Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climinfmpt Structured version   Visualization version   GIF version

Theorem climinfmpt 45840
Description: A bounded below, monotonic nonincreasing sequence converges to the infimum of its range. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
climinfmpt.p 𝑘𝜑
climinfmpt.j 𝑗𝜑
climinfmpt.m (𝜑𝑀 ∈ ℤ)
climinfmpt.z 𝑍 = (ℤ𝑀)
climinfmpt.b ((𝜑𝑘𝑍) → 𝐵 ∈ ℝ)
climinfmpt.c (𝑘 = 𝑗𝐵 = 𝐶)
climinfmpt.l ((𝜑𝑘𝑍𝑗 = (𝑘 + 1)) → 𝐶𝐵)
climinfmpt.e (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘𝑍 𝑥𝐵)
Assertion
Ref Expression
climinfmpt (𝜑 → (𝑘𝑍𝐵) ⇝ inf(ran (𝑘𝑍𝐵), ℝ*, < ))
Distinct variable groups:   𝐵,𝑗   𝑥,𝐵   𝐶,𝑘   𝑗,𝑍,𝑘   𝑥,𝑍,𝑘
Allowed substitution hints:   𝜑(𝑥,𝑗,𝑘)   𝐵(𝑘)   𝐶(𝑥,𝑗)   𝑀(𝑥,𝑗,𝑘)

Proof of Theorem climinfmpt
Dummy variables 𝑖 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1915 . 2 𝑖𝜑
2 nfcv 2895 . 2 𝑖(𝑘𝑍𝐵)
3 climinfmpt.z . 2 𝑍 = (ℤ𝑀)
4 climinfmpt.m . 2 (𝜑𝑀 ∈ ℤ)
5 climinfmpt.p . . 3 𝑘𝜑
6 climinfmpt.b . . 3 ((𝜑𝑘𝑍) → 𝐵 ∈ ℝ)
75, 6fmptd2f 45359 . 2 (𝜑 → (𝑘𝑍𝐵):𝑍⟶ℝ)
8 nfv 1915 . . . . . . 7 𝑘 𝑖𝑍
95, 8nfan 1900 . . . . . 6 𝑘(𝜑𝑖𝑍)
10 nfv 1915 . . . . . 6 𝑘(𝑖 + 1) / 𝑗𝐶𝑖 / 𝑗𝐶
119, 10nfim 1897 . . . . 5 𝑘((𝜑𝑖𝑍) → (𝑖 + 1) / 𝑗𝐶𝑖 / 𝑗𝐶)
12 eleq1 2821 . . . . . . 7 (𝑘 = 𝑖 → (𝑘𝑍𝑖𝑍))
1312anbi2d 630 . . . . . 6 (𝑘 = 𝑖 → ((𝜑𝑘𝑍) ↔ (𝜑𝑖𝑍)))
14 oveq1 7361 . . . . . . . 8 (𝑘 = 𝑖 → (𝑘 + 1) = (𝑖 + 1))
1514csbeq1d 3850 . . . . . . 7 (𝑘 = 𝑖(𝑘 + 1) / 𝑗𝐶 = (𝑖 + 1) / 𝑗𝐶)
16 eqidd 2734 . . . . . . . 8 (𝑘 = 𝑖𝐵 = 𝐵)
17 csbcow 3861 . . . . . . . . . . 11 𝑘 / 𝑗𝑗 / 𝑘𝐵 = 𝑘 / 𝑘𝐵
18 csbid 3859 . . . . . . . . . . 11 𝑘 / 𝑘𝐵 = 𝐵
1917, 18eqtr2i 2757 . . . . . . . . . 10 𝐵 = 𝑘 / 𝑗𝑗 / 𝑘𝐵
20 nfcv 2895 . . . . . . . . . . . . 13 𝑗𝐵
21 nfcv 2895 . . . . . . . . . . . . 13 𝑘𝐶
22 climinfmpt.c . . . . . . . . . . . . 13 (𝑘 = 𝑗𝐵 = 𝐶)
