| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > measiuns | Structured version Visualization version GIF version | ||
| Description: The measure of the union of a collection of sets, expressed as the sum of a disjoint set. This is used as a lemma for both measiun 34249 and meascnbl 34250. (Contributed by Thierry Arnoux, 22-Jan-2017.) (Proof shortened by Thierry Arnoux, 7-Feb-2017.) |
| Ref | Expression |
|---|---|
| measiuns.0 | ⊢ Ⅎ𝑛𝐵 |
| measiuns.1 | ⊢ (𝑛 = 𝑘 → 𝐴 = 𝐵) |
| measiuns.2 | ⊢ (𝜑 → (𝑁 = ℕ ∨ 𝑁 = (1..^𝐼))) |
| measiuns.3 | ⊢ (𝜑 → 𝑀 ∈ (measures‘𝑆)) |
| measiuns.4 | ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑁) → 𝐴 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| measiuns | ⊢ (𝜑 → (𝑀‘∪ 𝑛 ∈ 𝑁 𝐴) = Σ*𝑛 ∈ 𝑁(𝑀‘(𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | measiuns.0 | . . . 4 ⊢ Ⅎ𝑛𝐵 | |
| 2 | measiuns.1 | . . . 4 ⊢ (𝑛 = 𝑘 → 𝐴 = 𝐵) | |
| 3 | measiuns.2 | . . . 4 ⊢ (𝜑 → (𝑁 = ℕ ∨ 𝑁 = (1..^𝐼))) | |
| 4 | 1, 2, 3 | iundisjcnt 32775 | . . 3 ⊢ (𝜑 → ∪ 𝑛 ∈ 𝑁 𝐴 = ∪ 𝑛 ∈ 𝑁 (𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵)) |
| 5 | 4 | fveq2d 6880 | . 2 ⊢ (𝜑 → (𝑀‘∪ 𝑛 ∈ 𝑁 𝐴) = (𝑀‘∪ 𝑛 ∈ 𝑁 (𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵))) |
| 6 | measiuns.3 | . . 3 ⊢ (𝜑 → 𝑀 ∈ (measures‘𝑆)) | |
| 7 | measbase 34228 | . . . . . . 7 ⊢ (𝑀 ∈ (measures‘𝑆) → 𝑆 ∈ ∪ ran sigAlgebra) | |
| 8 | 6, 7 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) |
| 9 | 8 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑁) → 𝑆 ∈ ∪ ran sigAlgebra) |
| 10 | measiuns.4 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑁) → 𝐴 ∈ 𝑆) | |
| 11 | simpll 766 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑛 ∈ 𝑁) ∧ 𝑘 ∈ (1..^𝑛)) → 𝜑) | |
| 12 | fzossnn 13728 | . . . . . . . . . . 11 ⊢ (1..^𝑛) ⊆ ℕ | |
| 13 | simpr 484 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑛 ∈ 𝑁) ∧ 𝑁 = ℕ) → 𝑁 = ℕ) | |
| 14 | 12, 13 | sseqtrrid 4002 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑛 ∈ 𝑁) ∧ 𝑁 = ℕ) → (1..^𝑛) ⊆ 𝑁) |
| 15 | simplr 768 | . . . . . . . . . . . . 13 ⊢ (((𝜑 ∧ 𝑛 ∈ 𝑁) ∧ 𝑁 = (1..^𝐼)) → 𝑛 ∈ 𝑁) | |
| 16 | simpr 484 | . . . . . . . . . . . . 13 ⊢ (((𝜑 ∧ 𝑛 ∈ 𝑁) ∧ 𝑁 = (1..^𝐼)) → 𝑁 = (1..^𝐼)) | |
| 17 | 15, 16 | eleqtrd 2836 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ 𝑛 ∈ 𝑁) ∧ 𝑁 = (1..^𝐼)) → 𝑛 ∈ (1..^𝐼)) |
| 18 | elfzouz2 13691 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ (1..^𝐼) → 𝐼 ∈ (ℤ≥‘𝑛)) | |
