Step | Hyp | Ref
| Expression |
1 | | nfv 1917 |
. 2
⊢
Ⅎ𝑖𝜑 |
2 | | nfcv 2907 |
. 2
⊢
Ⅎ𝑖(𝑘 ∈ 𝑍 ↦ 𝐵) |
3 | | climinfmpt.z |
. 2
⊢ 𝑍 =
(ℤ≥‘𝑀) |
4 | | climinfmpt.m |
. 2
⊢ (𝜑 → 𝑀 ∈ ℤ) |
5 | | climinfmpt.p |
. . 3
⊢
Ⅎ𝑘𝜑 |
6 | | climinfmpt.b |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℝ) |
7 | 5, 6 | fmptd2f 42778 |
. 2
⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ 𝐵):𝑍⟶ℝ) |
8 | | nfv 1917 |
. . . . . . 7
⊢
Ⅎ𝑘 𝑖 ∈ 𝑍 |
9 | 5, 8 | nfan 1902 |
. . . . . 6
⊢
Ⅎ𝑘(𝜑 ∧ 𝑖 ∈ 𝑍) |
10 | | nfv 1917 |
. . . . . 6
⊢
Ⅎ𝑘⦋(𝑖 + 1) / 𝑗⦌𝐶 ≤ ⦋𝑖 / 𝑗⦌𝐶 |
11 | 9, 10 | nfim 1899 |
. . . . 5
⊢
Ⅎ𝑘((𝜑 ∧ 𝑖 ∈ 𝑍) → ⦋(𝑖 + 1) / 𝑗⦌𝐶 ≤ ⦋𝑖 / 𝑗⦌𝐶) |
12 | | eleq1 2826 |
. . . . . . 7
⊢ (𝑘 = 𝑖 → (𝑘 ∈ 𝑍 ↔ 𝑖 ∈ 𝑍)) |
13 | 12 | anbi2d 629 |
. . . . . 6
⊢ (𝑘 = 𝑖 → ((𝜑 ∧ 𝑘 ∈ 𝑍) ↔ (𝜑 ∧ 𝑖 ∈ 𝑍))) |
14 | | oveq1 7282 |
. . . . . . . 8
⊢ (𝑘 = 𝑖 → (𝑘 + 1) = (𝑖 + 1)) |
15 | 14 | csbeq1d 3836 |
. . . . . . 7
⊢ (𝑘 = 𝑖 → ⦋(𝑘 + 1) / 𝑗⦌𝐶 = ⦋(𝑖 + 1) / 𝑗⦌𝐶) |
16 | | eqidd 2739 |
. . . . . . . 8
⊢ (𝑘 = 𝑖 → 𝐵 = 𝐵) |
17 | | csbcow 3847 |
. . . . . . . . . . 11
⊢
⦋𝑘 /
𝑗⦌⦋𝑗 / 𝑘⦌𝐵 = ⦋𝑘 / 𝑘⦌𝐵 |
18 | | csbid 3845 |
. . . . . . . . . . 11
⊢
⦋𝑘 /
𝑘⦌𝐵 = 𝐵 |
19 | 17, 18 | eqtr2i 2767 |
. . . . . . . . . 10
⊢ 𝐵 = ⦋𝑘 / 𝑗⦌⦋𝑗 / 𝑘⦌𝐵 |
20 | | nfcv 2907 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑗𝐵 |
21 | | nfcv 2907 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘𝐶 |
22 | | climinfmpt.c |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑗 → 𝐵 = 𝐶) |
23 | 20, 21, 22 | cbvcsbw 3842 |
. . . . . . . . . . . 12
⊢
⦋𝑗 /
𝑘⦌𝐵 = ⦋𝑗 / 𝑗⦌𝐶 |
24 | | csbid 3845 |
. . . . . . . . . . . 12
⊢
⦋𝑗 /
𝑗⦌𝐶 = 𝐶 |
25 | 23, 24 | eqtri 2766 |
. . . . . . . . . . 11
⊢
⦋𝑗 /
𝑘⦌𝐵 = 𝐶 |
26 | 25 | csbeq2i 3840 |
. . . . . . . . . 10
⊢
⦋𝑘 /
𝑗⦌⦋𝑗 / 𝑘⦌𝐵 = ⦋𝑘 / 𝑗⦌𝐶 |
27 | 19, 26 | eqtri 2766 |
. . . . . . . . 9
⊢ 𝐵 = ⦋𝑘 / 𝑗⦌𝐶 |
28 | 27 | a1i 11 |
. . . . . . . 8
⊢ (𝑘 = 𝑖 → 𝐵 = ⦋𝑘 / 𝑗⦌𝐶) |
29 | | csbeq1 3835 |
. . . . . . . 8
⊢ (𝑘 = 𝑖 → ⦋𝑘 / 𝑗⦌𝐶 = ⦋𝑖 / 𝑗⦌𝐶) |
