Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climinfmpt Structured version   Visualization version   GIF version

Theorem climinfmpt 42357
Description: A bounded below, monotonic nonincreasing sequence converges to the infimum of its range. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
climinfmpt.p 𝑘𝜑
climinfmpt.j 𝑗𝜑
climinfmpt.m (𝜑𝑀 ∈ ℤ)
climinfmpt.z 𝑍 = (ℤ𝑀)
climinfmpt.b ((𝜑𝑘𝑍) → 𝐵 ∈ ℝ)
climinfmpt.c (𝑘 = 𝑗𝐵 = 𝐶)
climinfmpt.l ((𝜑𝑘𝑍𝑗 = (𝑘 + 1)) → 𝐶𝐵)
climinfmpt.e (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘𝑍 𝑥𝐵)
Assertion
Ref Expression
climinfmpt (𝜑 → (𝑘𝑍𝐵) ⇝ inf(ran (𝑘𝑍𝐵), ℝ*, < ))
Distinct variable groups:   𝐵,𝑗   𝑥,𝐵   𝐶,𝑘   𝑗,𝑍,𝑘   𝑥,𝑍,𝑘
Allowed substitution hints:   𝜑(𝑥,𝑗,𝑘)   𝐵(𝑘)   𝐶(𝑥,𝑗)   𝑀(𝑥,𝑗,𝑘)

Proof of Theorem climinfmpt
Dummy variables 𝑖 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1915 . 2 𝑖𝜑
2 nfcv 2955 . 2 𝑖(𝑘𝑍𝐵)
3 climinfmpt.z . 2 𝑍 = (ℤ𝑀)
4 climinfmpt.m . 2 (𝜑𝑀 ∈ ℤ)
5 climinfmpt.p . . 3 𝑘𝜑
6 climinfmpt.b . . 3 ((𝜑𝑘𝑍) → 𝐵 ∈ ℝ)
75, 6fmptd2f 41871 . 2 (𝜑 → (𝑘𝑍𝐵):𝑍⟶ℝ)
8 nfv 1915 . . . . . . 7 𝑘 𝑖𝑍
95, 8nfan 1900 . . . . . 6 𝑘(𝜑𝑖𝑍)
10 nfv 1915 . . . . . 6 𝑘(𝑖 + 1) / 𝑗𝐶𝑖 / 𝑗𝐶
119, 10nfim 1897 . . . . 5 𝑘((𝜑𝑖𝑍) → (𝑖 + 1) / 𝑗𝐶𝑖 / 𝑗𝐶)
12 eleq1 2877 . . . . . . 7 (𝑘 = 𝑖 → (𝑘𝑍𝑖𝑍))
1312anbi2d 631 . . . . . 6 (𝑘 = 𝑖 → ((𝜑𝑘𝑍) ↔ (𝜑𝑖𝑍)))
14 oveq1 7142 . . . . . . . 8 (𝑘 = 𝑖 → (𝑘 + 1) = (𝑖 + 1))
1514csbeq1d 3832 . . . . . . 7 (𝑘 = 𝑖(𝑘 + 1) / 𝑗𝐶 = (𝑖 + 1) / 𝑗𝐶)
16 eqidd 2799 . . . . . . . 8 (𝑘 = 𝑖𝐵 = 𝐵)
17 csbcow 3843 . . . . . . . . . . 11 𝑘 / 𝑗𝑗 / 𝑘𝐵 = 𝑘 / 𝑘𝐵
18 csbid 3841 . . . . . . . . . . 11 𝑘 / 𝑘𝐵 = 𝐵
1917, 18eqtr2i 2822 . . . . . . . . . 10 𝐵 = 𝑘 / 𝑗𝑗 / 𝑘𝐵
20 nfcv 2955 . . . . . . . . . . . . 13 𝑗𝐵