| 19 | fzoss2 13704 | . . . . . . . . . . . 12 ⊢ (𝐼 ∈ (ℤ≥‘𝑛) → (1..^𝑛) ⊆ (1..^𝐼)) | |
| 20 | 17, 18, 19 | 3syl 18 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑛 ∈ 𝑁) ∧ 𝑁 = (1..^𝐼)) → (1..^𝑛) ⊆ (1..^𝐼)) |
| 21 | 20, 16 | sseqtrrd 3996 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑛 ∈ 𝑁) ∧ 𝑁 = (1..^𝐼)) → (1..^𝑛) ⊆ 𝑁) |
| 22 | 3 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑁) → (𝑁 = ℕ ∨ 𝑁 = (1..^𝐼))) |
| 23 | 14, 21, 22 | mpjaodan 960 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑁) → (1..^𝑛) ⊆ 𝑁) |
| 24 | 23 | sselda 3958 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑛 ∈ 𝑁) ∧ 𝑘 ∈ (1..^𝑛)) → 𝑘 ∈ 𝑁) |
| 25 | 10 | sbimi 2074 | . . . . . . . . 9 ⊢ ([𝑘 / 𝑛](𝜑 ∧ 𝑛 ∈ 𝑁) → [𝑘 / 𝑛]𝐴 ∈ 𝑆) |
| 26 | sban 2080 | . . . . . . . . . 10 ⊢ ([𝑘 / 𝑛](𝜑 ∧ 𝑛 ∈ 𝑁) ↔ ([𝑘 / 𝑛]𝜑 ∧ [𝑘 / 𝑛]𝑛 ∈ 𝑁)) | |
| 27 | sbv 2088 | . . . . . . . . . . 11 ⊢ ([𝑘 / 𝑛]𝜑 ↔ 𝜑) | |
| 28 | clelsb1 2861 | . . . . . . . . . . 11 ⊢ ([𝑘 / 𝑛]𝑛 ∈ 𝑁 ↔ 𝑘 ∈ 𝑁) | |
| 29 | 27, 28 | anbi12i 628 | . . . . . . . . . 10 ⊢ (([𝑘 / 𝑛]𝜑 ∧ [𝑘 / 𝑛]𝑛 ∈ 𝑁) ↔ (𝜑 ∧ 𝑘 ∈ 𝑁)) |
| 30 | 26, 29 | bitri 275 | . . . . . . . . 9 ⊢ ([𝑘 / 𝑛](𝜑 ∧ 𝑛 ∈ 𝑁) ↔ (𝜑 ∧ 𝑘 ∈ 𝑁)) |
| 31 | sbsbc 3769 | . . . . . . . . . 10 ⊢ ([𝑘 / 𝑛]𝐴 ∈ 𝑆 ↔ [𝑘 / 𝑛]𝐴 ∈ 𝑆) | |
| 32 | sbcel1g 4391 | . . . . . . . . . . 11 ⊢ (𝑘 ∈ V → ([𝑘 / 𝑛]𝐴 ∈ 𝑆 ↔ ⦋𝑘 / 𝑛⦌𝐴 ∈ 𝑆)) | |
| 33 | 32 | elv 3464 | . . . . . . . . . 10 ⊢ ([𝑘 / 𝑛]𝐴 ∈ 𝑆 ↔ ⦋𝑘 / 𝑛⦌𝐴 ∈ 𝑆) |
| 34 | nfcv 2898 | . . . . . . . . . . . . 13 ⊢ Ⅎ𝑘𝐴 | |
| 35 | 34, 1, 2 | cbvcsbw 3884 | . . . . . . . . . . . 12 ⊢ ⦋𝑘 / 𝑛⦌𝐴 = ⦋𝑘 / 𝑘⦌𝐵 |
| 36 | csbid 3887 | . . . . . . . . . . . 12 ⊢ ⦋𝑘 / 𝑘⦌𝐵 = 𝐵 | |
| 37 | 35, 36 | eqtri 2758 | . . . . . . . . . . 11 ⊢ ⦋𝑘 / 𝑛⦌𝐴 = 𝐵 |
| 38 | 37 | eleq1i 2825 | . . . . . . . . . 10 ⊢ (⦋𝑘 / 𝑛⦌𝐴 ∈ 𝑆 ↔ 𝐵 ∈ 𝑆) |
| 39 | 31, 33, 38 | 3bitri 297 | . . . . . . . . 9 ⊢ ([𝑘 / 𝑛]𝐴 ∈ 𝑆 ↔ 𝐵 ∈ 𝑆) |
| 40 | 25, 30, 39 | 3imtr3i 291 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑁) → 𝐵 ∈ 𝑆) |
| 41 | 11, 24, 40 | syl2anc 584 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑛 ∈ 𝑁) ∧ 𝑘 ∈ (1..^𝑛)) → 𝐵 ∈ 𝑆) |
| 42 | 41 | ralrimiva 3132 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑁) → ∀𝑘 ∈ (1..^𝑛)𝐵 ∈ 𝑆) |
| 43 | sigaclfu2 34152 | . . . . . 6 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ (1..^𝑛)𝐵 ∈ 𝑆) → ∪ 𝑘 ∈ (1..^𝑛)𝐵 ∈ 𝑆) | |
| 44 | 9, 42, 43 | syl2anc 584 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑁) → ∪ 𝑘 ∈ (1..^𝑛)𝐵 ∈ 𝑆) |
