Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  measiuns Structured version   Visualization version   GIF version

Theorem measiuns 34248
Description: The measure of the union of a collection of sets, expressed as the sum of a disjoint set. This is used as a lemma for both measiun 34249 and meascnbl 34250. (Contributed by Thierry Arnoux, 22-Jan-2017.) (Proof shortened by Thierry Arnoux, 7-Feb-2017.)
Hypotheses
Ref Expression
measiuns.0 𝑛𝐵
measiuns.1 (𝑛 = 𝑘𝐴 = 𝐵)
measiuns.2 (𝜑 → (𝑁 = ℕ ∨ 𝑁 = (1..^𝐼)))
measiuns.3 (𝜑𝑀 ∈ (measures‘𝑆))
measiuns.4 ((𝜑𝑛𝑁) → 𝐴𝑆)
Assertion
Ref Expression
measiuns (𝜑 → (𝑀 𝑛𝑁 𝐴) = Σ*𝑛𝑁(𝑀‘(𝐴 𝑘 ∈ (1..^𝑛)𝐵)))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑛,𝐼   𝑛,𝑀   𝑘,𝑁,𝑛   𝑆,𝑘,𝑛   𝜑,𝑘,𝑛
Allowed substitution hints:   𝐴(𝑛)   𝐵(𝑘,𝑛)   𝑀(𝑘)

Proof of Theorem measiuns
StepHypRef Expression
1 measiuns.0 . . . 4 𝑛𝐵
2 measiuns.1 . . . 4 (𝑛 = 𝑘𝐴 = 𝐵)
3 measiuns.2 . . . 4 (𝜑 → (𝑁 = ℕ ∨ 𝑁 = (1..^𝐼)))
41, 2, 3iundisjcnt 32775 . . 3 (𝜑 𝑛𝑁 𝐴 = 𝑛𝑁 (𝐴 𝑘 ∈ (1..^𝑛)𝐵))
54fveq2d 6880 . 2 (𝜑 → (𝑀 𝑛𝑁 𝐴) = (𝑀 𝑛𝑁 (𝐴 𝑘 ∈ (1..^𝑛)𝐵)))
6 measiuns.3 . . 3 (𝜑𝑀 ∈ (measures‘𝑆))
7 measbase 34228 . . . . . . 7 (𝑀 ∈ (measures‘𝑆) → 𝑆 ran sigAlgebra)
86, 7syl 17 . . . . . 6 (𝜑𝑆 ran sigAlgebra)
98adantr 480 . . . . 5 ((𝜑𝑛𝑁) → 𝑆 ran sigAlgebra)
10 measiuns.4 . . . . 5 ((𝜑𝑛𝑁) → 𝐴𝑆)
11 simpll 766 . . . . . . . 8 (((𝜑𝑛𝑁) ∧ 𝑘 ∈ (1..^𝑛)) → 𝜑)
12 fzossnn 13728 . . . . . . . . . . 11 (1..^𝑛) ⊆ ℕ
13 simpr 484 . . . . . . . . . . 11 (((𝜑𝑛𝑁) ∧ 𝑁 = ℕ) → 𝑁 = ℕ)
1412, 13sseqtrrid 4002 . . . . . . . . . 10 (((𝜑𝑛𝑁) ∧ 𝑁 = ℕ) → (1..^𝑛) ⊆ 𝑁)
15 simplr 768 . . . . . . . . . . . . 13 (((𝜑𝑛𝑁) ∧ 𝑁 = (1..^𝐼)) → 𝑛𝑁)
16 simpr 484 . . . . . . . . . . . . 13 (((𝜑𝑛𝑁) ∧ 𝑁 = (1..^𝐼)) → 𝑁 = (1..^𝐼))
1715, 16eleqtrd 2836 . . . . . . . . . . . 12 (((𝜑𝑛𝑁) ∧ 𝑁 = (1..^𝐼)) → 𝑛 ∈ (1..^𝐼))
18 elfzouz2 13691 . . . . . . . . . . . 12 (𝑛 ∈ (1..^𝐼) → 𝐼 ∈ (ℤ𝑛))
19 fzoss2 13704 . . . . . . . . . . . 12 (𝐼 ∈ (ℤ𝑛) → (1..^𝑛) ⊆ (1..^𝐼))
2017, 18, 193syl 18 . . . . . . . . . . 11 (((𝜑𝑛𝑁) ∧ 𝑁 = (1..^𝐼)) → (1..^𝑛) ⊆ (1..^𝐼))
2120, 16sseqtrrd 3996 . . . . . . . . . 10 (((𝜑𝑛𝑁) ∧ 𝑁 = (1..^𝐼)) → (1..^𝑛) ⊆ 𝑁)
223adantr 480 . . . . . . . . . 10 ((𝜑𝑛𝑁) → (𝑁 = ℕ ∨ 𝑁 = (1..^𝐼)))
2314, 21, 22mpjaodan 960 . . . . . . . . 9 ((𝜑𝑛𝑁) → (1..^𝑛) ⊆ 𝑁)
2423sselda 3958 . . . . . . . 8 (((𝜑𝑛𝑁) ∧ 𝑘 ∈ (1..^𝑛)) → 𝑘𝑁)
2510sbimi 2074 . . . . . . . . 9 ([𝑘 / 𝑛](𝜑𝑛𝑁) → [𝑘 / 𝑛]𝐴𝑆)
26 sban 2080 . . . . . . . . . 10 ([𝑘 / 𝑛](𝜑𝑛𝑁) ↔ ([𝑘 / 𝑛]𝜑 ∧ [𝑘 / 𝑛]𝑛𝑁))
27 sbv 2088 . . . . . . . . . . 11 ([𝑘 / 𝑛]𝜑𝜑)