21 nfcv 2955 . . . . . . . . . . . . 13 𝑘𝐶
22 climinfmpt.c . . . . . . . . . . . . 13 (𝑘 = 𝑗𝐵 = 𝐶)
2320, 21, 22cbvcsbw 3838 . . . . . . . . . . . 12 𝑗 / 𝑘𝐵 = 𝑗 / 𝑗𝐶
24 csbid 3841 . . . . . . . . . . . 12 𝑗 / 𝑗𝐶 = 𝐶
2523, 24eqtri 2821 . . . . . . . . . . 11 𝑗 / 𝑘𝐵 = 𝐶
2625csbeq2i 3836 . . . . . . . . . 10 𝑘 / 𝑗𝑗 / 𝑘𝐵 = 𝑘 / 𝑗𝐶
2719, 26eqtri 2821 . . . . . . . . 9 𝐵 = 𝑘 / 𝑗𝐶
2827a1i 11 . . . . . . . 8 (𝑘 = 𝑖𝐵 = 𝑘 / 𝑗𝐶)
29 csbeq1 3831 . . . . . . . 8 (𝑘 = 𝑖𝑘 / 𝑗𝐶 = 𝑖 / 𝑗𝐶)
3016, 28, 293eqtrd 2837 . . . . . . 7 (𝑘 = 𝑖𝐵 = 𝑖 / 𝑗𝐶)
3115, 30breq12d 5043 . . . . . 6 (𝑘 = 𝑖 → ((𝑘 + 1) / 𝑗𝐶𝐵(𝑖 + 1) / 𝑗𝐶𝑖 / 𝑗𝐶))
3213, 31imbi12d 348 . . . . 5 (𝑘 = 𝑖 → (((𝜑𝑘𝑍) → (𝑘 + 1) / 𝑗𝐶𝐵) ↔ ((𝜑𝑖𝑍) → (𝑖 + 1) / 𝑗𝐶𝑖 / 𝑗𝐶)))
33 simpl 486 . . . . . 6 ((𝜑𝑘𝑍) → 𝜑)
34 simpr 488 . . . . . 6 ((𝜑𝑘𝑍) → 𝑘𝑍)
35 eqidd 2799 . . . . . 6 ((𝜑𝑘𝑍) → (𝑘 + 1) = (𝑘 + 1))
36 climinfmpt.j . . . . . . . . 9 𝑗𝜑
37 nfv 1915 . . . . . . . . 9 𝑗 𝑘𝑍
38 nfv 1915 . . . . . . . . 9 𝑗(𝑘 + 1) = (𝑘 + 1)
3936, 37, 38nf3an 1902 . . . . . . . 8 𝑗(𝜑𝑘𝑍 ∧ (𝑘 + 1) = (𝑘 + 1))
40 nfcsb1v 3852 . . . . . . . . 9 𝑗(𝑘 + 1) / 𝑗𝐶
41 nfcv 2955 . . . . . . . . 9 𝑗
4240, 41, 20nfbr 5077 . . . . . . . 8 𝑗(𝑘 + 1) / 𝑗𝐶𝐵
4339, 42nfim 1897 . . . . . . 7 𝑗((𝜑𝑘𝑍 ∧ (𝑘 + 1) = (𝑘 + 1)) → (𝑘 + 1) / 𝑗𝐶𝐵)
44 ovex 7168 . . . . . . 7 (𝑘 + 1) ∈ V
45 eqeq1 2802 . . . . . . . . 9 (𝑗 = (𝑘 + 1) → (𝑗 = (𝑘 + 1) ↔ (𝑘 + 1) = (𝑘 + 1)))
46453anbi3d 1439 . . . . . . . 8 (𝑗 = (𝑘 + 1) → ((𝜑𝑘𝑍𝑗 = (𝑘 + 1)) ↔ (𝜑𝑘𝑍 ∧ (𝑘 + 1) = (𝑘 + 1))))
47 csbeq1a 3842 . . . . . . . . 9 (𝑗 = (𝑘 + 1) → 𝐶 = (𝑘 + 1) / 𝑗𝐶)
4847breq1d 5040 . . . . . . . 8 (𝑗 = (𝑘 + 1) → (𝐶𝐵(𝑘 + 1) / 𝑗𝐶𝐵))
4946, 48imbi12d 348 . . . . . . 7 (𝑗 = (𝑘 + 1) → (((𝜑𝑘𝑍𝑗 = (𝑘 + 1)) → 𝐶𝐵) ↔ ((𝜑𝑘𝑍 ∧ (𝑘 + 1) = (𝑘 + 1)) → (𝑘 + 1) / 𝑗𝐶𝐵)))