| 45 | difelsiga 34164 | . . . . 5 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ ∪ 𝑘 ∈ (1..^𝑛)𝐵 ∈ 𝑆) → (𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵) ∈ 𝑆) | |
| 46 | 9, 10, 44, 45 | syl3anc 1373 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑁) → (𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵) ∈ 𝑆) |
| 47 | 46 | ralrimiva 3132 | . . 3 ⊢ (𝜑 → ∀𝑛 ∈ 𝑁 (𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵) ∈ 𝑆) |
| 48 | eqimss 4017 | . . . . . 6 ⊢ (𝑁 = ℕ → 𝑁 ⊆ ℕ) | |
| 49 | fzossnn 13728 | . . . . . . 7 ⊢ (1..^𝐼) ⊆ ℕ | |
| 50 | sseq1 3984 | . . . . . . 7 ⊢ (𝑁 = (1..^𝐼) → (𝑁 ⊆ ℕ ↔ (1..^𝐼) ⊆ ℕ)) | |
| 51 | 49, 50 | mpbiri 258 | . . . . . 6 ⊢ (𝑁 = (1..^𝐼) → 𝑁 ⊆ ℕ) |
| 52 | 48, 51 | jaoi 857 | . . . . 5 ⊢ ((𝑁 = ℕ ∨ 𝑁 = (1..^𝐼)) → 𝑁 ⊆ ℕ) |
| 53 | 3, 52 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑁 ⊆ ℕ) |
| 54 | nnct 13999 | . . . 4 ⊢ ℕ ≼ ω | |
| 55 | ssct 9065 | . . . 4 ⊢ ((𝑁 ⊆ ℕ ∧ ℕ ≼ ω) → 𝑁 ≼ ω) | |
| 56 | 53, 54, 55 | sylancl 586 | . . 3 ⊢ (𝜑 → 𝑁 ≼ ω) |
| 57 | 1, 2, 3 | iundisj2cnt 32776 | . . 3 ⊢ (𝜑 → Disj 𝑛 ∈ 𝑁 (𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵)) |
| 58 | measvuni 34245 | . . 3 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑛 ∈ 𝑁 (𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵) ∈ 𝑆 ∧ (𝑁 ≼ ω ∧ Disj 𝑛 ∈ 𝑁 (𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵))) → (𝑀‘∪ 𝑛 ∈ 𝑁 (𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵)) = Σ*𝑛 ∈ 𝑁(𝑀‘(𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵))) | |
| 59 | 6, 47, 56, 57, 58 | syl112anc 1376 | . 2 ⊢ (𝜑 → (𝑀‘∪ 𝑛 ∈ 𝑁 (𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵)) = Σ*𝑛 ∈ 𝑁(𝑀‘(𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵))) |
| 60 | 5, 59 | eqtrd 2770 | 1 ⊢ (𝜑 → (𝑀‘∪ 𝑛 ∈ 𝑁 𝐴) = Σ*𝑛 ∈ 𝑁(𝑀‘(𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 [wsb 2064 ∈ wcel 2108 Ⅎwnfc 2883 ∀wral 3051 Vcvv 3459 [wsbc 3765 ⦋csb 3874 ∖ cdif 3923 ⊆ wss 3926 ∪ cuni 4883 ∪ ciun 4967 Disj wdisj 5086 class class class wbr 5119 ran crn 5655 ‘cfv 6531 (class class class)co 7405 ωcom 7861 ≼ cdom 8957 1c1 11130 ℕcn 12240 ℤ≥cuz 12852 ..^cfzo 13671 Σ*cesum 34058 sigAlgebracsiga 34139 measurescmeas 34226 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 ax-ac2 10477 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 ax-addf 11208 ax-mulf 11209 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-disj 5087 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7671 df-om 7862 df-1st 7988 df-2nd 7989 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-map 8842 df-pm 8843 df-ixp 8912 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-fsupp 9374 df-fi 9423 df-sup 9454 df-inf 9455 df-oi 9524 df-dju 9915 df-card 9953 df-acn 9956 df-ac 10130 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-q 12965 df-rp 13009 df-xneg 13128 df-xadd 13129 df-xmul 13130 df-ioo 13366 df-ioc 13367 df-ico 13368 df-icc 13369 df-fz 13525 df-fzo 13672 df-fl 13809 df-mod 13887 df-seq 14020 df-exp 14080 df-fac 14292 df-bc 14321 df-hash 14349 df-shft 15086 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-limsup 15487 df-clim 15504 df-rlim 15505 df-sum 15703 df-ef 16083 df-sin 16085 df-cos 16086 df-pi 16088 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-starv 17286 df-sca 17287 df-vsca 17288 df-ip 17289 df-tset 17290 df-ple 17291 df-ds 17293 df-unif 17294 df-hom 17295 df-cco 17296 df-rest 17436 df-topn 17437 df-0g 17455 df-gsum 17456 df-topgen 17457 df-pt 17458 df-prds 17461 df-ordt 17515 df-xrs 17516 df-qtop 17521 df-imas 17522 df-xps 17524 df-mre 17598 df-mrc 17599 df-acs 17601 df-ps 18576 df-tsr 18577 df-plusf 18617 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-mhm 18761 df-submnd 18762 df-grp 18919 df-minusg 18920 df-sbg 18921 df-mulg 19051 df-subg 19106 df-cntz 19300 df-cmn 19763 df-abl 19764 df-mgp 20101 df-rng 20113 df-ur 20142 df-ring 20195 df-cring 20196 df-subrng 20506 df-subrg 20530 df-abv 20769 df-lmod 20819 df-scaf 20820 df-sra 21131 df-rgmod 21132 df-psmet 21307 df-xmet 21308 df-met 21309 df-bl 21310 df-mopn 21311 df-fbas 21312 df-fg 21313 df-cnfld 21316 df-top 22832 df-topon 22849 df-topsp 22871 df-bases 22884 df-cld 22957 df-ntr 22958 df-cls 22959 df-nei 23036 df-lp 23074 df-perf 23075 df-cn 23165 df-cnp 23166 df-haus 23253 df-tx 23500 df-hmeo 23693 df-fil 23784 df-fm 23876 df-flim 23877 df-flf 23878 df-tmd 24010 df-tgp 24011 df-tsms 24065 df-trg 24098 df-xms 24259 df-ms 24260 df-tms 24261 df-nm 24521 df-ngp 24522 df-nrg 24524 df-nlm 24525 df-ii 24821 df-cncf 24822 df-limc 25819 df-dv 25820 df-log 26517 df-esum 34059 df-siga 34140 df-meas 34227 |
| This theorem is referenced by: measiun 34249 meascnbl 34250 |
| Copyright terms: Public domain | W3C validator |