28 clelsb1 2861 . . . . . . . . . . 11 ([𝑘 / 𝑛]𝑛𝑁𝑘𝑁)
2927, 28anbi12i 628 . . . . . . . . . 10 (([𝑘 / 𝑛]𝜑 ∧ [𝑘 / 𝑛]𝑛𝑁) ↔ (𝜑𝑘𝑁))
3026, 29bitri 275 . . . . . . . . 9 ([𝑘 / 𝑛](𝜑𝑛𝑁) ↔ (𝜑𝑘𝑁))
31 sbsbc 3769 . . . . . . . . . 10 ([𝑘 / 𝑛]𝐴𝑆[𝑘 / 𝑛]𝐴𝑆)
32 sbcel1g 4391 . . . . . . . . . . 11 (𝑘 ∈ V → ([𝑘 / 𝑛]𝐴𝑆𝑘 / 𝑛𝐴𝑆))
3332elv 3464 . . . . . . . . . 10 ([𝑘 / 𝑛]𝐴𝑆𝑘 / 𝑛𝐴𝑆)
34 nfcv 2898 . . . . . . . . . . . . 13 𝑘𝐴
3534, 1, 2cbvcsbw 3884 . . . . . . . . . . . 12 𝑘 / 𝑛𝐴 = 𝑘 / 𝑘𝐵
36 csbid 3887 . . . . . . . . . . . 12 𝑘 / 𝑘𝐵 = 𝐵
3735, 36eqtri 2758 . . . . . . . . . . 11 𝑘 / 𝑛𝐴 = 𝐵
3837eleq1i 2825 . . . . . . . . . 10 (𝑘 / 𝑛𝐴𝑆𝐵𝑆)
3931, 33, 383bitri 297 . . . . . . . . 9 ([𝑘 / 𝑛]𝐴𝑆𝐵𝑆)
4025, 30, 393imtr3i 291 . . . . . . . 8 ((𝜑𝑘𝑁) → 𝐵𝑆)
4111, 24, 40syl2anc 584 . . . . . . 7 (((𝜑𝑛𝑁) ∧ 𝑘 ∈ (1..^𝑛)) → 𝐵𝑆)
4241ralrimiva 3132 . . . . . 6 ((𝜑𝑛𝑁) → ∀𝑘 ∈ (1..^𝑛)𝐵𝑆)
43 sigaclfu2 34152 . . . . . 6 ((𝑆 ran sigAlgebra ∧ ∀𝑘 ∈ (1..^𝑛)𝐵𝑆) → 𝑘 ∈ (1..^𝑛)𝐵𝑆)
449, 42, 43syl2anc 584 . . . . 5 ((𝜑𝑛𝑁) → 𝑘 ∈ (1..^𝑛)𝐵𝑆)
45 difelsiga 34164 . . . . 5 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆 𝑘 ∈ (1..^𝑛)𝐵𝑆) → (𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∈ 𝑆)
469, 10, 44, 45syl3anc 1373 . . . 4 ((𝜑𝑛𝑁) → (𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∈ 𝑆)
4746ralrimiva 3132 . . 3 (𝜑 → ∀𝑛𝑁 (𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∈ 𝑆)
48 eqimss 4017 . . . . . 6 (𝑁 = ℕ → 𝑁 ⊆ ℕ)
49 fzossnn 13728 . . . . . . 7 (1..^𝐼) ⊆ ℕ
50 sseq1 3984 . . . . . . 7 (𝑁 = (1..^𝐼) → (𝑁 ⊆ ℕ ↔ (1..^𝐼) ⊆ ℕ))
5149, 50mpbiri 258 . . . . . 6 (𝑁 = (1..^𝐼) → 𝑁 ⊆ ℕ)
5248, 51jaoi 857 . . . . 5 ((𝑁 = ℕ ∨ 𝑁 = (1..^𝐼)) → 𝑁 ⊆ ℕ)
533, 52syl 17 . . . 4 (𝜑𝑁 ⊆ ℕ)
54 nnct 13999 . . . 4 ℕ ≼ ω
55 ssct 9065 . . . 4 ((𝑁 ⊆ ℕ ∧ ℕ ≼ ω) → 𝑁 ≼ ω)
5653, 54, 55sylancl 586 . . 3 (𝜑𝑁 ≼ ω)
571, 2, 3iundisj2cnt 32776 . . 3 (𝜑Disj 𝑛𝑁 (𝐴 𝑘 ∈ (1..^𝑛)𝐵))
58 measvuni 34245 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑛𝑁 (𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∈ 𝑆 ∧ (𝑁 ≼ ω ∧ Disj 𝑛𝑁 (𝐴 𝑘 ∈ (1..^𝑛)𝐵))) → (𝑀 𝑛𝑁 (𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = Σ*𝑛𝑁(𝑀‘(𝐴 𝑘 ∈ (1..^𝑛)𝐵)))
596, 47, 56, 57, 58syl112anc 1376 . 2 (𝜑 → (𝑀 𝑛𝑁 (𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = Σ*𝑛𝑁(𝑀‘(𝐴 𝑘 ∈ (1..^𝑛)𝐵)))
605, 59eqtrd 2770 1 (𝜑 → (𝑀 𝑛𝑁 𝐴) = Σ*𝑛𝑁(𝑀‘(𝐴 𝑘 ∈ (1..^𝑛)𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  [wsb 2064  wcel 2108  wnfc 2883  wral 3051  Vcvv 3459  [wsbc 3765  csb 3874  cdif 3923  wss 3926   cuni 4883   ciun 4967  Disj wdisj 5086   class class class wbr 5119  ran crn 5655  cfv 6531  (class class class)co 7405  ωcom 7861  cdom 8957  1c1 11130  cn 12240  cuz 12852  ..^cfzo 13671  Σ*cesum 34058  sigAlgebracsiga 34139  measurescmeas 34226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-ac2 10477  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208  ax-mulf 11209
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-disj 5087  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-fi 9423  df-sup 9454  df-inf 9455  df-oi 9524  df-dju 9915  df-card 9953  df-acn 9956  df-ac 10130  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-ioo 13366  df-ioc 13367  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-fl 13809  df-mod 13887  df-seq 14020  df-exp 14080  df-fac 14292  df-bc 14321  df-hash 14349  df-shft 15086  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-limsup 15487  df-clim 15504  df-rlim 15505  df-sum 15703  df-ef 16083  df-sin 16085  df-cos 16086  df-pi 16088  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-hom 17295  df-cco 17296  df-rest 17436  df-topn 17437  df-0g 17455  df-gsum 17456  df-topgen 17457  df-pt 17458  df-prds 17461  df-ordt 17515  df-xrs 17516  df-qtop 17521  df-imas 17522  df-xps 17524  df-mre 17598  df-mrc 17599  df-acs 17601  df-ps 18576  df-tsr 18577  df-plusf 18617  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mhm 18761  df-submnd 18762  df-grp 18919  df-minusg 18920  df-sbg 18921  df-mulg 19051  df-subg 19106  df-cntz 19300  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-cring 20196  df-subrng 20506  df-subrg 20530  df-abv 20769  df-lmod 20819  df-scaf 20820  df-sra 21131  df-rgmod 21132  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-fbas 21312  df-fg 21313  df-cnfld 21316  df-top 22832  df-topon 22849  df-topsp 22871  df-bases 22884  df-cld 22957  df-ntr 22958  df-cls 22959  df-nei 23036  df-lp 23074  df-perf 23075  df-cn 23165  df-cnp 23166  df-haus 23253  df-tx 23500  df-hmeo 23693  df-fil 23784  df-fm 23876  df-flim 23877  df-flf 23878  df-tmd 24010  df-tgp 24011  df-tsms 24065  df-trg 24098  df-xms 24259  df-ms 24260  df-tms 24261  df-nm 24521  df-ngp 24522  df-nrg 24524  df-nlm 24525  df-ii 24821  df-cncf 24822  df-limc 25819  df-dv 25820  df-log 26517  df-esum 34059  df-siga 34140  df-meas 34227
This theorem is referenced by:  measiun  34249  meascnbl  34250
  Copyright terms: Public domain W3C validator