![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > measiuns | Structured version Visualization version GIF version |
Description: The measure of the union of a collection of sets, expressed as the sum of a disjoint set. This is used as a lemma for both measiun 33870 and meascnbl 33871. (Contributed by Thierry Arnoux, 22-Jan-2017.) (Proof shortened by Thierry Arnoux, 7-Feb-2017.) |
Ref | Expression |
---|---|
measiuns.0 | ⊢ Ⅎ𝑛𝐵 |
measiuns.1 | ⊢ (𝑛 = 𝑘 → 𝐴 = 𝐵) |
measiuns.2 | ⊢ (𝜑 → (𝑁 = ℕ ∨ 𝑁 = (1..^𝐼))) |
measiuns.3 | ⊢ (𝜑 → 𝑀 ∈ (measures‘𝑆)) |
measiuns.4 | ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑁) → 𝐴 ∈ 𝑆) |
Ref | Expression |
---|---|
measiuns | ⊢ (𝜑 → (𝑀‘∪ 𝑛 ∈ 𝑁 𝐴) = Σ*𝑛 ∈ 𝑁(𝑀‘(𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | measiuns.0 | . . . 4 ⊢ Ⅎ𝑛𝐵 | |
2 | measiuns.1 | . . . 4 ⊢ (𝑛 = 𝑘 → 𝐴 = 𝐵) | |
3 | measiuns.2 | . . . 4 ⊢ (𝜑 → (𝑁 = ℕ ∨ 𝑁 = (1..^𝐼))) | |
4 | 1, 2, 3 | iundisjcnt 32587 | . . 3 ⊢ (𝜑 → ∪ 𝑛 ∈ 𝑁 𝐴 = ∪ 𝑛 ∈ 𝑁 (𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵)) |
5 | 4 | fveq2d 6906 | . 2 ⊢ (𝜑 → (𝑀‘∪ 𝑛 ∈ 𝑁 𝐴) = (𝑀‘∪ 𝑛 ∈ 𝑁 (𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵))) |
6 | measiuns.3 | . . 3 ⊢ (𝜑 → 𝑀 ∈ (measures‘𝑆)) | |
7 | measbase 33849 | . . . . . . 7 ⊢ (𝑀 ∈ (measures‘𝑆) → 𝑆 ∈ ∪ ran sigAlgebra) | |
8 | 6, 7 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) |
9 | 8 | adantr 479 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑁) → 𝑆 ∈ ∪ ran sigAlgebra) |
10 | measiuns.4 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑁) → 𝐴 ∈ 𝑆) | |
11 | simpll 765 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑛 ∈ 𝑁) ∧ 𝑘 ∈ (1..^𝑛)) → 𝜑) | |
12 | fzossnn 13721 | . . . . . . . . . . 11 ⊢ (1..^𝑛) ⊆ ℕ | |
13 | simpr 483 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑛 ∈ 𝑁) ∧ 𝑁 = ℕ) → 𝑁 = ℕ) | |
14 | 12, 13 | sseqtrrid 4035 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑛 ∈ 𝑁) ∧ 𝑁 = ℕ) → (1..^𝑛) ⊆ 𝑁) |
15 | simplr 767 | . . . . . . . . . . . . 13 ⊢ (((𝜑 ∧ 𝑛 ∈ 𝑁) ∧ 𝑁 = (1..^𝐼)) → 𝑛 ∈ 𝑁) | |
16 | simpr 483 | . . . . . . . . . . . . 13 ⊢ (((𝜑 ∧ 𝑛 ∈ 𝑁) ∧ 𝑁 = (1..^𝐼)) → 𝑁 = (1..^𝐼)) | |
17 | 15, 16 | eleqtrd 2831 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ 𝑛 ∈ 𝑁) ∧ 𝑁 = (1..^𝐼)) → 𝑛 ∈ (1..^𝐼)) |
18 | elfzouz2 13687 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ (1..^𝐼) → 𝐼 ∈ (ℤ≥‘𝑛)) | |
19 | fzoss2 13700 | . . . . . . . . . . . 12 ⊢ (𝐼 ∈ (ℤ≥‘𝑛) → (1..^𝑛) ⊆ (1..^𝐼)) | |
20 | 17, 18, 19 | 3syl 18 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑛 ∈ 𝑁) ∧ 𝑁 = (1..^𝐼)) → (1..^𝑛) ⊆ (1..^𝐼)) |
21 | 20, 16 | sseqtrrd 4023 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑛 ∈ 𝑁) ∧ 𝑁 = (1..^𝐼)) → (1..^𝑛) ⊆ 𝑁) |
22 | 3 | adantr 479 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑁) → (𝑁 = ℕ ∨ 𝑁 = (1..^𝐼))) |
23 | 14, 21, 22 | mpjaodan 956 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑁) → (1..^𝑛) ⊆ 𝑁) |
24 | 23 | sselda 3982 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑛 ∈ 𝑁) ∧ 𝑘 ∈ (1..^𝑛)) → 𝑘 ∈ 𝑁) |
25 | 10 | sbimi 2069 | . . . . . . . . 9 ⊢ ([𝑘 / 𝑛](𝜑 ∧ 𝑛 ∈ 𝑁) → [𝑘 / 𝑛]𝐴 ∈ 𝑆) |
26 | sban 2075 | . . . . . . . . . 10 ⊢ ([𝑘 / 𝑛](𝜑 ∧ 𝑛 ∈ 𝑁) ↔ ([𝑘 / 𝑛]𝜑 ∧ [𝑘 / 𝑛]𝑛 ∈ 𝑁)) | |
27 | sbv 2083 | . . . . . . . . . . 11 ⊢ ([𝑘 / 𝑛]𝜑 ↔ 𝜑) | |
28 | clelsb1 2856 | . . . . . . . . . . 11 ⊢ ([𝑘 / 𝑛]𝑛 ∈ 𝑁 ↔ 𝑘 ∈ 𝑁) | |
29 | 27, 28 | anbi12i 626 | . . . . . . . . . 10 ⊢ (([𝑘 / 𝑛]𝜑 ∧ [𝑘 / 𝑛]𝑛 ∈ 𝑁) ↔ (𝜑 ∧ 𝑘 ∈ 𝑁)) |
30 | 26, 29 | bitri 274 | . . . . . . . . 9 ⊢ ([𝑘 / 𝑛](𝜑 ∧ 𝑛 ∈ 𝑁) ↔ (𝜑 ∧ 𝑘 ∈ 𝑁)) |
31 | sbsbc 3782 | . . . . . . . . . 10 ⊢ ([𝑘 / 𝑛]𝐴 ∈ 𝑆 ↔ [𝑘 / 𝑛]𝐴 ∈ 𝑆) | |
32 | sbcel1g 4417 | . . . . . . . . . . 11 ⊢ (𝑘 ∈ V → ([𝑘 / 𝑛]𝐴 ∈ 𝑆 ↔ ⦋𝑘 / 𝑛⦌𝐴 ∈ 𝑆)) | |
33 | 32 | elv 3479 | . . . . . . . . . 10 ⊢ ([𝑘 / 𝑛]𝐴 ∈ 𝑆 ↔ ⦋𝑘 / 𝑛⦌𝐴 ∈ 𝑆) |
34 | nfcv 2899 | . . . . . . . . . . . . 13 ⊢ Ⅎ𝑘𝐴 | |
35 | 34, 1, 2 | cbvcsbw 3904 | . . . . . . . . . . . 12 ⊢ ⦋𝑘 / 𝑛⦌𝐴 = ⦋𝑘 / 𝑘⦌𝐵 |
36 | csbid 3907 | . . . . . . . . . . . 12 ⊢ ⦋𝑘 / 𝑘⦌𝐵 = 𝐵 | |
37 | 35, 36 | eqtri 2756 | . . . . . . . . . . 11 ⊢ ⦋𝑘 / 𝑛⦌𝐴 = 𝐵 |
38 | 37 | eleq1i 2820 | . . . . . . . . . 10 ⊢ (⦋𝑘 / 𝑛⦌𝐴 ∈ 𝑆 ↔ 𝐵 ∈ 𝑆) |
39 | 31, 33, 38 | 3bitri 296 | . . . . . . . . 9 ⊢ ([𝑘 / 𝑛]𝐴 ∈ 𝑆 ↔ 𝐵 ∈ 𝑆) |
40 | 25, 30, 39 | 3imtr3i 290 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑁) → 𝐵 ∈ 𝑆) |
41 | 11, 24, 40 | syl2anc 582 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑛 ∈ 𝑁) ∧ 𝑘 ∈ (1..^𝑛)) → 𝐵 ∈ 𝑆) |
42 | 41 | ralrimiva 3143 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑁) → ∀𝑘 ∈ (1..^𝑛)𝐵 ∈ 𝑆) |
43 | sigaclfu2 33773 | . . . . . 6 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ (1..^𝑛)𝐵 ∈ 𝑆) → ∪ 𝑘 ∈ (1..^𝑛)𝐵 ∈ 𝑆) | |
44 | 9, 42, 43 | syl2anc 582 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑁) → ∪ 𝑘 ∈ (1..^𝑛)𝐵 ∈ 𝑆) |
45 | difelsiga 33785 | . . . . 5 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ ∪ 𝑘 ∈ (1..^𝑛)𝐵 ∈ 𝑆) → (𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵) ∈ 𝑆) | |