50 climinfmpt.l . . . . . . 7 ((𝜑𝑘𝑍𝑗 = (𝑘 + 1)) → 𝐶𝐵)
5143, 44, 49, 50vtoclf 3506 . . . . . 6 ((𝜑𝑘𝑍 ∧ (𝑘 + 1) = (𝑘 + 1)) → (𝑘 + 1) / 𝑗𝐶𝐵)
5233, 34, 35, 51syl3anc 1368 . . . . 5 ((𝜑𝑘𝑍) → (𝑘 + 1) / 𝑗𝐶𝐵)
5311, 32, 52chvarfv 2240 . . . 4 ((𝜑𝑖𝑍) → (𝑖 + 1) / 𝑗𝐶𝑖 / 𝑗𝐶)
5420, 21, 22cbvcsbw 3838 . . . . . 6 (𝑖 + 1) / 𝑘𝐵 = (𝑖 + 1) / 𝑗𝐶
5554a1i 11 . . . . 5 ((𝜑𝑖𝑍) → (𝑖 + 1) / 𝑘𝐵 = (𝑖 + 1) / 𝑗𝐶)
56 eqidd 2799 . . . . 5 ((𝜑𝑖𝑍) → 𝑖 / 𝑗𝐶 = 𝑖 / 𝑗𝐶)
5755, 56breq12d 5043 . . . 4 ((𝜑𝑖𝑍) → ((𝑖 + 1) / 𝑘𝐵𝑖 / 𝑗𝐶(𝑖 + 1) / 𝑗𝐶𝑖 / 𝑗𝐶))
5853, 57mpbird 260 . . 3 ((𝜑𝑖𝑍) → (𝑖 + 1) / 𝑘𝐵𝑖 / 𝑗𝐶)
593peano2uzs 12290 . . . . . 6 (𝑖𝑍 → (𝑖 + 1) ∈ 𝑍)
6059adantl 485 . . . . 5 ((𝜑𝑖𝑍) → (𝑖 + 1) ∈ 𝑍)
61 nfv 1915 . . . . . . . . 9 𝑘(𝑖 + 1) ∈ 𝑍
625, 61nfan 1900 . . . . . . . 8 𝑘(𝜑 ∧ (𝑖 + 1) ∈ 𝑍)
63 nfcv 2955 . . . . . . . . . 10 𝑘(𝑖 + 1)
6463nfcsb1 3851 . . . . . . . . 9 𝑘(𝑖 + 1) / 𝑘𝐵
6564nfel1 2971 . . . . . . . 8 𝑘(𝑖 + 1) / 𝑘𝐵 ∈ ℝ
6662, 65nfim 1897 . . . . . . 7 𝑘((𝜑 ∧ (𝑖 + 1) ∈ 𝑍) → (𝑖 + 1) / 𝑘𝐵 ∈ ℝ)
67 ovex 7168 . . . . . . 7 (𝑖 + 1) ∈ V
68 eleq1 2877 . . . . . . . . 9 (𝑘 = (𝑖 + 1) → (𝑘𝑍 ↔ (𝑖 + 1) ∈ 𝑍))
6968anbi2d 631 . . . . . . . 8 (𝑘 = (𝑖 + 1) → ((𝜑𝑘𝑍) ↔ (𝜑 ∧ (𝑖 + 1) ∈ 𝑍)))
70 csbeq1a 3842 . . . . . . . . 9 (𝑘 = (𝑖 + 1) → 𝐵 = (𝑖 + 1) / 𝑘𝐵)
7170eleq1d 2874 . . . . . . . 8 (𝑘 = (𝑖 + 1) → (𝐵 ∈ ℝ ↔ (𝑖 + 1) / 𝑘𝐵 ∈ ℝ))
7269, 71imbi12d 348 . . . . . . 7 (𝑘 = (𝑖 + 1) → (((𝜑𝑘𝑍) → 𝐵 ∈ ℝ) ↔ ((𝜑 ∧ (𝑖 + 1) ∈ 𝑍) → (𝑖 + 1) / 𝑘𝐵 ∈ ℝ)))
7366, 67, 72, 6vtoclf 3506 . . . . . 6 ((𝜑 ∧ (𝑖 + 1) ∈ 𝑍) → (𝑖 + 1) / 𝑘𝐵 ∈ ℝ)
7459, 73sylan2 595 . . . . 5 ((𝜑𝑖𝑍) → (𝑖 + 1) / 𝑘𝐵 ∈ ℝ)
75 eqid 2798 . . . . . 6 (𝑘𝑍𝐵) = (𝑘𝑍𝐵)
7663, 64, 70, 75fvmptf 6766 . . . . 5 (((𝑖 + 1) ∈ 𝑍(𝑖 + 1) / 𝑘𝐵 ∈ ℝ) → ((𝑘𝑍𝐵)‘(𝑖 + 1)) = (𝑖 + 1) / 𝑘𝐵)