2320, 21, 22cbvcsbw 3856 . . . . . . . . . . . 12 𝑗 / 𝑘𝐵 = 𝑗 / 𝑗𝐶
24 csbid 3859 . . . . . . . . . . . 12 𝑗 / 𝑗𝐶 = 𝐶
2523, 24eqtri 2756 . . . . . . . . . . 11 𝑗 / 𝑘𝐵 = 𝐶
2625csbeq2i 3854 . . . . . . . . . 10 𝑘 / 𝑗𝑗 / 𝑘𝐵 = 𝑘 / 𝑗𝐶
2719, 26eqtri 2756 . . . . . . . . 9 𝐵 = 𝑘 / 𝑗𝐶
2827a1i 11 . . . . . . . 8 (𝑘 = 𝑖𝐵 = 𝑘 / 𝑗𝐶)
29 csbeq1 3849 . . . . . . . 8 (𝑘 = 𝑖𝑘 / 𝑗𝐶 = 𝑖 / 𝑗𝐶)
3016, 28, 293eqtrd 2772 . . . . . . 7 (𝑘 = 𝑖𝐵 = 𝑖 / 𝑗𝐶)
3115, 30breq12d 5108 . . . . . 6 (𝑘 = 𝑖 → ((𝑘 + 1) / 𝑗𝐶𝐵(𝑖 + 1) / 𝑗𝐶𝑖 / 𝑗𝐶))
3213, 31imbi12d 344 . . . . 5 (𝑘 = 𝑖 → (((𝜑𝑘𝑍) → (𝑘 + 1) / 𝑗𝐶𝐵) ↔ ((𝜑𝑖𝑍) → (𝑖 + 1) / 𝑗𝐶𝑖 / 𝑗𝐶)))
33 simpl 482 . . . . . 6 ((𝜑𝑘𝑍) → 𝜑)
34 simpr 484 . . . . . 6 ((𝜑𝑘𝑍) → 𝑘𝑍)
35 eqidd 2734 . . . . . 6 ((𝜑𝑘𝑍) → (𝑘 + 1) = (𝑘 + 1))
36 climinfmpt.j . . . . . . . . 9 𝑗𝜑
37 nfv 1915 . . . . . . . . 9 𝑗 𝑘𝑍
38 nfv 1915 . . . . . . . . 9 𝑗(𝑘 + 1) = (𝑘 + 1)
3936, 37, 38nf3an 1902 . . . . . . . 8 𝑗(𝜑𝑘𝑍 ∧ (𝑘 + 1) = (𝑘 + 1))
40 nfcsb1v 3870 . . . . . . . . 9 𝑗(𝑘 + 1) / 𝑗𝐶
41 nfcv 2895 . . . . . . . . 9 𝑗
4240, 41, 20nfbr 5142 . . . . . . . 8 𝑗(𝑘 + 1) / 𝑗𝐶𝐵
4339, 42nfim 1897 . . . . . . 7 𝑗((𝜑𝑘𝑍 ∧ (𝑘 + 1) = (𝑘 + 1)) → (𝑘 + 1) / 𝑗𝐶𝐵)
44 ovex 7387 . . . . . . 7 (𝑘 + 1) ∈ V
45 eqeq1 2737 . . . . . . . . 9 (𝑗 = (𝑘 + 1) → (𝑗 = (𝑘 + 1) ↔ (𝑘 + 1) = (𝑘 + 1)))
46453anbi3d 1444 . . . . . . . 8 (𝑗 = (𝑘 + 1) → ((𝜑𝑘𝑍𝑗 = (𝑘 + 1)) ↔ (𝜑𝑘𝑍 ∧ (𝑘 + 1) = (𝑘 + 1))))
47 csbeq1a 3860 . . . . . . . . 9 (𝑗 = (𝑘 + 1) → 𝐶 = (𝑘 + 1) / 𝑗𝐶)
4847breq1d 5105 . . . . . . . 8 (𝑗 = (𝑘 + 1) → (𝐶𝐵(𝑘 + 1) / 𝑗𝐶𝐵))
4946, 48imbi12d 344 . . . . . . 7 (𝑗 = (𝑘 + 1) → (((𝜑𝑘𝑍𝑗 = (𝑘 + 1)) → 𝐶𝐵) ↔ ((𝜑𝑘𝑍 ∧ (𝑘 + 1) = (𝑘 + 1)) → (𝑘 + 1) / 𝑗𝐶𝐵)))
50 climinfmpt.l . . . . . . 7 ((𝜑𝑘𝑍𝑗 = (𝑘 + 1)) → 𝐶𝐵)
5143, 44, 49, 50vtoclf 3518 . . . . . 6 ((𝜑𝑘𝑍 ∧ (𝑘 + 1) = (𝑘 + 1)) → (𝑘 + 1) / 𝑗𝐶𝐵)
5233, 34, 35, 51syl3anc 1373 . . . . 5 ((𝜑𝑘𝑍) → (𝑘 + 1) / 𝑗𝐶𝐵)
