| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > measiuns | Structured version Visualization version GIF version | ||
| Description: The measure of the union of a collection of sets, expressed as the sum of a disjoint set. This is used as a lemma for both measiun 34202 and meascnbl 34203. (Contributed by Thierry Arnoux, 22-Jan-2017.) (Proof shortened by Thierry Arnoux, 7-Feb-2017.) |
| Ref | Expression |
|---|---|
| measiuns.0 | ⊢ Ⅎ𝑛𝐵 |
| measiuns.1 | ⊢ (𝑛 = 𝑘 → 𝐴 = 𝐵) |
| measiuns.2 | ⊢ (𝜑 → (𝑁 = ℕ ∨ 𝑁 = (1..^𝐼))) |
| measiuns.3 | ⊢ (𝜑 → 𝑀 ∈ (measures‘𝑆)) |
| measiuns.4 | ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑁) → 𝐴 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| measiuns | ⊢ (𝜑 → (𝑀‘∪ 𝑛 ∈ 𝑁 𝐴) = Σ*𝑛 ∈ 𝑁(𝑀‘(𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | measiuns.0 | . . . 4 ⊢ Ⅎ𝑛𝐵 | |
| 2 | measiuns.1 | . . . 4 ⊢ (𝑛 = 𝑘 → 𝐴 = 𝐵) | |
| 3 | measiuns.2 | . . . 4 ⊢ (𝜑 → (𝑁 = ℕ ∨ 𝑁 = (1..^𝐼))) | |
| 4 | 1, 2, 3 | iundisjcnt 32772 | . . 3 ⊢ (𝜑 → ∪ 𝑛 ∈ 𝑁 𝐴 = ∪ 𝑛 ∈ 𝑁 (𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵)) |
| 5 | 4 | fveq2d 6844 | . 2 ⊢ (𝜑 → (𝑀‘∪ 𝑛 ∈ 𝑁 𝐴) = (𝑀‘∪ 𝑛 ∈ 𝑁 (𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵))) |
| 6 | measiuns.3 | . . 3 ⊢ (𝜑 → 𝑀 ∈ (measures‘𝑆)) | |
| 7 | measbase 34181 | . . . . . . 7 ⊢ (𝑀 ∈ (measures‘𝑆) → 𝑆 ∈ ∪ ran sigAlgebra) | |
| 8 | 6, 7 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) |
| 9 | 8 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑁) → 𝑆 ∈ ∪ ran sigAlgebra) |
| 10 | measiuns.4 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑁) → 𝐴 ∈ 𝑆) | |
| 11 | simpll 766 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑛 ∈ 𝑁) ∧ 𝑘 ∈ (1..^𝑛)) → 𝜑) | |
| 12 | fzossnn 13650 | . . . . . . . . . . 11 ⊢ (1..^𝑛) ⊆ ℕ | |
| 13 | simpr 484 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑛 ∈ 𝑁) ∧ 𝑁 = ℕ) → 𝑁 = ℕ) | |
| 14 | 12, 13 | sseqtrrid 3987 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑛 ∈ 𝑁) ∧ 𝑁 = ℕ) → (1..^𝑛) ⊆ 𝑁) |
| 15 | simplr 768 | . . . . . . . . . . . . 13 ⊢ (((𝜑 ∧ 𝑛 ∈ 𝑁) ∧ 𝑁 = (1..^𝐼)) → 𝑛 ∈ 𝑁) | |
| 16 | simpr 484 | . . . . . . . . . . . . 13 ⊢ (((𝜑 ∧ 𝑛 ∈ 𝑁) ∧ 𝑁 = (1..^𝐼)) → 𝑁 = (1..^𝐼)) | |
| 17 | 15, 16 | eleqtrd 2830 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ 𝑛 ∈ 𝑁) ∧ 𝑁 = (1..^𝐼)) → 𝑛 ∈ (1..^𝐼)) |
| 18 | elfzouz2 13613 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ (1..^𝐼) → 𝐼 ∈ (ℤ≥‘𝑛)) | |
| 19 | fzoss2 13626 | . . . . . . . . . . . 12 ⊢ (𝐼 ∈ (ℤ≥‘𝑛) → (1..^𝑛) ⊆ (1..^𝐼)) | |
