛𝐴𝑆))
3332elv 3449 . . . . . . . . . 10 ([𝑘 / 𝑛]𝐴𝑆𝑘 / 𝑛𝐴𝑆)
34 nfcv 2891 . . . . . . . . . . . . 13 𝑘𝐴
3534, 1, 2cbvcsbw 3869 . . . . . . . . . . . 12 𝑘 / 𝑛𝐴 = 𝑘 / 𝑘𝐵
36 csbid 3872 . . . . . . . . . . . 12 𝑘 / 𝑘𝐵 = 𝐵
3735, 36eqtri 2752 . . . . . . . . . . 11 𝑘 / 𝑛𝐴 = 𝐵
3837eleq1i 2819 . . . . . . . . . 10 (𝑘 / 𝑛𝐴𝑆𝐵𝑆)
3931, 33, 383bitri 297 . . . . . . . . 9 ([𝑘 / 𝑛]𝐴𝑆𝐵𝑆)
4025, 30, 393imtr3i 291 . . . . . . . 8 ((𝜑𝑘𝑁) → 𝐵𝑆)
4111, 24, 40syl2anc 584 . . . . . . 7 (((𝜑𝑛𝑁) ∧ 𝑘 ∈ (1..^𝑛)) → 𝐵𝑆)
4241ralrimiva 3125 . . . . . 6 ((𝜑𝑛𝑁) → ∀𝑘 ∈ (1..^𝑛)𝐵𝑆)
43 sigaclfu2 34105 . . . . . 6 ((𝑆 ran sigAlgebra ∧ ∀𝑘 ∈ (1..^𝑛)𝐵𝑆) → 𝑘 ∈ (1..^𝑛)𝐵𝑆)
449, 42, 43syl2anc 584 . . . . 5 ((𝜑𝑛𝑁) → 𝑘 ∈ (1..^𝑛)𝐵𝑆)
45 difelsiga 34117 . . . . 5 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆 𝑘 ∈ (1..^𝑛)𝐵𝑆) → (𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∈ 𝑆)
469, 10, 44, 45syl3anc 1373 . . . 4 ((𝜑𝑛𝑁) → (𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∈ 𝑆)
4746ralrimiva 3125 . . 3 (𝜑 → ∀𝑛𝑁 (𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∈ 𝑆)
48 eqimss 4002 . . . . . 6 (𝑁 = ℕ → 𝑁 ⊆ ℕ)
49 fzossnn 13650 . . . . . . 7 (1..^𝐼) ⊆ ℕ
50 sseq1 3969 . . . . . . 7 (𝑁 = (1..^𝐼) → (𝑁 ⊆ ℕ ↔ (1..^𝐼) ⊆ ℕ))
5149, 50mpbiri 258 . . . . . 6 (𝑁 = (1..^𝐼) → 𝑁 ⊆ ℕ)
5248, 51jaoi 857 . . . . 5 ((𝑁 = ℕ ∨ 𝑁 = (1..^𝐼)) → 𝑁 ⊆ ℕ)
533, 52syl 17 . . . 4 (𝜑𝑁 ⊆ ℕ)
54 nnct 13924 . . . 4 ℕ ≼ ω
55 ssct 8999 . . . 4 ((𝑁 ⊆ ℕ ∧ ℕ ≼ ω) → 𝑁 ≼ ω)
5653, 54, 55sylancl 586 . . 3 (𝜑𝑁 ≼ ω)
571, 2, 3iundisj2cnt 32773 . . 3 (𝜑Disj 𝑛𝑁 (𝐴 𝑘 ∈ (1..^𝑛)𝐵))
58 measvuni 34198 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑛𝑁 (𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∈ 𝑆 ∧ (𝑁 ≼ ω ∧ Disj 𝑛𝑁 (𝐴 𝑘 ∈ (1..^𝑛)𝐵))) → (𝑀 𝑛𝑁 (𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = Σ*𝑛𝑁(𝑀‘(𝐴 𝑘 ∈ (1..^𝑛)𝐵)))
596, 47, 56, 57, 58syl112anc 1376 . 2 (𝜑 → (𝑀 𝑛𝑁 (𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = Σ*𝑛𝑁(𝑀‘(𝐴 𝑘 ∈ (1..^𝑛)𝐵)))
605, 59eqtrd 2764 1 (𝜑 → (𝑀 𝑛𝑁 𝐴) = Σ*𝑛𝑁(𝑀‘(𝐴 𝑘 ∈ (1..^𝑛)𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  [wsb 2065  wcel 2109  wnfc 2876  wral 3044  Vcvv 3444  [wsbc 3750  csb 3859  cdif 3908  wss 3911   cuni 4867   ciun 4951  Disj wdisj 5069   class class class wbr 5102  ran crn 5632  cfv 6499  (class class class)co 7369  ωcom 7822  cdom 8893  1c1 11047  cn 12164  cuz 12771  ..^cfzo 13593  Σ*cesum 34011  sigAlgebracsiga 34092  measurescmeas 34179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9572  ax-ac2 10394  ax-cnex 11102  ax-resscn 11103  ax-1cn 11104  ax-icn 11105  ax-addcl 11106  ax-addrcl 11107  ax-mulcl 11108  ax-mulrcl 11109  ax-mulcom 11110  ax-addass 11111  ax-mulass 11112  ax-distr 11113  ax-i2m1 11114  ax-1ne0 11115  ax-1rid 11116  ax-rnegex 11117  ax-rrecex 11118  ax-cnre 11119  ax-pre-lttri 11120  ax-pre-lttrn 11121  ax-pre-ltadd 11122  ax-pre-mulgt0 11123  ax-pre-sup 11124  ax-addf 11125  ax-mulf 11126