5311, 32, 52chvarfv 2245 . . . 4 ((𝜑𝑖𝑍) → (𝑖 + 1) / 𝑗𝐶𝑖 / 𝑗𝐶)
5420, 21, 22cbvcsbw 3856 . . . . . 6 (𝑖 + 1) / 𝑘𝐵 = (𝑖 + 1) / 𝑗𝐶
5554a1i 11 . . . . 5 ((𝜑𝑖𝑍) → (𝑖 + 1) / 𝑘𝐵 = (𝑖 + 1) / 𝑗𝐶)
56 eqidd 2734 . . . . 5 ((𝜑𝑖𝑍) → 𝑖 / 𝑗𝐶 = 𝑖 / 𝑗𝐶)
5755, 56breq12d 5108 . . . 4 ((𝜑𝑖𝑍) → ((𝑖 + 1) / 𝑘𝐵𝑖 / 𝑗𝐶(𝑖 + 1) / 𝑗𝐶𝑖 / 𝑗𝐶))
5853, 57mpbird 257 . . 3 ((𝜑𝑖𝑍) → (𝑖 + 1) / 𝑘𝐵𝑖 / 𝑗𝐶)
593peano2uzs 12804 . . . . . 6 (𝑖𝑍 → (𝑖 + 1) ∈ 𝑍)
6059adantl 481 . . . . 5 ((𝜑𝑖𝑍) → (𝑖 + 1) ∈ 𝑍)
61 nfv 1915 . . . . . . . . 9 𝑘(𝑖 + 1) ∈ 𝑍
625, 61nfan 1900 . . . . . . . 8 𝑘(𝜑 ∧ (𝑖 + 1) ∈ 𝑍)
63 nfcv 2895 . . . . . . . . . 10 𝑘(𝑖 + 1)
6463nfcsb1 3869 . . . . . . . . 9 𝑘(𝑖 + 1) / 𝑘𝐵
6564nfel1 2912 . . . . . . . 8 𝑘(𝑖 + 1) / 𝑘𝐵 ∈ ℝ
6662, 65nfim 1897 . . . . . . 7 𝑘((𝜑 ∧ (𝑖 + 1) ∈ 𝑍) → (𝑖 + 1) / 𝑘𝐵 ∈ ℝ)
67 ovex 7387 . . . . . . 7 (𝑖 + 1) ∈ V
68 eleq1 2821 . . . . . . . . 9 (𝑘 = (𝑖 + 1) → (𝑘𝑍 ↔ (𝑖 + 1) ∈ 𝑍))
6968anbi2d 630 . . . . . . . 8 (𝑘 = (𝑖 + 1) → ((𝜑𝑘𝑍) ↔ (𝜑 ∧ (𝑖 + 1) ∈ 𝑍)))
70 csbeq1a 3860 . . . . . . . . 9 (𝑘 = (𝑖 + 1) → 𝐵 = (𝑖 + 1) / 𝑘𝐵)
7170eleq1d 2818 . . . . . . . 8 (𝑘 = (𝑖 + 1) → (𝐵 ∈ ℝ ↔ (𝑖 + 1) / 𝑘𝐵 ∈ ℝ))
7269, 71imbi12d 344 . . . . . . 7 (𝑘 = (𝑖 + 1) → (((𝜑𝑘𝑍) → 𝐵 ∈ ℝ) ↔ ((𝜑 ∧ (𝑖 + 1) ∈ 𝑍) → (𝑖 + 1) / 𝑘𝐵 ∈ ℝ)))
7366, 67, 72, 6vtoclf 3518 . . . . . 6 ((𝜑 ∧ (𝑖 + 1) ∈ 𝑍) → (𝑖 + 1) / 𝑘𝐵 ∈ ℝ)
7459, 73sylan2 593 . . . . 5 ((𝜑𝑖𝑍) → (𝑖 + 1) / 𝑘𝐵 ∈ ℝ)
75 eqid 2733 . . . . . 6 (𝑘𝑍𝐵) = (𝑘𝑍𝐵)
7663, 64, 70, 75fvmptf 6958 . . . . 5 (((𝑖 + 1) ∈ 𝑍(𝑖 + 1) / 𝑘𝐵 ∈ ℝ) → ((𝑘𝑍𝐵)‘(𝑖 + 1)) = (𝑖 + 1) / 𝑘𝐵)
7760, 74, 76syl2anc 584 . . . 4 ((𝜑𝑖𝑍) → ((𝑘𝑍𝐵)‘(𝑖 + 1)) = (𝑖 + 1) / 𝑘𝐵)
78 simpr 484 . . . . 5 ((𝜑𝑖𝑍) → 𝑖𝑍)
79 nfv 1915 . . . . . . . 8 𝑗 𝑖𝑍
8036, 79nfan 1900 . . . . . . 7 𝑗(𝜑𝑖𝑍)
81 nfcsb1v 3870 . . . . . . . 8 𝑗𝑖 / 𝑗𝐶
82 nfcv 2895 . . . . . . . 8 𝑗
8381, 82nfel 2910 . . . . . . 7 𝑗𝑖 / 𝑗𝐶 ∈ ℝ