30 | 16, 28, 29 | 3eqtrd 2782 |
. . . . . . 7
⊢ (𝑘 = 𝑖 → 𝐵 = ⦋𝑖 / 𝑗⦌𝐶) |
31 | 15, 30 | breq12d 5087 |
. . . . . 6
⊢ (𝑘 = 𝑖 → (⦋(𝑘 + 1) / 𝑗⦌𝐶 ≤ 𝐵 ↔ ⦋(𝑖 + 1) / 𝑗⦌𝐶 ≤ ⦋𝑖 / 𝑗⦌𝐶)) |
32 | 13, 31 | imbi12d 345 |
. . . . 5
⊢ (𝑘 = 𝑖 → (((𝜑 ∧ 𝑘 ∈ 𝑍) → ⦋(𝑘 + 1) / 𝑗⦌𝐶 ≤ 𝐵) ↔ ((𝜑 ∧ 𝑖 ∈ 𝑍) → ⦋(𝑖 + 1) / 𝑗⦌𝐶 ≤ ⦋𝑖 / 𝑗⦌𝐶))) |
33 | | simpl 483 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝜑) |
34 | | simpr 485 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ 𝑍) |
35 | | eqidd 2739 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝑘 + 1) = (𝑘 + 1)) |
36 | | climinfmpt.j |
. . . . . . . . 9
⊢
Ⅎ𝑗𝜑 |
37 | | nfv 1917 |
. . . . . . . . 9
⊢
Ⅎ𝑗 𝑘 ∈ 𝑍 |
38 | | nfv 1917 |
. . . . . . . . 9
⊢
Ⅎ𝑗(𝑘 + 1) = (𝑘 + 1) |
39 | 36, 37, 38 | nf3an 1904 |
. . . . . . . 8
⊢
Ⅎ𝑗(𝜑 ∧ 𝑘 ∈ 𝑍 ∧ (𝑘 + 1) = (𝑘 + 1)) |
40 | | nfcsb1v 3857 |
. . . . . . . . 9
⊢
Ⅎ𝑗⦋(𝑘 + 1) / 𝑗⦌𝐶 |
41 | | nfcv 2907 |
. . . . . . . . 9
⊢
Ⅎ𝑗
≤ |
42 | 40, 41, 20 | nfbr 5121 |
. . . . . . . 8
⊢
Ⅎ𝑗⦋(𝑘 + 1) / 𝑗⦌𝐶 ≤ 𝐵 |
43 | 39, 42 | nfim 1899 |
. . . . . . 7
⊢
Ⅎ𝑗((𝜑 ∧ 𝑘 ∈ 𝑍 ∧ (𝑘 + 1) = (𝑘 + 1)) → ⦋(𝑘 + 1) / 𝑗⦌𝐶 ≤ 𝐵) |
44 | | ovex 7308 |
. . . . . . 7
⊢ (𝑘 + 1) ∈ V |
45 | | eqeq1 2742 |
. . . . . . . . 9
⊢ (𝑗 = (𝑘 + 1) → (𝑗 = (𝑘 + 1) ↔ (𝑘 + 1) = (𝑘 + 1))) |
46 | 45 | 3anbi3d 1441 |
. . . . . . . 8
⊢ (𝑗 = (𝑘 + 1) → ((𝜑 ∧ 𝑘 ∈ 𝑍 ∧ 𝑗 = (𝑘 + 1)) ↔ (𝜑 ∧ 𝑘 ∈ 𝑍 ∧ (𝑘 + 1) = (𝑘 + 1)))) |
47 | | csbeq1a 3846 |
. . . . . . . . 9
⊢ (𝑗 = (𝑘 + 1) → 𝐶 = ⦋(𝑘 + 1) / 𝑗⦌𝐶) |
48 | 47 | breq1d 5084 |
. . . . . . . 8
⊢ (𝑗 = (𝑘 + 1) → (𝐶 ≤ 𝐵 ↔ ⦋(𝑘 + 1) / 𝑗⦌𝐶 ≤ 𝐵)) |
49 | 46, 48 | imbi12d 345 |
. . . . . . 7
⊢ (𝑗 = (𝑘 + 1) → (((𝜑 ∧ 𝑘 ∈ 𝑍 ∧ 𝑗 = (𝑘 + 1)) → 𝐶 ≤ 𝐵) ↔ ((𝜑 ∧ 𝑘 ∈ 𝑍 ∧ (𝑘 + 1) = (𝑘 + 1)) → ⦋(𝑘 + 1) / 𝑗⦌𝐶 ≤ 𝐵))) |
50 | | climinfmpt.l |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍 ∧ 𝑗 = (𝑘 + 1)) → 𝐶 ≤ 𝐵) |
51 | 43, 44, 49, 50 | vtoclf 3497 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍 ∧ (𝑘 + 1) = (𝑘 + 1)) → ⦋(𝑘 + 1) / 𝑗⦌𝐶 ≤ 𝐵) |
52 | 33, 34, 35, 51 | syl3anc 1370 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ⦋(𝑘 + 1) / 𝑗⦌𝐶 ≤ 𝐵) |
53 | 11, 32, 52 | chvarfv 2233 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → ⦋(𝑖 + 1) / 𝑗⦌𝐶 ≤ ⦋𝑖 / 𝑗⦌𝐶) |
54 | 20, 21, 22 | cbvcsbw 3842 |
. . . . . 6
⊢
⦋(𝑖 +
1) / 𝑘⦌𝐵 = ⦋(𝑖 + 1) / 𝑗⦌𝐶 |
55 | 54 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → ⦋(𝑖 + 1) / 𝑘⦌𝐵 = ⦋(𝑖 + 1) / 𝑗⦌𝐶) |
56 | | eqidd 2739 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → ⦋𝑖 / 𝑗⦌𝐶 = ⦋𝑖 / 𝑗⦌𝐶) |
57 | 55, 56 | breq12d 5087 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → (⦋(𝑖 + 1) / 𝑘⦌𝐵 ≤ ⦋𝑖 / 𝑗⦌𝐶 ↔ ⦋(𝑖 + 1) / 𝑗⦌𝐶 ≤ ⦋𝑖 / 𝑗⦌𝐶)) |
58 | 53, 57 | mpbird 256 |
. . 3
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → ⦋(𝑖 + 1) / 𝑘⦌𝐵 ≤ ⦋𝑖 / 𝑗⦌𝐶) |
59 | 3 | peano2uzs 12642 |
. . . . . 6
⊢ (𝑖 ∈ 𝑍 → (𝑖 + 1) ∈ 𝑍) |
60 | 59 | adantl 482 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → (𝑖 + 1) ∈ 𝑍) |
61 | | nfv 1917 |
. . . . . . . . 9
⊢
Ⅎ𝑘(𝑖 + 1) ∈ 𝑍 |
62 | 5, 61 | nfan 1902 |
. . . . . . . 8
⊢
Ⅎ𝑘(𝜑 ∧ (𝑖 + 1) ∈ 𝑍) |
63 | | nfcv 2907 |
. . . . . . . . . 10
⊢
Ⅎ𝑘(𝑖 + 1) |
64 | 63 | nfcsb1 3856 |
. . . . . . . . 9
⊢
Ⅎ𝑘⦋(𝑖 + 1) / 𝑘⦌𝐵 |
65 | 64 | nfel1 2923 |
. . . . . . . 8
⊢
Ⅎ𝑘⦋(𝑖 + 1) / 𝑘⦌𝐵 ∈ ℝ |
66 | 62, 65 | nfim 1899 |
. . . . . . 7
⊢
Ⅎ𝑘((𝜑 ∧ (𝑖 + 1) ∈ 𝑍) → ⦋(𝑖 + 1) / 𝑘⦌𝐵 ∈ ℝ) |
67 | | ovex 7308 |
. . . . . . 7
⊢ (𝑖 + 1) ∈ V |
68 | | eleq1 2826 |
. . . . . . . . 9
⊢ (𝑘 = (𝑖 + 1) → (𝑘 ∈ 𝑍 ↔ (𝑖 + 1) ∈ 𝑍)) |
69 | 68 | anbi2d 629 |
. . . . . . . 8
⊢ (𝑘 = (𝑖 + 1) → ((𝜑 ∧ 𝑘 ∈ 𝑍) ↔ (𝜑 ∧ (𝑖 + 1) ∈ 𝑍))) |
70 | | csbeq1a 3846 |
. . . . . . . . 9
⊢ (𝑘 = (𝑖 + 1) → 𝐵 = ⦋(𝑖 + 1) / 𝑘⦌𝐵) |
71 | 70 | eleq1d 2823 |
. . . . . . . 8
⊢ (𝑘 = (𝑖 + 1) → (𝐵 ∈ ℝ ↔ ⦋(𝑖 + 1) / 𝑘⦌𝐵 ∈ ℝ)) |
72 | 69, 71 | imbi12d 345 |
. . . . . . 7
⊢ (𝑘 = (𝑖 + 1) → (((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℝ) ↔ ((𝜑 ∧ (𝑖 + 1) ∈ 𝑍) → ⦋(𝑖 + 1) / 𝑘⦌𝐵 ∈ ℝ))) |