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-disj 5070  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-dju 9832  df-card 9870  df-acn 9873  df-ac 10047  df-pnf 11188  df-mnf 11189  df-xr 11190  df-ltxr 11191  df-le 11192  df-sub 11385  df-neg 11386  df-div 11814  df-nn 12165  df-2 12227  df-3 12228  df-4 12229  df-5 12230  df-6 12231  df-7 12232  df-8 12233  df-9 12234  df-n0 12421  df-z 12508  df-dec 12628  df-uz 12772  df-q 12886  df-rp 12930  df-xneg 13050  df-xadd 13051  df-xmul 13052  df-ioo 13288  df-ioc 13289  df-ico 13290  df-icc 13291  df-fz 13447  df-fzo 13594  df-fl 13732  df-mod 13810  df-seq 13945  df-exp 14005  df-fac 14217  df-bc 14246  df-hash 14274  df-shft 15010  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-limsup 15414  df-clim 15431  df-rlim 15432  df-sum 15630  df-ef 16010  df-sin 16012  df-cos 16013  df-pi 16015  df-struct 17094  df-sets 17111  df-slot 17129  df-ndx 17141  df-base 17157  df-ress 17178  df-plusg 17210  df-mulr 17211  df-starv 17212  df-sca 17213  df-vsca 17214  df-ip 17215  df-tset 17216  df-ple 17217  df-ds 17219  df-unif 17220  df-hom 17221  df-cco 17222  df-rest 17362  df-topn 17363  df-0g 17381  df-gsum 17382  df-topgen 17383  df-pt 17384  df-prds 17387  df-ordt 17441  df-xrs 17442  df-qtop 17447  df-imas 17448  df-xps 17450  df-mre 17524  df-mrc 17525  df-acs 17527  df-ps 18508  df-tsr 18509  df-plusf 18549  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-mhm 18693  df-submnd 18694  df-grp 18851  df-minusg 18852  df-sbg 18853  df-mulg 18983  df-subg 19038  df-cntz 19232  df-cmn 19697  df-abl 19698  df-mgp 20062  df-rng 20074  df-ur 20103  df-ring 20156  df-cring 20157  df-subrng 20467  df-subrg 20491  df-abv 20730  df-lmod 20801  df-scaf 20802  df-sra 21113  df-rgmod 21114  df-psmet 21289  df-xmet 21290  df-met 21291  df-bl 21292  df-mopn 21293  df-fbas 21294  df-fg 21295  df-cnfld 21298  df-top 22815  df-topon 22832  df-topsp 22854  df-bases 22867  df-cld 22940  df-ntr 22941  df-cls 22942  df-nei 23019  df-lp 23057  df-perf 23058  df-cn 23148  df-cnp 23149  df-haus 23236  df-tx 23483  df-hmeo 23676  df-fil 23767  df-fm 23859  df-flim 23860  df-flf 23861  df-tmd 23993  df-tgp 23994  df-tsms 24048  df-trg 24081  df-xms 24242  df-ms 24243  df-tms 24244  df-nm 24504  df-ngp 24505  df-nrg 24507  df-nlm 24508  df-ii 24804  df-cncf 24805  df-limc 25801  df-dv 25802  df-log 26499  df-esum 34012  df-siga 34093  df-meas 34180
This theorem is referenced by:  measiun  34202  meascnbl  34203
  Copyright terms: Public domain W3C validator