8480, 83nfim 1897 . . . . . 6 𝑗((𝜑𝑖𝑍) → 𝑖 / 𝑗𝐶 ∈ ℝ)
85 eleq1 2821 . . . . . . . 8 (𝑗 = 𝑖 → (𝑗𝑍𝑖𝑍))
8685anbi2d 630 . . . . . . 7 (𝑗 = 𝑖 → ((𝜑𝑗𝑍) ↔ (𝜑𝑖𝑍)))
87 csbeq1a 3860 . . . . . . . 8 (𝑗 = 𝑖𝐶 = 𝑖 / 𝑗𝐶)
8887eleq1d 2818 . . . . . . 7 (𝑗 = 𝑖 → (𝐶 ∈ ℝ ↔ 𝑖 / 𝑗𝐶 ∈ ℝ))
8986, 88imbi12d 344 . . . . . 6 (𝑗 = 𝑖 → (((𝜑𝑗𝑍) → 𝐶 ∈ ℝ) ↔ ((𝜑𝑖𝑍) → 𝑖 / 𝑗𝐶 ∈ ℝ)))
90 nfv 1915 . . . . . . . . 9 𝑘 𝑗𝑍
915, 90nfan 1900 . . . . . . . 8 𝑘(𝜑𝑗𝑍)
92 nfv 1915 . . . . . . . 8 𝑘 𝐶 ∈ ℝ
9391, 92nfim 1897 . . . . . . 7 𝑘((𝜑𝑗𝑍) → 𝐶 ∈ ℝ)
94 eleq1 2821 . . . . . . . . 9 (𝑘 = 𝑗 → (𝑘𝑍𝑗𝑍))
9594anbi2d 630 . . . . . . . 8 (𝑘 = 𝑗 → ((𝜑𝑘𝑍) ↔ (𝜑𝑗𝑍)))
9622eleq1d 2818 . . . . . . . 8 (𝑘 = 𝑗 → (𝐵 ∈ ℝ ↔ 𝐶 ∈ ℝ))
9795, 96imbi12d 344 . . . . . . 7 (𝑘 = 𝑗 → (((𝜑𝑘𝑍) → 𝐵 ∈ ℝ) ↔ ((𝜑𝑗𝑍) → 𝐶 ∈ ℝ)))
9893, 97, 6chvarfv 2245 . . . . . 6 ((𝜑𝑗𝑍) → 𝐶 ∈ ℝ)
9984, 89, 98chvarfv 2245 . . . . 5 ((𝜑𝑖𝑍) → 𝑖 / 𝑗𝐶 ∈ ℝ)
100 nfcv 2895 . . . . . 6 𝑘𝑖
101 nfcv 2895 . . . . . 6 𝑘𝑖 / 𝑗𝐶
102100, 101, 30, 75fvmptf 6958 . . . . 5 ((𝑖𝑍𝑖 / 𝑗𝐶 ∈ ℝ) → ((𝑘𝑍𝐵)‘𝑖) = 𝑖 / 𝑗𝐶)
10378, 99, 102syl2anc 584 . . . 4 ((𝜑𝑖𝑍) → ((𝑘𝑍𝐵)‘𝑖) = 𝑖 / 𝑗𝐶)
10477, 103breq12d 5108 . . 3 ((𝜑𝑖𝑍) → (((𝑘𝑍𝐵)‘(𝑖 + 1)) ≤ ((𝑘𝑍𝐵)‘𝑖) ↔ (𝑖 + 1) / 𝑘𝐵𝑖 / 𝑗𝐶))
10558, 104mpbird 257 . 2 ((𝜑𝑖𝑍) → ((𝑘𝑍𝐵)‘(𝑖 + 1)) ≤ ((𝑘𝑍𝐵)‘𝑖))
106 climinfmpt.e . . . 4 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘𝑍 𝑥𝐵)
107 breq1 5098 . . . . . 6 (𝑥 = 𝑦 → (𝑥𝐵𝑦𝐵))
108107ralbidv 3156 . . . . 5 (𝑥 = 𝑦 → (∀𝑘𝑍 𝑥𝐵 ↔ ∀𝑘𝑍 𝑦𝐵))
109108cbvrexvw 3212 . . . 4 (∃𝑥 ∈ ℝ ∀𝑘𝑍 𝑥𝐵 ↔ ∃𝑦 ∈ ℝ ∀𝑘𝑍 𝑦𝐵)
110106, 109sylib 218 . . 3 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑘𝑍 𝑦𝐵)
111 nfcv 2895 . . . . . . . 8 𝑘𝑦
112 nfcv 2895 . . . . . . . 8 𝑘
113 nfmpt1 5194 . . . . . . . . 9 𝑘(𝑘𝑍𝐵)
114113, 100nffv 6840 . . . . . . . 8 𝑘((𝑘𝑍𝐵)‘𝑖)
115111, 112, 114nfbr 5142 . . . . . . 7 𝑘 𝑦 ≤ ((𝑘𝑍𝐵)‘𝑖)
116 nfv 1915 . . . . . . 7 𝑖 𝑦 ≤ ((𝑘𝑍𝐵)‘𝑘)
117 fveq2 6830 . . . . . . . 8 (𝑖 = 𝑘 → ((𝑘𝑍𝐵)‘𝑖) = ((𝑘𝑍𝐵)‘𝑘))
118117breq2d 5107 . . . . . . 7 (𝑖 = 𝑘 → (𝑦 ≤ ((𝑘𝑍𝐵)‘𝑖) ↔ 𝑦 ≤ ((𝑘𝑍𝐵)‘𝑘)))
119115, 116, 118cbvralw 3275 . . . . . 6 (∀𝑖𝑍 𝑦 ≤ ((𝑘𝑍𝐵)‘𝑖) ↔ ∀𝑘𝑍 𝑦 ≤ ((𝑘𝑍𝐵)‘𝑘))
120119a1i 11 . . . . 5 (𝜑 → (∀𝑖𝑍 𝑦 ≤ ((𝑘𝑍𝐵)‘𝑖) ↔ ∀𝑘𝑍 𝑦 ≤ ((𝑘𝑍𝐵)‘𝑘)))
12175a1i 11 . . . . . . . 8 (𝜑 → (𝑘𝑍𝐵) = (𝑘𝑍𝐵))
122121, 6fvmpt2d 6950 . . . . . . 7 ((𝜑𝑘𝑍) → ((𝑘𝑍𝐵)‘𝑘) = 𝐵)
123122breq2d 5107 . . . . . 6 ((𝜑𝑘𝑍) → (𝑦 ≤ ((𝑘𝑍𝐵)‘𝑘) ↔ 𝑦𝐵))
1245, 123ralbida 3244 . . . . 5 (𝜑 → (∀𝑘𝑍 𝑦 ≤ ((𝑘𝑍𝐵)‘𝑘) ↔ ∀𝑘𝑍 𝑦𝐵))
125120, 124bitrd 279 . . . 4 (𝜑 → (∀𝑖𝑍 𝑦 ≤ ((𝑘𝑍𝐵)‘𝑖) ↔ ∀𝑘𝑍 𝑦𝐵))
126125rexbidv 3157 . . 3 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑖𝑍 𝑦 ≤ ((𝑘𝑍𝐵)‘𝑖) ↔ ∃𝑦 ∈ ℝ ∀𝑘𝑍 𝑦𝐵))
127110, 126mpbird 257 . 2 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑖𝑍 𝑦 ≤ ((𝑘𝑍𝐵)‘𝑖))
1281, 2, 3, 4, 7, 105, 127climinf2 45832 1 (𝜑 → (𝑘𝑍𝐵) ⇝ inf(ran (𝑘𝑍𝐵), ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wnf 1784  wcel 2113  wral 3048  wrex 3057  csb 3846   class class class wbr 5095  cmpt 5176  ran crn 5622  cfv 6488  (class class class)co 7354  infcinf 9334  cr 11014  1c1 11016   + caddc 11018  *cxr 11154   < clt 11155  cle 11156  cz 12477  cuz 12740  cli 15395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092  ax-pre-sup 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-1st 7929  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-er 8630  df-en 8878  df-dom 8879  df-sdom 8880  df-sup 9335  df-inf 9336  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-div 11784  df-nn 12135  df-2 12197  df-3 12198  df-n0 12391  df-z 12478  df-uz 12741  df-rp 12895  df-fz 13412  df-seq 13913  df-exp 13973  df-cj 15010  df-re 15011  df-im 15012  df-sqrt 15146  df-abs 15147  df-clim 15399
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator