Step | Hyp | Ref
| Expression |
1 | | measiuns.0 |
. . . 4
β’
β²ππ΅ |
2 | | measiuns.1 |
. . . 4
β’ (π = π β π΄ = π΅) |
3 | | measiuns.2 |
. . . 4
β’ (π β (π = β β¨ π = (1..^πΌ))) |
4 | 1, 2, 3 | iundisjcnt 31996 |
. . 3
β’ (π β βͺ π β π π΄ = βͺ π β π (π΄ β βͺ
π β (1..^π)π΅)) |
5 | 4 | fveq2d 6892 |
. 2
β’ (π β (πββͺ
π β π π΄) = (πββͺ
π β π (π΄ β βͺ
π β (1..^π)π΅))) |
6 | | measiuns.3 |
. . 3
β’ (π β π β (measuresβπ)) |
7 | | measbase 33183 |
. . . . . . 7
β’ (π β (measuresβπ) β π β βͺ ran
sigAlgebra) |
8 | 6, 7 | syl 17 |
. . . . . 6
β’ (π β π β βͺ ran
sigAlgebra) |
9 | 8 | adantr 481 |
. . . . 5
β’ ((π β§ π β π) β π β βͺ ran
sigAlgebra) |
10 | | measiuns.4 |
. . . . 5
β’ ((π β§ π β π) β π΄ β π) |
11 | | simpll 765 |
. . . . . . . 8
β’ (((π β§ π β π) β§ π β (1..^π)) β π) |
12 | | fzossnn 13677 |
. . . . . . . . . . 11
β’
(1..^π) β
β |
13 | | simpr 485 |
. . . . . . . . . . 11
β’ (((π β§ π β π) β§ π = β) β π = β) |
14 | 12, 13 | sseqtrrid 4034 |
. . . . . . . . . 10
β’ (((π β§ π β π) β§ π = β) β (1..^π) β π) |
15 | | simplr 767 |
. . . . . . . . . . . . 13
β’ (((π β§ π β π) β§ π = (1..^πΌ)) β π β π) |
16 | | simpr 485 |
. . . . . . . . . . . . 13
β’ (((π β§ π β π) β§ π = (1..^πΌ)) β π = (1..^πΌ)) |
17 | 15, 16 | eleqtrd 2835 |
. . . . . . . . . . . 12
β’ (((π β§ π β π) β§ π = (1..^πΌ)) β π β (1..^πΌ)) |
18 | | elfzouz2 13643 |
. . . . . . . . . . . 12
β’ (π β (1..^πΌ) β πΌ β (β€β₯βπ)) |
19 | | fzoss2 13656 |
. . . . . . . . . . . 12
β’ (πΌ β
(β€β₯βπ) β (1..^π) β (1..^πΌ)) |
20 | 17, 18, 19 | 3syl 18 |
. . . . . . . . . . 11
β’ (((π β§ π β π) β§ π = (1..^πΌ)) β (1..^π) β (1..^πΌ)) |
21 | 20, 16 | sseqtrrd 4022 |
. . . . . . . . . 10
β’ (((π β§ π β π) β§ π = (1..^πΌ)) β (1..^π) β π) |
22 | 3 | adantr 481 |
. . . . . . . . . 10
β’ ((π β§ π β π) β (π = β β¨ π = (1..^πΌ))) |
23 | 14, 21, 22 | mpjaodan 957 |
. . . . . . . . 9
β’ ((π β§ π β π) β (1..^π) β π) |
24 | 23 | sselda 3981 |
. . . . . . . 8
β’ (((π β§ π β π) β§ π β (1..^π)) β π β π) |
25 | 10 | sbimi 2077 |
. . . . . . . . 9
β’ ([π / π](π β§ π β π) β [π / π]π΄ β π) |
26 | | sban 2083 |
. . . . . . . . . 10
β’ ([π / π](π β§ π β π) β ([π / π]π β§ [π / π]π β π)) |
27 | | sbv 2091 |
. . . . . . . . . . 11
β’ ([π / π]π β π) |
28 | | clelsb1 2860 |
. . . . . . . . . . 11
β’ ([π / π]π β π β π β π) |
29 | 27, 28 | anbi12i 627 |
. . . . . . . . . 10
β’ (([π / π]π β§ [π / π]π β π) β (π β§ π β π)) |
30 | 26, 29 | bitri 274 |
. . . . . . . . 9
β’ ([π / π](π β§ π β π) β (π β§ π β π)) |
31 | | sbsbc 3780 |
