Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  measiuns Structured version   Visualization version   GIF version

Theorem measiuns 32193
Description: The measure of the union of a collection of sets, expressed as the sum of a disjoint set. This is used as a lemma for both measiun 32194 and meascnbl 32195. (Contributed by Thierry Arnoux, 22-Jan-2017.) (Proof shortened by Thierry Arnoux, 7-Feb-2017.)
Hypotheses
Ref Expression
measiuns.0 𝑛𝐵
measiuns.1 (𝑛 = 𝑘𝐴 = 𝐵)
measiuns.2 (𝜑 → (𝑁 = ℕ ∨ 𝑁 = (1..^𝐼)))
measiuns.3 (𝜑𝑀 ∈ (measures‘𝑆))
measiuns.4 ((𝜑𝑛𝑁) → 𝐴𝑆)
Assertion
Ref Expression
measiuns (𝜑 → (𝑀 𝑛𝑁 𝐴) = Σ*𝑛𝑁(𝑀‘(𝐴 𝑘 ∈ (1..^𝑛)𝐵)))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑛,𝐼   𝑛,𝑀   𝑘,𝑁,𝑛   𝑆,𝑘,𝑛   𝜑,𝑘,𝑛
Allowed substitution hints:   𝐴(𝑛)   𝐵(𝑘,𝑛)   𝑀(𝑘)

Proof of Theorem measiuns
StepHypRef Expression
1 measiuns.0 . . . 4 𝑛𝐵
2 measiuns.1 . . . 4 (𝑛 = 𝑘𝐴 = 𝐵)
3 measiuns.2 . . . 4 (𝜑 → (𝑁 = ℕ ∨ 𝑁 = (1..^𝐼)))
41, 2, 3iundisjcnt 31127 . . 3 (𝜑 𝑛𝑁 𝐴 = 𝑛𝑁 (𝐴 𝑘 ∈ (1..^𝑛)𝐵))
54fveq2d 6770 . 2 (𝜑 → (𝑀 𝑛𝑁 𝐴) = (𝑀 𝑛𝑁 (𝐴 𝑘 ∈ (1..^𝑛)𝐵)))
6 measiuns.3 . . 3 (𝜑𝑀 ∈ (measures‘𝑆))
7 measbase 32173 . . . . . . 7 (𝑀 ∈ (measures‘𝑆) → 𝑆 ran sigAlgebra)
86, 7syl 17 . . . . . 6 (𝜑𝑆 ran sigAlgebra)
98adantr 481 . . . . 5 ((𝜑𝑛𝑁) → 𝑆 ran sigAlgebra)
10 measiuns.4 . . . . 5 ((𝜑𝑛𝑁) → 𝐴𝑆)
11 simpll 764 . . . . . . . 8 (((𝜑𝑛𝑁) ∧ 𝑘 ∈ (1..^𝑛)) → 𝜑)
12 fzossnn 13446 . . . . . . . . . . 11 (1..^𝑛) ⊆ ℕ
13 simpr 485 . . . . . . . . . . 11 (((𝜑𝑛𝑁) ∧ 𝑁 = ℕ) → 𝑁 = ℕ)
1412, 13sseqtrrid 3973 . . . . . . . . . 10 (((𝜑𝑛𝑁) ∧ 𝑁 = ℕ) → (1..^𝑛) ⊆ 𝑁)
15 simplr 766 . . . . . . . . . . . . 13 (((𝜑𝑛𝑁) ∧ 𝑁 = (1..^𝐼)) → 𝑛𝑁)
16 simpr 485 . . . . . . . . . . . . 13 (((𝜑𝑛𝑁) ∧ 𝑁 = (1..^𝐼)) → 𝑁 = (1..^𝐼))
1715, 16eleqtrd 2841 . . . . . . . . . . . 12 (((𝜑𝑛𝑁) ∧ 𝑁 = (1..^𝐼)) → 𝑛 ∈ (1..^𝐼))
18 elfzouz2 13412 . . . . . . . . . . . 12 (𝑛 ∈ (1..^𝐼) → 𝐼 ∈ (ℤ𝑛))
19 fzoss2 13425 . . . . . . . . . . . 12 (𝐼 ∈ (ℤ𝑛) → (1..^𝑛) ⊆ (1..^𝐼))
2017, 18, 193syl 18 . . . . . . . . . . 11 (((𝜑𝑛𝑁) ∧ 𝑁 = (1..^𝐼)) → (1..^𝑛) ⊆ (1..^𝐼))
2120, 16sseqtrrd 3961 . . . . . . . . . 10 (((𝜑𝑛𝑁) ∧ 𝑁 = (1..^𝐼)) → (1..^𝑛) ⊆ 𝑁)
223adantr 481 . . . . . . . . . 10 ((𝜑𝑛𝑁) → (𝑁 = ℕ ∨ 𝑁 = (1..^𝐼)))
2314, 21, 22mpjaodan 956 . . . . . . . . 9 ((𝜑𝑛𝑁) → (1..^𝑛) ⊆ 𝑁)
2423sselda 3920 . . . . . . . 8 (((𝜑𝑛𝑁) ∧ 𝑘 ∈ (1..^𝑛)) → 𝑘𝑁)