7760, 74, 76syl2anc 587 . . . 4 ((𝜑𝑖𝑍) → ((𝑘𝑍𝐵)‘(𝑖 + 1)) = (𝑖 + 1) / 𝑘𝐵)
78 simpr 488 . . . . 5 ((𝜑𝑖𝑍) → 𝑖𝑍)
79 nfv 1915 . . . . . . . 8 𝑗 𝑖𝑍
8036, 79nfan 1900 . . . . . . 7 𝑗(𝜑𝑖𝑍)
81 nfcsb1v 3852 . . . . . . . 8 𝑗𝑖 / 𝑗𝐶
82 nfcv 2955 . . . . . . . 8 𝑗
8381, 82nfel 2969 . . . . . . 7 𝑗𝑖 / 𝑗𝐶 ∈ ℝ
8480, 83nfim 1897 . . . . . 6 𝑗((𝜑𝑖𝑍) → 𝑖 / 𝑗𝐶 ∈ ℝ)
85 eleq1 2877 . . . . . . . 8 (𝑗 = 𝑖 → (𝑗𝑍𝑖𝑍))
8685anbi2d 631 . . . . . . 7 (𝑗 = 𝑖 → ((𝜑𝑗𝑍) ↔ (𝜑𝑖𝑍)))
87 csbeq1a 3842 . . . . . . . 8 (𝑗 = 𝑖𝐶 = 𝑖 / 𝑗𝐶)
8887eleq1d 2874 . . . . . . 7 (𝑗 = 𝑖 → (𝐶 ∈ ℝ ↔ 𝑖 / 𝑗𝐶 ∈ ℝ))
8986, 88imbi12d 348 . . . . . 6 (𝑗 = 𝑖 → (((𝜑𝑗𝑍) → 𝐶 ∈ ℝ) ↔ ((𝜑𝑖𝑍) → 𝑖 / 𝑗𝐶 ∈ ℝ)))
90 nfv 1915 . . . . . . . . 9 𝑘 𝑗𝑍
915, 90nfan 1900 . . . . . . . 8 𝑘(𝜑𝑗𝑍)
92 nfv 1915 . . . . . . . 8 𝑘 𝐶 ∈ ℝ
9391, 92nfim 1897 . . . . . . 7 𝑘((𝜑𝑗𝑍) → 𝐶 ∈ ℝ)
94 eleq1 2877 . . . . . . . . 9 (𝑘 = 𝑗 → (𝑘𝑍𝑗𝑍))
9594anbi2d 631 . . . . . . . 8 (𝑘 = 𝑗 → ((𝜑𝑘𝑍) ↔ (𝜑𝑗𝑍)))
9622eleq1d 2874 . . . . . . . 8 (𝑘 = 𝑗 → (𝐵 ∈ ℝ ↔ 𝐶 ∈ ℝ))
9795, 96imbi12d 348 . . . . . . 7 (𝑘 = 𝑗 → (((𝜑𝑘𝑍) → 𝐵 ∈ ℝ) ↔ ((𝜑𝑗𝑍) → 𝐶 ∈ ℝ)))
9893, 97, 6chvarfv 2240 . . . . . 6 ((𝜑𝑗𝑍) → 𝐶 ∈ ℝ)
9984, 89, 98chvarfv 2240 . . . . 5 ((𝜑𝑖𝑍) → 𝑖 / 𝑗𝐶 ∈ ℝ)
100 nfcv 2955 . . . . . 6 𝑘𝑖
101 nfcv 2955 . . . . . 6 𝑘𝑖 / 𝑗𝐶
102100, 101, 30, 75fvmptf 6766 . . . . 5 ((𝑖𝑍𝑖 / 𝑗𝐶 ∈ ℝ) → ((𝑘𝑍𝐵)‘𝑖) = 𝑖 / 𝑗𝐶)
10378, 99, 102syl2anc 587 . . . 4 ((𝜑𝑖𝑍) → ((𝑘𝑍𝐵)‘𝑖) = 𝑖 / 𝑗𝐶)
10477, 103breq12d 5043 . . 3 ((𝜑𝑖𝑍) → (((𝑘𝑍𝐵)‘(𝑖 + 1)) ≤ ((𝑘𝑍𝐵)‘𝑖) ↔ (𝑖 + 1) / 𝑘𝐵𝑖 / 𝑗𝐶))
10558, 104mpbird 260 . 2 ((𝜑𝑖𝑍) → ((𝑘𝑍𝐵)‘(𝑖 + 1)) ≤ ((𝑘𝑍𝐵)‘𝑖))
106 climinfmpt.e . . . 4 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘𝑍 𝑥𝐵)
107 breq1 5033 . . . . . 6 (𝑥 = 𝑦 → (𝑥𝐵𝑦𝐵))