73 | 66, 67, 72, 6 | vtoclf 3497 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 + 1) ∈ 𝑍) → ⦋(𝑖 + 1) / 𝑘⦌𝐵 ∈ ℝ) |
74 | 59, 73 | sylan2 593 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → ⦋(𝑖 + 1) / 𝑘⦌𝐵 ∈ ℝ) |
75 | | eqid 2738 |
. . . . . 6
⊢ (𝑘 ∈ 𝑍 ↦ 𝐵) = (𝑘 ∈ 𝑍 ↦ 𝐵) |
76 | 63, 64, 70, 75 | fvmptf 6896 |
. . . . 5
⊢ (((𝑖 + 1) ∈ 𝑍 ∧ ⦋(𝑖 + 1) / 𝑘⦌𝐵 ∈ ℝ) → ((𝑘 ∈ 𝑍 ↦ 𝐵)‘(𝑖 + 1)) = ⦋(𝑖 + 1) / 𝑘⦌𝐵) |
77 | 60, 74, 76 | syl2anc 584 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ 𝐵)‘(𝑖 + 1)) = ⦋(𝑖 + 1) / 𝑘⦌𝐵) |
78 | | simpr 485 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → 𝑖 ∈ 𝑍) |
79 | | nfv 1917 |
. . . . . . . 8
⊢
Ⅎ𝑗 𝑖 ∈ 𝑍 |
80 | 36, 79 | nfan 1902 |
. . . . . . 7
⊢
Ⅎ𝑗(𝜑 ∧ 𝑖 ∈ 𝑍) |
81 | | nfcsb1v 3857 |
. . . . . . . 8
⊢
Ⅎ𝑗⦋𝑖 / 𝑗⦌𝐶 |
82 | | nfcv 2907 |
. . . . . . . 8
⊢
Ⅎ𝑗ℝ |
83 | 81, 82 | nfel 2921 |
. . . . . . 7
⊢
Ⅎ𝑗⦋𝑖 / 𝑗⦌𝐶 ∈ ℝ |
84 | 80, 83 | nfim 1899 |
. . . . . 6
⊢
Ⅎ𝑗((𝜑 ∧ 𝑖 ∈ 𝑍) → ⦋𝑖 / 𝑗⦌𝐶 ∈ ℝ) |
85 | | eleq1 2826 |
. . . . . . . 8
⊢ (𝑗 = 𝑖 → (𝑗 ∈ 𝑍 ↔ 𝑖 ∈ 𝑍)) |
86 | 85 | anbi2d 629 |
. . . . . . 7
⊢ (𝑗 = 𝑖 → ((𝜑 ∧ 𝑗 ∈ 𝑍) ↔ (𝜑 ∧ 𝑖 ∈ 𝑍))) |
87 | | csbeq1a 3846 |
. . . . . . . 8
⊢ (𝑗 = 𝑖 → 𝐶 = ⦋𝑖 / 𝑗⦌𝐶) |
88 | 87 | eleq1d 2823 |
. . . . . . 7
⊢ (𝑗 = 𝑖 → (𝐶 ∈ ℝ ↔ ⦋𝑖 / 𝑗⦌𝐶 ∈ ℝ)) |
89 | 86, 88 | imbi12d 345 |
. . . . . 6
⊢ (𝑗 = 𝑖 → (((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝐶 ∈ ℝ) ↔ ((𝜑 ∧ 𝑖 ∈ 𝑍) → ⦋𝑖 / 𝑗⦌𝐶 ∈ ℝ))) |
90 | | nfv 1917 |
. . . . . . . . 9
⊢
Ⅎ𝑘 𝑗 ∈ 𝑍 |
91 | 5, 90 | nfan 1902 |
. . . . . . . 8
⊢
Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ 𝑍) |
92 | | nfv 1917 |
. . . . . . . 8
⊢
Ⅎ𝑘 𝐶 ∈ ℝ |
93 | 91, 92 | nfim 1899 |
. . . . . . 7
⊢
Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝐶 ∈ ℝ) |
94 | | eleq1 2826 |
. . . . . . . . 9
⊢ (𝑘 = 𝑗 → (𝑘 ∈ 𝑍 ↔ 𝑗 ∈ 𝑍)) |
95 | 94 | anbi2d 629 |
. . . . . . . 8
⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ 𝑍) ↔ (𝜑 ∧ 𝑗 ∈ 𝑍))) |
96 | 22 | eleq1d 2823 |
. . . . . . . 8
⊢ (𝑘 = 𝑗 → (𝐵 ∈ ℝ ↔ 𝐶 ∈ ℝ)) |
97 | 95, 96 | imbi12d 345 |
. . . . . . 7
⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℝ) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝐶 ∈ ℝ))) |
98 | 93, 97, 6 | chvarfv 2233 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝐶 ∈ ℝ) |
99 | 84, 89, 98 | chvarfv 2233 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → ⦋𝑖 / 𝑗⦌𝐶 ∈ ℝ) |
100 | | nfcv 2907 |
. . . . . 6
⊢
Ⅎ𝑘𝑖 |
101 | | nfcv 2907 |
. . . . . 6
⊢
Ⅎ𝑘⦋𝑖 / 𝑗⦌𝐶 |
102 | 100, 101,
30, 75 | fvmptf 6896 |
. . . . 5
⊢ ((𝑖 ∈ 𝑍 ∧ ⦋𝑖 / 𝑗⦌𝐶 ∈ ℝ) → ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑖) = ⦋𝑖 / 𝑗⦌𝐶) |
103 | 78, 99, 102 | syl2anc 584 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑖) = ⦋𝑖 / 𝑗⦌𝐶) |
104 | 77, 103 | breq12d 5087 |
. . 3
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → (((𝑘 ∈ 𝑍 ↦ 𝐵)‘(𝑖 + 1)) ≤ ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑖) ↔ ⦋(𝑖 + 1) / 𝑘⦌𝐵 ≤ ⦋𝑖 / 𝑗⦌𝐶)) |
105 | 58, 104 | mpbird 256 |
. 2
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ 𝐵)‘(𝑖 + 1)) ≤ ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑖)) |
106 | | climinfmpt.e |
. . . 4
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 𝑥 ≤ 𝐵) |
107 | | breq1 5077 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝑥 ≤ 𝐵 ↔ 𝑦 ≤ 𝐵)) |
108 | 107 | ralbidv 3112 |
. . . . 5
⊢ (𝑥 = 𝑦 → (∀𝑘 ∈ 𝑍 𝑥 ≤ 𝐵 ↔ ∀𝑘 ∈ 𝑍 𝑦 ≤ 𝐵)) |
109 | 108 | cbvrexvw 3384 |
. . . 4
⊢
(∃𝑥 ∈
ℝ ∀𝑘 ∈
𝑍 𝑥 ≤ 𝐵 ↔ ∃𝑦 ∈ ℝ ∀𝑘 ∈ 𝑍 𝑦 ≤ 𝐵) |
110 | 106, 109 | sylib 217 |
. . 3
⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑘 ∈ 𝑍 𝑦 ≤ 𝐵) |
111 | | nfcv 2907 |
. . . . . . . 8
⊢
Ⅎ𝑘𝑦 |
112 | | nfcv 2907 |
. . . . . . . 8
⊢
Ⅎ𝑘
≤ |
113 | | nfmpt1 5182 |
. . . . . . . . 9
⊢
Ⅎ𝑘(𝑘 ∈ 𝑍 ↦ 𝐵) |
114 | 113, 100 | nffv 6784 |
. . . . . . . 8
⊢
Ⅎ𝑘((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑖) |
115 | 111, 112,
114 | nfbr 5121 |
. . . . . . 7
⊢
Ⅎ𝑘 𝑦 ≤ ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑖) |
116 | | nfv 1917 |
. . . . . . 7
⊢
Ⅎ𝑖 𝑦 ≤ ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑘) |
117 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑖 = 𝑘 → ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑖) = ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑘)) |
118 | 117 | breq2d 5086 |
. . . . . . 7
⊢ (𝑖 = 𝑘 → (𝑦 ≤ ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑖) ↔ 𝑦 ≤ ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑘))) |
119 | 115, 116,
118 | cbvralw 3373 |
. . . . . 6
⊢
(∀𝑖 ∈
𝑍 𝑦 ≤ ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑖) ↔ ∀𝑘 ∈ 𝑍 𝑦 ≤ ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑘)) |
120 | 119 | a1i 11 |
. . . . 5
⊢ (𝜑 → (∀𝑖 ∈ 𝑍 𝑦 ≤ ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑖) ↔ ∀𝑘 ∈ 𝑍 𝑦 ≤ ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑘))) |
121 | 75 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ 𝐵) = (𝑘 ∈ 𝑍 ↦ 𝐵)) |
122 | 121, 6 | fvmpt2d 6888 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑘) = 𝐵) |
123 | 122 | breq2d 5086 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝑦 ≤ ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑘) ↔ 𝑦 ≤ 𝐵)) |
124 | 5, 123 | ralbida 3159 |
. . . . 5
⊢ (𝜑 → (∀𝑘 ∈ 𝑍 𝑦 ≤ ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑘) ↔ ∀𝑘 ∈ 𝑍 𝑦 ≤ 𝐵)) |
125 | 120, 124 | bitrd 278 |
. . . 4
⊢ (𝜑 → (∀𝑖 ∈ 𝑍 𝑦 ≤ ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑖) ↔ ∀𝑘 ∈ 𝑍 𝑦 ≤ 𝐵)) |
126 | 125 | rexbidv 3226 |
. . 3
⊢ (𝜑 → (∃𝑦 ∈ ℝ ∀𝑖 ∈ 𝑍 𝑦 ≤ ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑖) ↔ ∃𝑦 ∈ ℝ ∀𝑘 ∈ 𝑍 𝑦 ≤ 𝐵)) |
127 | 110, 126 | mpbird 256 |
. 2
⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑖 ∈ 𝑍 𝑦 ≤ ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑖)) |
128 | 1, 2, 3, 4, 7, 105, 127 | climinf2 43248 |
1
⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ 𝐵) ⇝ inf(ran (𝑘 ∈ 𝑍 ↦ 𝐵), ℝ*, <
)) |