2510sbimi 2077 . . . . . . . . 9 ([𝑘 / 𝑛](𝜑𝑛𝑁) → [𝑘 / 𝑛]𝐴𝑆)
26 sban 2083 . . . . . . . . . 10 ([𝑘 / 𝑛](𝜑𝑛𝑁) ↔ ([𝑘 / 𝑛]𝜑 ∧ [𝑘 / 𝑛]𝑛𝑁))
27 sbv 2091 . . . . . . . . . . 11 ([𝑘 / 𝑛]𝜑𝜑)
28 clelsb1 2866 . . . . . . . . . . 11 ([𝑘 / 𝑛]𝑛𝑁𝑘𝑁)
2927, 28anbi12i 627 . . . . . . . . . 10 (([𝑘 / 𝑛]𝜑 ∧ [𝑘 / 𝑛]𝑛𝑁) ↔ (𝜑𝑘𝑁))
3026, 29bitri 274 . . . . . . . . 9 ([𝑘 / 𝑛](𝜑𝑛𝑁) ↔ (𝜑𝑘𝑁))
31 sbsbc 3719 . . . . . . . . . 10 ([𝑘 / 𝑛]𝐴𝑆[𝑘 / 𝑛]𝐴𝑆)
32 sbcel1g 4347 . . . . . . . . . . 11 (𝑘 ∈ V → ([𝑘 / 𝑛]𝐴𝑆𝑘 / 𝑛𝐴𝑆))
3332elv 3435 . . . . . . . . . 10 ([𝑘 / 𝑛]𝐴𝑆𝑘 / 𝑛𝐴𝑆)
34 nfcv 2907 . . . . . . . . . . . . 13 𝑘𝐴
3534, 1, 2cbvcsbw 3841 . . . . . . . . . . . 12 𝑘 / 𝑛𝐴 = 𝑘 / 𝑘𝐵
36 csbid 3844 . . . . . . . . . . . 12 𝑘 / 𝑘𝐵 = 𝐵
3735, 36eqtri 2766 . . . . . . . . . . 11 𝑘 / 𝑛𝐴 = 𝐵
3837eleq1i 2829 . . . . . . . . . 10 (𝑘 / 𝑛𝐴𝑆𝐵𝑆)
3931, 33, 383bitri 297 . . . . . . . . 9 ([𝑘 / 𝑛]𝐴𝑆𝐵𝑆)
4025, 30, 393imtr3i 291 . . . . . . . 8 ((𝜑𝑘𝑁) → 𝐵𝑆)
4111, 24, 40syl2anc 584 . . . . . . 7 (((𝜑𝑛𝑁) ∧ 𝑘 ∈ (1..^𝑛)) → 𝐵𝑆)
4241ralrimiva 3108 . . . . . 6 ((𝜑𝑛𝑁) → ∀𝑘 ∈ (1..^𝑛)𝐵𝑆)
43 sigaclfu2 32097 . . . . . 6 ((𝑆 ran sigAlgebra ∧ ∀𝑘 ∈ (1..^𝑛)𝐵𝑆) → 𝑘 ∈ (1..^𝑛)𝐵𝑆)
449, 42, 43syl2anc 584 . . . . 5 ((𝜑𝑛𝑁) → 𝑘 ∈ (1..^𝑛)𝐵𝑆)
45 difelsiga 32109 . . . . 5 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆 𝑘 ∈ (1..^𝑛)𝐵𝑆) → (𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∈ 𝑆)
469, 10, 44, 45syl3anc 1370 . . . 4 ((𝜑𝑛𝑁) → (𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∈ 𝑆)
4746ralrimiva 3108 . . 3 (𝜑 → ∀𝑛𝑁 (𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∈ 𝑆)
48 eqimss 3976 . . . . . 6 (𝑁 = ℕ → 𝑁 ⊆ ℕ)
49 fzossnn 13446 . . . . . . 7 (1..^𝐼) ⊆ ℕ
50 sseq1 3945 . . . . . . 7 (𝑁 = (1..^𝐼) → (𝑁 ⊆ ℕ ↔ (1..^𝐼) ⊆ ℕ))
5149, 50mpbiri 257 . . . . . 6 (𝑁 = (1..^𝐼) → 𝑁 ⊆ ℕ)
5248, 51jaoi 854 . . . . 5 ((𝑁 = ℕ ∨ 𝑁 = (1..^𝐼)) → 𝑁 ⊆ ℕ)
533, 52syl 17 . . . 4 (𝜑𝑁 ⊆ ℕ)
54 nnct 13711 . . . 4 ℕ ≼ ω
55 ssct 8826 . . . 4 ((𝑁 ⊆ ℕ ∧ ℕ ≼ ω) → 𝑁 ≼ ω)
5653, 54, 55sylancl 586 . . 3 (𝜑𝑁 ≼ ω)
571, 2, 3iundisj2cnt 31128 . . 3 (𝜑Disj 𝑛𝑁 (𝐴 𝑘 ∈ (1..^𝑛)𝐵))
58 measvuni 32190 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑛𝑁 (𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∈ 𝑆 ∧ (𝑁 ≼ ω ∧ Disj 𝑛𝑁 (𝐴 𝑘 ∈ (1..^𝑛)𝐵))) → (𝑀 𝑛𝑁 (𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = Σ*𝑛𝑁(𝑀‘(𝐴 𝑘 ∈ (1..^𝑛)𝐵)))