| 20 | 17, 18, 19 | 3syl 18 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑛 ∈ 𝑁) ∧ 𝑁 = (1..^𝐼)) → (1..^𝑛) ⊆ (1..^𝐼)) |
| 21 | 20, 16 | sseqtrrd 3981 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑛 ∈ 𝑁) ∧ 𝑁 = (1..^𝐼)) → (1..^𝑛) ⊆ 𝑁) |
| 22 | 3 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑁) → (𝑁 = ℕ ∨ 𝑁 = (1..^𝐼))) |
| 23 | 14, 21, 22 | mpjaodan 960 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑁) → (1..^𝑛) ⊆ 𝑁) |
| 24 | 23 | sselda 3943 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑛 ∈ 𝑁) ∧ 𝑘 ∈ (1..^𝑛)) → 𝑘 ∈ 𝑁) |
| 25 | 10 | sbimi 2075 | . . . . . . . . 9 ⊢ ([𝑘 / 𝑛](𝜑 ∧ 𝑛 ∈ 𝑁) → [𝑘 / 𝑛]𝐴 ∈ 𝑆) |
| 26 | sban 2081 | . . . . . . . . . 10 ⊢ ([𝑘 / 𝑛](𝜑 ∧ 𝑛 ∈ 𝑁) ↔ ([𝑘 / 𝑛]𝜑 ∧ [𝑘 / 𝑛]𝑛 ∈ 𝑁)) | |
| 27 | sbv 2089 | . . . . . . . . . . 11 ⊢ ([𝑘 / 𝑛]𝜑 ↔ 𝜑) | |
| 28 | clelsb1 2855 | . . . . . . . . . . 11 ⊢ ([𝑘 / 𝑛]𝑛 ∈ 𝑁 ↔ 𝑘 ∈ 𝑁) | |
| 29 | 27, 28 | anbi12i 628 | . . . . . . . . . 10 ⊢ (([𝑘 / 𝑛]𝜑 ∧ [𝑘 / 𝑛]𝑛 ∈ 𝑁) ↔ (𝜑 ∧ 𝑘 ∈ 𝑁)) |
| 30 | 26, 29 | bitri 275 | . . . . . . . . 9 ⊢ ([𝑘 / 𝑛](𝜑 ∧ 𝑛 ∈ 𝑁) ↔ (𝜑 ∧ 𝑘 ∈ 𝑁)) |
| 31 | sbsbc 3754 | . . . . . . . . . 10 ⊢ ([𝑘 / 𝑛]𝐴 ∈ 𝑆 ↔ [𝑘 / 𝑛]𝐴 ∈ 𝑆) | |
| 32 | sbcel1g 4375 | . . . . . . . . . . 11 ⊢ (𝑘 ∈ V → ([𝑘 / 𝑛]𝐴 ∈ 𝑆 ↔ ⦋𝑘 / 𝑛⦌𝐴 ∈ 𝑆)) | |
| 33 | 32 | elv 3449 | . . . . . . . . . 10 ⊢ ([𝑘 / 𝑛]𝐴 ∈ 𝑆 ↔ ⦋𝑘 / 𝑛⦌𝐴 ∈ 𝑆) |
| 34 | nfcv 2891 | . . . . . . . . . . . . 13 ⊢ Ⅎ𝑘𝐴 | |
| 35 | 34, 1, 2 | cbvcsbw 3869 | . . . . . . . . . . . 12 ⊢ ⦋𝑘 / 𝑛⦌𝐴 = ⦋𝑘 / 𝑘⦌𝐵 |
| 36 | csbid 3872 | . . . . . . . . . . . 12 ⊢ ⦋𝑘 / 𝑘⦌𝐵 = 𝐵 | |
| 37 | 35, 36 | eqtri 2752 | . . . . . . . . . . 11 ⊢ ⦋𝑘 / 𝑛⦌𝐴 = 𝐵 |
| 38 | 37 | eleq1i 2819 | . . . . . . . . . 10 ⊢ (⦋𝑘 / 𝑛⦌𝐴 ∈ 𝑆 ↔ 𝐵 ∈ 𝑆) |
| 39 | 31, 33, 38 | 3bitri 297 | . . . . . . . . 9 ⊢ ([𝑘 / 𝑛]𝐴 ∈ 𝑆 ↔ 𝐵 ∈ 𝑆) |
| 40 | 25, 30, 39 | 3imtr3i 291 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑁) → 𝐵 ∈ 𝑆) |
| 41 | 11, 24, 40 | syl2anc 584 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑛 ∈ 𝑁) ∧ 𝑘 ∈ (1..^𝑛)) → 𝐵 ∈ 𝑆) |
| 42 | 41 | ralrimiva 3125 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑁) → ∀𝑘 ∈ (1..^𝑛)𝐵 ∈ 𝑆) |
| 43 | sigaclfu2 34105 | . . . . . 6 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ (1..^𝑛)𝐵 ∈ 𝑆) → ∪ 𝑘 ∈ (1..^𝑛)𝐵 ∈ 𝑆) | |
| 44 | 9, 42, 43 | syl2anc 584 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑁) → ∪ 𝑘 ∈ (1..^𝑛)𝐵 ∈ 𝑆) |
| 45 | difelsiga 34117 | . . . . 5 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ ∪ 𝑘 ∈ (1..^𝑛)𝐵 ∈ 𝑆) → (𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵) ∈ 𝑆) | |
| 46 | 9, 10, 44, 45 | syl3anc 1373 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑁) → (𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵) ∈ 𝑆) |
| 47 | 46 | ralrimiva 3125 | . . 3 ⊢ (𝜑 → ∀𝑛 ∈ 𝑁 (𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵) ∈ 𝑆) |
| 48 | eqimss 4002 | . . . . . 6 ⊢ (𝑁 = ℕ → 𝑁 ⊆ ℕ) | |
| 49 | fzossnn 13650 | . . . . . . 7 ⊢ (1..^𝐼) ⊆ ℕ | |
| 50 | sseq1 3969 | . . . . . . 7 ⊢ (𝑁 = (1..^𝐼) → (𝑁 ⊆ ℕ ↔ (1..^𝐼) ⊆ ℕ)) | |
| 51 | 49, 50 | mpbiri 258 | . . . . . 6 ⊢ (𝑁 = (1..^𝐼) → 𝑁 ⊆ ℕ) |
| 52 | 48, 51 | jaoi 857 | . . . . 5 ⊢ ((𝑁 = ℕ ∨ 𝑁 = (1..^𝐼)) → 𝑁 ⊆ ℕ) |
| 53 | 3, 52 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑁 ⊆ ℕ) |
| 54 | nnct 13924 | . . . 4 ⊢ ℕ ≼ ω | |
| 55 | ssct 8999 | . . . 4 ⊢ ((𝑁 ⊆ ℕ ∧ ℕ ≼ ω) → 𝑁 ≼ ω) | |
| 56 | 53, 54, 55 | sylancl 586 | . . 3 ⊢ (𝜑 → 𝑁 ≼ ω) |
| 57 | 1, 2, 3 | iundisj2cnt 32773 | . . 3 ⊢ (𝜑 → Disj 𝑛 ∈ 𝑁 (𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵)) |
| 58 | measvuni 34198 | . . 3 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑛 ∈ 𝑁 (𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵) ∈ 𝑆 ∧ (𝑁 ≼ ω ∧ Disj 𝑛 ∈ 𝑁 (𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵))) → (𝑀‘∪ 𝑛 ∈ 𝑁 (𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵)) = Σ*𝑛 ∈ 𝑁(𝑀‘(𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵))) | |
| 59 | 6, 47, 56, 57, 58 | syl112anc 1376 | . 2 ⊢ (𝜑 → (𝑀‘∪ 𝑛 ∈ 𝑁 (𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵)) = Σ*𝑛 ∈ 𝑁(𝑀‘(𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵))) |
| 60 | 5, 59 | eqtrd 2764 | 1 ⊢ (𝜑 → (𝑀‘∪ 𝑛 ∈ 𝑁 𝐴) = Σ*𝑛 ∈ 𝑁(𝑀‘(𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 [wsb 2065 ∈ wcel 2109 Ⅎwnfc 2876 ∀wral 3044 Vcvv 3444 [wsbc 3750 ⦋csb 3859 ∖ cdif 3908 ⊆ wss 3911 ∪ cuni 4867 ∪ ciun 4951 Disj wdisj 5069 class class class wbr 5102 ran crn 5632 ‘cfv 6499 (class class class)co 7369 ωcom 7822 ≼ cdom 8893 1c1 11047 ℕcn 12164 ℤ≥cuz 12771 ..^cfzo 13593 Σ*cesum 34011 sigAlgebracsiga 34092 measurescmeas 34179 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9572 ax-ac2 10394 ax-cnex 11102 ax-resscn 11103 ax-1cn 11104 ax-icn 11105 ax-addcl 11106 ax-addrcl 11107 ax-mulcl 11108 ax-mulrcl 11109 ax-mulcom 11110 ax-addass 11111 ax-mulass 11112 ax-distr 11113 ax-i2m1 11114 ax-1ne0 11115 ax-1rid 11116 ax-rnegex 11117 ax-rrecex 11118 ax-cnre 11119 ax-pre-lttri 11120 ax-pre-lttrn 11121 ax-pre-ltadd 11122 ax-pre-mulgt0 11123 ax-pre-sup 11124 ax-addf 11125 ax-mulf 11126 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-disj 5070 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-pm 8779 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-fi 9338 df-sup 9369 df-inf 9370 df-oi 9439 df-dju 9832 df-card 9870 df-acn 9873 df-ac 10047 df-pnf 11188 df-mnf 11189 df-xr 11190 df-ltxr 11191 df-le 11192 df-sub 11385 df-neg 11386 df-div 11814 df-nn 12165 df-2 12227 df-3 12228 df-4 12229 df-5 12230 df-6 12231 df-7 12232 df-8 12233 df-9 12234 df-n0 12421 df-z 12508 df-dec 12628 df-uz 12772 df-q 12886 df-rp 12930 df-xneg 13050 df-xadd 13051 df-xmul 13052 df-ioo 13288 df-ioc 13289 df-ico 13290 df-icc 13291 df-fz 13447 df-fzo 13594 df-fl 13732 df-mod 13810 df-seq 13945 df-exp 14005 df-fac 14217 df-bc 14246 df-hash 14274 df-shft 15010 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-limsup 15414 df-clim 15431 df-rlim 15432 df-sum 15630 df-ef 16010 df-sin 16012 df-cos 16013 df-pi 16015 df-struct 17094 df-sets 17111 df-slot 17129 df-ndx 17141 df-base 17157 df-ress 17178 df-plusg 17210 df-mulr 17211 df-starv 17212 df-sca 17213 df-vsca 17214 df-ip 17215 df-tset 17216 df-ple 17217 df-ds 17219 df-unif 17220 df-hom 17221 df-cco 17222 df-rest 17362 df-topn 17363 df-0g 17381 df-gsum 17382 df-topgen 17383 df-pt 17384 df-prds 17387 df-ordt 17441 df-xrs 17442 df-qtop 17447 df-imas 17448 df-xps 17450 df-mre 17524 df-mrc 17525 df-acs 17527 df-ps 18508 df-tsr 18509 df-plusf 18549 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-mhm 18693 df-submnd 18694 df-grp 18851 df-minusg 18852 df-sbg 18853 df-mulg 18983 df-subg 19038 df-cntz 19232 df-cmn 19697 df-abl 19698 df-mgp 20062 df-rng 20074 df-ur 20103 df-ring 20156 df-cring 20157 df-subrng 20467 df-subrg 20491 df-abv 20730 df-lmod 20801 df-scaf 20802 df-sra 21113 df-rgmod 21114 df-psmet 21289 df-xmet 21290 df-met 21291 df-bl 21292 df-mopn 21293 df-fbas 21294 df-fg 21295 df-cnfld 21298 df-top 22815 df-topon 22832 df-topsp 22854 df-bases 22867 df-cld 22940 df-ntr 22941 df-cls 22942 df-nei 23019 df-lp 23057 df-perf 23058 df-cn 23148 df-cnp 23149 df-haus 23236 df-tx 23483 df-hmeo 23676 df-fil 23767 df-fm 23859 df-flim 23860 df-flf 23861 df-tmd 23993 df-tgp 23994 df-tsms 24048 df-trg 24081 df-xms 24242 df-ms 24243 df-tms 24244 df-nm 24504 df-ngp 24505 df-nrg 24507 df-nlm 24508 df-ii 24804 df-cncf 24805 df-limc 25801 df-dv 25802 df-log 26499 df-esum 34012 df-siga 34093 df-meas 34180 |
| This theorem is referenced by: measiun 34202 meascnbl 34203 |
| Copyright terms: Public domain | W3C validator |