. . . . . . . . . 10
β’ ([π / π]π΄ β π β [π / π]π΄ β π) |
32 | | sbcel1g 4412 |
. . . . . . . . . . 11
β’ (π β V β ([π / π]π΄ β π β β¦π / πβ¦π΄ β π)) |
33 | 32 | elv 3480 |
. . . . . . . . . 10
β’
([π / π]π΄ β π β β¦π / πβ¦π΄ β π) |
34 | | nfcv 2903 |
. . . . . . . . . . . . 13
β’
β²ππ΄ |
35 | 34, 1, 2 | cbvcsbw 3902 |
. . . . . . . . . . . 12
β’
β¦π /
πβ¦π΄ = β¦π / πβ¦π΅ |
36 | | csbid 3905 |
. . . . . . . . . . . 12
β’
β¦π /
πβ¦π΅ = π΅ |
37 | 35, 36 | eqtri 2760 |
. . . . . . . . . . 11
β’
β¦π /
πβ¦π΄ = π΅ |
38 | 37 | eleq1i 2824 |
. . . . . . . . . 10
β’
(β¦π /
πβ¦π΄ β π β π΅ β π) |
39 | 31, 33, 38 | 3bitri 296 |
. . . . . . . . 9
β’ ([π / π]π΄ β π β π΅ β π) |
40 | 25, 30, 39 | 3imtr3i 290 |
. . . . . . . 8
β’ ((π β§ π β π) β π΅ β π) |
41 | 11, 24, 40 | syl2anc 584 |
. . . . . . 7
β’ (((π β§ π β π) β§ π β (1..^π)) β π΅ β π) |
42 | 41 | ralrimiva 3146 |
. . . . . 6
β’ ((π β§ π β π) β βπ β (1..^π)π΅ β π) |
43 | | sigaclfu2 33107 |
. . . . . 6
β’ ((π β βͺ ran sigAlgebra β§ βπ β (1..^π)π΅ β π) β βͺ
π β (1..^π)π΅ β π) |
44 | 9, 42, 43 | syl2anc 584 |
. . . . 5
β’ ((π β§ π β π) β βͺ
π β (1..^π)π΅ β π) |
45 | | difelsiga 33119 |
. . . . 5
β’ ((π β βͺ ran sigAlgebra β§ π΄ β π β§ βͺ
π β (1..^π)π΅ β π) β (π΄ β βͺ
π β (1..^π)π΅) β π) |
46 | 9, 10, 44, 45 | syl3anc 1371 |
. . . 4
β’ ((π β§ π β π) β (π΄ β βͺ
π β (1..^π)π΅) β π) |
47 | 46 | ralrimiva 3146 |
. . 3
β’ (π β βπ β π (π΄ β βͺ
π β (1..^π)π΅) β π) |
48 | | eqimss 4039 |
. . . . . 6
β’ (π = β β π β
β) |
49 | | fzossnn 13677 |
. . . . . . 7
β’
(1..^πΌ) β
β |
50 | | sseq1 4006 |
. . . . . . 7
β’ (π = (1..^πΌ) β (π β β β (1..^πΌ) β
β)) |
51 | 49, 50 | mpbiri 257 |
. . . . . 6
β’ (π = (1..^πΌ) β π β β) |
52 | 48, 51 | jaoi 855 |
. . . . 5
β’ ((π = β β¨ π = (1..^πΌ)) β π β β) |
53 | 3, 52 | syl 17 |
. . . 4
β’ (π β π β β) |
54 | | nnct 13942 |
. . . 4
β’ β
βΌ Ο |
55 | | ssct 9047 |
. . . 4
β’ ((π β β β§ β
βΌ Ο) β π
βΌ Ο) |
56 | 53, 54, 55 | sylancl 586 |
. . 3
β’ (π β π βΌ Ο) |
57 | 1, 2, 3 | iundisj2cnt 31997 |
. . 3
β’ (π β Disj π β π (π΄ β βͺ
π β (1..^π)π΅)) |
58 | | measvuni 33200 |
. . 3
β’ ((π β (measuresβπ) β§ βπ β π (π΄ β βͺ
π β (1..^π)π΅) β π β§ (π βΌ Ο β§ Disj π β π (π΄ β βͺ
π β (1..^π)π΅))) β (πββͺ
π β π (π΄ β βͺ
π β (1..^π)π΅)) = Ξ£*π β π(πβ(π΄ β βͺ
π β (1..^π)π΅))) |
59 | 6, 47, 56, 57, 58 | syl112anc 1374 |
. 2
β’ (π β (πββͺ
π β π (π΄ β βͺ
π β (1..^π)π΅)) = Ξ£*π β π(πβ(π΄ β βͺ
π β (1..^π)π΅))) |
60 | 5, 59 | eqtrd 2772 |
1
β’ (π β (πββͺ
π β π π΄) = Ξ£*π β π(πβ(π΄ β βͺ
π β (1..^π)π΅))) |