596, 47, 56, 57, 58syl112anc 1373 . 2 (𝜑 → (𝑀 𝑛𝑁 (𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = Σ*𝑛𝑁(𝑀‘(𝐴 𝑘 ∈ (1..^𝑛)𝐵)))
605, 59eqtrd 2778 1 (𝜑 → (𝑀 𝑛𝑁 𝐴) = Σ*𝑛𝑁(𝑀‘(𝐴 𝑘 ∈ (1..^𝑛)𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844   = wceq 1539  [wsb 2067  wcel 2106  wnfc 2887  wral 3064  Vcvv 3429  [wsbc 3715  csb 3831  cdif 3883  wss 3886   cuni 4839   ciun 4924  Disj wdisj 5038   class class class wbr 5073  ran crn 5585  cfv 6426  (class class class)co 7267  ωcom 7702  cdom 8718  1c1 10882  cn 11983  cuz 12592  ..^cfzo 13392  Σ*cesum 32003  sigAlgebracsiga 32084  measurescmeas 32171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5208  ax-sep 5221  ax-nul 5228  ax-pow 5286  ax-pr 5350  ax-un 7578  ax-inf2 9386  ax-ac2 10229  ax-cnex 10937  ax-resscn 10938  ax-1cn 10939  ax-icn 10940  ax-addcl 10941  ax-addrcl 10942  ax-mulcl 10943  ax-mulrcl 10944  ax-mulcom 10945  ax-addass 10946  ax-mulass 10947  ax-distr 10948  ax-i2m1 10949  ax-1ne0 10950  ax-1rid 10951  ax-rnegex 10952  ax-rrecex 10953  ax-cnre 10954  ax-pre-lttri 10955  ax-pre-lttrn 10956  ax-pre-ltadd 10957  ax-pre-mulgt0 10958  ax-pre-sup 10959  ax-addf 10960  ax-mulf 10961
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3431  df-sbc 3716  df-csb 3832  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-pss 3905  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-disj 5039  df-br 5074  df-opab 5136  df-mpt 5157  df-tr 5191  df-id 5484  df-eprel 5490  df-po 5498  df-so 5499  df-fr 5539  df-se 5540  df-we 5541  df-xp 5590  df-rel 5591  df-cnv 5592  df-co 5593  df-dm 5594  df-rn 5595  df-res 5596  df-ima 5597  df-pred 6195  df-ord 6262  df-on 6263  df-lim 6264  df-suc 6265  df-iota 6384  df-fun 6428  df-fn 6429  df-f 6430  df-f1 6431  df-fo 6432  df-f1o 6433  df-fv 6434  df-isom 6435  df-riota 7224  df-ov 7270  df-oprab 7271  df-mpo 7272  df-of 7523  df-om 7703  df-1st 7820  df-2nd 7821  df-supp 7965  df-frecs 8084  df-wrecs 8115  df-recs 8189  df-rdg 8228  df-1o 8284  df-2o 8285  df-er 8485  df-map 8604  df-pm 8605  df-ixp 8673  df-en 8721  df-dom 8722  df-sdom 8723  df-fin 8724  df-fsupp 9116  df-fi 9157  df-sup 9188  df-inf 9189  df-oi 9256  df-dju 9669  df-card 9707  df-acn 9710  df-ac 9882  df-pnf 11021  df-mnf 11022  df-xr 11023  df-ltxr 11024  df-le 11025  df-sub 11217  df-neg 11218  df-div 11643  df-nn 11984  df-2 12046  df-3 12047  df-4 12048  df-5 12049  df-6 12050  df-7 12051  df-8 12052  df-9 12053  df-n0 12244  df-z 12330  df-dec 12448  df-uz 12593  df-q 12699  df-rp 12741  df-xneg 12858  df-xadd 12859  df-xmul 12860  df-ioo 13093  df-ioc 13094  df-ico 13095  df-icc 13096  df-fz 13250  df-fzo 13393  df-fl 13522  df-mod 13600  df-seq 13732  df-exp 13793  df-fac 13998  df-bc 14027  df-hash 14055  df-shft 14788  df-cj 14820  df-re 14821  df-im 14822  df-sqrt 14956  df-abs 14957  df-limsup 15190  df-clim 15207  df-rlim 15208  df-sum 15408  df-ef 15787  df-sin 15789  df-cos 15790  df-pi 15792  df-struct 16858  df-sets 16875  df-slot 16893  df-ndx 16905  df-base 16923  df-ress 16952  df-plusg 16985  df-mulr 16986  df-starv 16987  df-sca 16988  df-vsca 16989  df-ip 16990  df-tset 16991  df-ple 16992  df-ds 16994  df-unif 16995  df-hom 16996  df-cco 16997  df-rest 17143  df-topn 17144  df-0g 17162  df-gsum 17163  df-topgen 17164  df-pt 17165  df-prds 17168  df-ordt 17222  df-xrs 17223  df-qtop 17228  df-imas 17229  df-xps 17231  df-mre 17305  df-mrc 17306  df-acs 17308  df-ps 18294  df-tsr 18295  df-plusf 18335  df-mgm 18336  df-sgrp 18385  df-mnd 18396  df-mhm 18440  df-submnd 18441  df-grp 18590  df-minusg 18591  df-sbg 18592  df-mulg 18711  df-subg 18762  df-cntz 18933  df-cmn 19398  df-abl 19399  df-mgp 19731  df-ur 19748  df-ring 19795  df-cring 19796  df-subrg 20032  df-abv 20087  df-lmod 20135  df-scaf 20136  df-sra 20444  df-rgmod 20445  df-psmet 20599  df-xmet 20600  df-met 20601  df-bl 20602  df-mopn 20603  df-fbas 20604  df-fg 20605  df-cnfld 20608  df-top 22053  df-topon 22070  df-topsp 22092  df-bases 22106  df-cld 22180  df-ntr 22181  df-cls 22182  df-nei 22259  df-lp 22297  df-perf 22298  df-cn 22388  df-cnp 22389  df-haus 22476  df-tx 22723  df-hmeo 22916  df-fil 23007  df-fm 23099  df-flim 23100  df-flf 23101  df-tmd 23233  df-tgp 23234  df-tsms 23288  df-trg 23321  df-xms 23483  df-ms 23484  df-tms 23485  df-nm 23748  df-ngp 23749  df-nrg 23751  df-nlm 23752  df-ii 24050  df-cncf 24051  df-limc 25040  df-dv 25041  df-log 25722  df-esum 32004  df-siga 32085  df-meas 32172
This theorem is referenced by:  measiun  32194  meascnbl  32195
  Copyright terms: Public domain W3C validator