46 | 9, 10, 44, 45 | syl3anc 1368 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑁) → (𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵) ∈ 𝑆) |
47 | 46 | ralrimiva 3143 | . . 3 ⊢ (𝜑 → ∀𝑛 ∈ 𝑁 (𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵) ∈ 𝑆) |
48 | eqimss 4040 | . . . . . 6 ⊢ (𝑁 = ℕ → 𝑁 ⊆ ℕ) | |
49 | fzossnn 13721 | . . . . . . 7 ⊢ (1..^𝐼) ⊆ ℕ | |
50 | sseq1 4007 | . . . . . . 7 ⊢ (𝑁 = (1..^𝐼) → (𝑁 ⊆ ℕ ↔ (1..^𝐼) ⊆ ℕ)) | |
51 | 49, 50 | mpbiri 257 | . . . . . 6 ⊢ (𝑁 = (1..^𝐼) → 𝑁 ⊆ ℕ) |
52 | 48, 51 | jaoi 855 | . . . . 5 ⊢ ((𝑁 = ℕ ∨ 𝑁 = (1..^𝐼)) → 𝑁 ⊆ ℕ) |
53 | 3, 52 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑁 ⊆ ℕ) |
54 | nnct 13986 | . . . 4 ⊢ ℕ ≼ ω | |
55 | ssct 9082 | . . . 4 ⊢ ((𝑁 ⊆ ℕ ∧ ℕ ≼ ω) → 𝑁 ≼ ω) | |
56 | 53, 54, 55 | sylancl 584 | . . 3 ⊢ (𝜑 → 𝑁 ≼ ω) |
57 | 1, 2, 3 | iundisj2cnt 32588 | . . 3 ⊢ (𝜑 → Disj 𝑛 ∈ 𝑁 (𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵)) |
58 | measvuni 33866 | . . 3 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑛 ∈ 𝑁 (𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵) ∈ 𝑆 ∧ (𝑁 ≼ ω ∧ Disj 𝑛 ∈ 𝑁 (𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵))) → (𝑀‘∪ 𝑛 ∈ 𝑁 (𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵)) = Σ*𝑛 ∈ 𝑁(𝑀‘(𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵))) | |
59 | 6, 47, 56, 57, 58 | syl112anc 1371 | . 2 ⊢ (𝜑 → (𝑀‘∪ 𝑛 ∈ 𝑁 (𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵)) = Σ*𝑛 ∈ 𝑁(𝑀‘(𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵))) |
60 | 5, 59 | eqtrd 2768 | 1 ⊢ (𝜑 → (𝑀‘∪ 𝑛 ∈ 𝑁 𝐴) = Σ*𝑛 ∈ 𝑁(𝑀‘(𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∨ wo 845 = wceq 1533 [wsb 2059 ∈ wcel 2098 Ⅎwnfc 2879 ∀wral 3058 Vcvv 3473 [wsbc 3778 ⦋csb 3894 ∖ cdif 3946 ⊆ wss 3949 ∪ cuni 4912 ∪ ciun 5000 Disj wdisj 5117 class class class wbr 5152 ran crn 5683 ‘cfv 6553 (class class class)co 7426 ωcom 7876 ≼ cdom 8968 1c1 11147 ℕcn 12250 ℤ≥cuz 12860 ..^cfzo 13667 Σ*cesum 33679 sigAlgebracsiga 33760 measurescmeas 33847 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-inf2 9672 ax-ac2 10494 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 ax-pre-sup 11224 ax-addf 11225 ax-mulf 11226 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-tp 4637 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-iin 5003 df-disj 5118 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-se 5638 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-isom 6562 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-of 7691 df-om 7877 df-1st 7999 df-2nd 8000 df-supp 8172 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-1o 8493 df-2o 8494 df-er 8731 df-map 8853 df-pm 8854 df-ixp 8923 df-en 8971 df-dom 8972 df-sdom 8973 df-fin 8974 df-fsupp 9394 df-fi 9442 df-sup 9473 df-inf 9474 df-oi 9541 df-dju 9932 df-card 9970 df-acn 9973 df-ac 10147 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-div 11910 df-nn 12251 df-2 12313 df-3 12314 df-4 12315 df-5 12316 df-6 12317 df-7 12318 df-8 12319 df-9 12320 df-n0 12511 df-z 12597 df-dec 12716 df-uz 12861 df-q 12971 df-rp 13015 df-xneg 13132 df-xadd 13133 df-xmul 13134 df-ioo 13368 df-ioc 13369 df-ico 13370 df-icc 13371 df-fz 13525 df-fzo 13668 df-fl 13797 df-mod 13875 df-seq 14007 df-exp 14067 df-fac 14273 df-bc 14302 df-hash 14330 df-shft 15054 df-cj 15086 df-re 15087 df-im 15088 df-sqrt 15222 df-abs 15223 df-limsup 15455 df-clim 15472 df-rlim 15473 df-sum 15673 df-ef 16051 df-sin 16053 df-cos 16054 df-pi 16056 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17188 df-ress 17217 df-plusg 17253 df-mulr 17254 df-starv 17255 df-sca 17256 df-vsca 17257 df-ip 17258 df-tset 17259 df-ple 17260 df-ds 17262 df-unif 17263 df-hom 17264 df-cco 17265 df-rest 17411 df-topn 17412 df-0g 17430 df-gsum 17431 df-topgen 17432 df-pt 17433 df-prds 17436 df-ordt 17490 df-xrs 17491 df-qtop 17496 df-imas 17497 df-xps 17499 df-mre 17573 df-mrc 17574 df-acs 17576 df-ps 18565 df-tsr 18566 df-plusf 18606 df-mgm 18607 df-sgrp 18686 df-mnd 18702 df-mhm 18747 df-submnd 18748 df-grp 18900 df-minusg 18901 df-sbg 18902 df-mulg 19031 df-subg 19085 df-cntz 19275 df-cmn 19744 df-abl 19745 df-mgp 20082 df-rng 20100 df-ur 20129 df-ring 20182 df-cring 20183 df-subrng 20490 df-subrg 20515 df-abv 20704 df-lmod 20752 df-scaf 20753 df-sra 21065 df-rgmod 21066 df-psmet 21278 df-xmet 21279 df-met 21280 df-bl 21281 df-mopn 21282 df-fbas 21283 df-fg 21284 df-cnfld 21287 df-top 22816 df-topon 22833 df-topsp 22855 df-bases 22869 df-cld 22943 df-ntr 22944 df-cls 22945 df-nei 23022 df-lp 23060 df-perf 23061 df-cn 23151 df-cnp 23152 df-haus 23239 df-tx 23486 df-hmeo 23679 df-fil 23770 df-fm 23862 df-flim 23863 df-flf 23864 df-tmd 23996 df-tgp 23997 df-tsms 24051 df-trg 24084 df-xms 24246 df-ms 24247 df-tms 24248 df-nm 24511 df-ngp 24512 df-nrg 24514 df-nlm 24515 df-ii 24817 df-cncf 24818 df-limc 25815 df-dv 25816 df-log 26510 df-esum 33680 df-siga 33761 df-meas 33848 |
This theorem is referenced by: measiun 33870 meascnbl 33871 |
Copyright terms: Public domain | W3C validator |