108107ralbidv 3162 . . . . 5 (𝑥 = 𝑦 → (∀𝑘𝑍 𝑥𝐵 ↔ ∀𝑘𝑍 𝑦𝐵))
109108cbvrexvw 3397 . . . 4 (∃𝑥 ∈ ℝ ∀𝑘𝑍 𝑥𝐵 ↔ ∃𝑦 ∈ ℝ ∀𝑘𝑍 𝑦𝐵)
110106, 109sylib 221 . . 3 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑘𝑍 𝑦𝐵)
111 nfcv 2955 . . . . . . . 8 𝑘𝑦
112 nfcv 2955 . . . . . . . 8 𝑘
113 nfmpt1 5128 . . . . . . . . 9 𝑘(𝑘𝑍𝐵)
114113, 100nffv 6655 . . . . . . . 8 𝑘((𝑘𝑍𝐵)‘𝑖)
115111, 112, 114nfbr 5077 . . . . . . 7 𝑘 𝑦 ≤ ((𝑘𝑍𝐵)‘𝑖)
116 nfv 1915 . . . . . . 7 𝑖 𝑦 ≤ ((𝑘𝑍𝐵)‘𝑘)
117 fveq2 6645 . . . . . . . 8 (𝑖 = 𝑘 → ((𝑘𝑍𝐵)‘𝑖) = ((𝑘𝑍𝐵)‘𝑘))
118117breq2d 5042 . . . . . . 7 (𝑖 = 𝑘 → (𝑦 ≤ ((𝑘𝑍𝐵)‘𝑖) ↔ 𝑦 ≤ ((𝑘𝑍𝐵)‘𝑘)))
119115, 116, 118cbvralw 3387 . . . . . 6 (∀𝑖𝑍 𝑦 ≤ ((𝑘𝑍𝐵)‘𝑖) ↔ ∀𝑘𝑍 𝑦 ≤ ((𝑘𝑍𝐵)‘𝑘))
120119a1i 11 . . . . 5 (𝜑 → (∀𝑖𝑍 𝑦 ≤ ((𝑘𝑍𝐵)‘𝑖) ↔ ∀𝑘𝑍 𝑦 ≤ ((𝑘𝑍𝐵)‘𝑘)))
12175a1i 11 . . . . . . . 8 (𝜑 → (𝑘𝑍𝐵) = (𝑘𝑍𝐵))
122121, 6fvmpt2d 6758 . . . . . . 7 ((𝜑𝑘𝑍) → ((𝑘𝑍𝐵)‘𝑘) = 𝐵)
123122breq2d 5042 . . . . . 6 ((𝜑𝑘𝑍) → (𝑦 ≤ ((𝑘𝑍𝐵)‘𝑘) ↔ 𝑦𝐵))
1245, 123ralbida 3194 . . . . 5 (𝜑 → (∀𝑘𝑍 𝑦 ≤ ((𝑘𝑍𝐵)‘𝑘) ↔ ∀𝑘𝑍 𝑦𝐵))
125120, 124bitrd 282 . . . 4 (𝜑 → (∀𝑖𝑍 𝑦 ≤ ((𝑘𝑍𝐵)‘𝑖) ↔ ∀𝑘𝑍 𝑦𝐵))
126125rexbidv 3256 . . 3 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑖𝑍 𝑦 ≤ ((𝑘𝑍𝐵)‘𝑖) ↔ ∃𝑦 ∈ ℝ ∀𝑘𝑍 𝑦𝐵))
127110, 126mpbird 260 . 2 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑖𝑍 𝑦 ≤ ((𝑘𝑍𝐵)‘𝑖))
1281, 2, 3, 4, 7, 105, 127climinf2 42349 1 (𝜑 → (𝑘𝑍𝐵) ⇝ inf(ran (𝑘𝑍𝐵), ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wnf 1785  wcel 2111  wral 3106  wrex 3107  csb 3828   class class class wbr 5030  cmpt 5110  ran crn 5520  cfv 6324  (class class class)co 7135  infcinf 8889  cr 10525  1c1 10527   + caddc 10529  *cxr 10663   < clt 10664  cle 10665  cz 11969  cuz 12231  cli 14833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator