| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > meaiininc | Structured version Visualization version GIF version | ||
| Description: Measures are continuous from above: if 𝐸 is a nonincreasing sequence of measurable sets, and any of the sets has finite measure, then the measure of the intersection is the limit of the measures. This is Proposition 112C (f) of [Fremlin1] p. 16. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| Ref | Expression |
|---|---|
| meaiininc.f | ⊢ Ⅎ𝑛𝜑 |
| meaiininc.m | ⊢ (𝜑 → 𝑀 ∈ Meas) |
| meaiininc.n | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| meaiininc.z | ⊢ 𝑍 = (ℤ≥‘𝑁) |
| meaiininc.e | ⊢ (𝜑 → 𝐸:𝑍⟶dom 𝑀) |
| meaiininc.i | ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘(𝑛 + 1)) ⊆ (𝐸‘𝑛)) |
| meaiininc.k | ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘𝑁)) |
| meaiininc.r | ⊢ (𝜑 → (𝑀‘(𝐸‘𝐾)) ∈ ℝ) |
| meaiininc.s | ⊢ 𝑆 = (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) |
| Ref | Expression |
|---|---|
| meaiininc | ⊢ (𝜑 → 𝑆 ⇝ (𝑀‘∩ 𝑛 ∈ 𝑍 (𝐸‘𝑛))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | meaiininc.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ Meas) | |
| 2 | meaiininc.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
| 3 | meaiininc.z | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑁) | |
| 4 | meaiininc.e | . . 3 ⊢ (𝜑 → 𝐸:𝑍⟶dom 𝑀) | |
| 5 | meaiininc.f | . . . . . 6 ⊢ Ⅎ𝑛𝜑 | |
| 6 | nfv 1914 | . . . . . 6 ⊢ Ⅎ𝑛 𝑖 ∈ 𝑍 | |
| 7 | 5, 6 | nfan 1899 | . . . . 5 ⊢ Ⅎ𝑛(𝜑 ∧ 𝑖 ∈ 𝑍) |
| 8 | nfv 1914 | . . . . 5 ⊢ Ⅎ𝑛(𝐸‘(𝑖 + 1)) ⊆ (𝐸‘𝑖) | |
| 9 | 7, 8 | nfim 1896 | . . . 4 ⊢ Ⅎ𝑛((𝜑 ∧ 𝑖 ∈ 𝑍) → (𝐸‘(𝑖 + 1)) ⊆ (𝐸‘𝑖)) |
| 10 | eleq1w 2812 | . . . . . 6 ⊢ (𝑛 = 𝑖 → (𝑛 ∈ 𝑍 ↔ 𝑖 ∈ 𝑍)) | |
| 11 | 10 | anbi2d 630 | . . . . 5 ⊢ (𝑛 = 𝑖 → ((𝜑 ∧ 𝑛 ∈ 𝑍) ↔ (𝜑 ∧ 𝑖 ∈ 𝑍))) |
| 12 | fvoveq1 7413 | . . . . . 6 ⊢ (𝑛 = 𝑖 → (𝐸‘(𝑛 + 1)) = (𝐸‘(𝑖 + 1))) | |
| 13 | fveq2 6861 | . . . . . 6 ⊢ (𝑛 = 𝑖 → (𝐸‘𝑛) = (𝐸‘𝑖)) | |
| 14 | 12, 13 | sseq12d 3983 | . . . . 5 ⊢ (𝑛 = 𝑖 → ((𝐸‘(𝑛 + 1)) ⊆ (𝐸‘𝑛) ↔ (𝐸‘(𝑖 + 1)) ⊆ (𝐸‘𝑖))) |
| 15 | 11, 14 | imbi12d 344 | . . . 4 ⊢ (𝑛 = 𝑖 → (((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘(𝑛 + 1)) ⊆ (𝐸‘𝑛)) ↔ ((𝜑 ∧ 𝑖 ∈ 𝑍) → (𝐸‘(𝑖 + 1)) ⊆ (𝐸‘𝑖)))) |
| 16 | meaiininc.i | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘(𝑛 + 1)) ⊆ (𝐸‘𝑛)) | |
| 17 | 9, 15, 16 | chvarfv 2241 | . . 3 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → (𝐸‘(𝑖 + 1)) ⊆ (𝐸‘𝑖)) |
| 18 | meaiininc.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘𝑁)) | |
| 19 | meaiininc.r | . . 3 ⊢ (𝜑 → (𝑀‘(𝐸‘𝐾)) ∈ ℝ) | |
| 20 | 2fveq3 6866 | . . . 4 ⊢ (𝑚 = 𝑖 → (𝑀‘(𝐸‘𝑚)) = (𝑀‘(𝐸‘𝑖))) | |
| 21 | 20 | cbvmptv 5214 | . . 3 ⊢ (𝑚 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑚))) = (𝑖 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑖))) |
| 22 | 13 | difeq2d 4092 | . . . 4 ⊢ (𝑛 = 𝑖 → ((𝐸‘𝐾) ∖ (𝐸‘𝑛)) = ((𝐸‘𝐾) ∖ (𝐸‘𝑖))) |
| 23 | 22 | cbvmptv 5214 | . . 3 ⊢ (𝑛 ∈ 𝑍 ↦ ((𝐸‘𝐾) ∖ (𝐸‘𝑛))) = (𝑖 ∈ 𝑍 ↦ ((𝐸‘𝐾) ∖ (𝐸‘𝑖))) |
| 24 | fveq2 6861 | . . . 4 ⊢ (𝑚 = 𝑖 → ((𝑛 ∈ 𝑍 ↦ ((𝐸‘𝐾) ∖ (𝐸‘𝑛)))‘𝑚) = ((𝑛 ∈ 𝑍 ↦ ((𝐸‘𝐾) ∖ (𝐸‘𝑛)))‘𝑖)) | |
| 25 | 24 | cbviunv 5007 | . . 3 ⊢ ∪ 𝑚 ∈ 𝑍 ((𝑛 ∈ 𝑍 ↦ ((𝐸‘𝐾) ∖ (𝐸‘𝑛)))‘𝑚) = ∪ 𝑖 ∈ 𝑍 ((𝑛 ∈ 𝑍 ↦ ((𝐸‘𝐾) ∖ (𝐸‘𝑛)))‘𝑖) |
| 26 | 1, 2, 3, 4, 17, 18, 19, 21, 23, 25 | meaiininclem 46491 | . 2 ⊢ (𝜑 → (𝑚 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑚))) ⇝ (𝑀‘∩ 𝑖 ∈ 𝑍 (𝐸‘𝑖))) |
| 27 | meaiininc.s | . . . . 5 ⊢ 𝑆 = (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) | |
| 28 | 2fveq3 6866 | . . . . . 6 ⊢ (𝑛 = 𝑚 → (𝑀‘(𝐸‘𝑛)) = (𝑀‘(𝐸‘𝑚))) | |
| 29 | 28 | cbvmptv 5214 | . . . . 5 ⊢ (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) = (𝑚 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑚))) |
| 30 | 27, 29 | eqtri 2753 | . . . 4 ⊢ 𝑆 = (𝑚 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑚))) |
| 31 | 30 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑆 = (𝑚 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑚)))) |
| 32 | 13 | cbviinv 5008 | . . . . 5 ⊢ ∩ 𝑛 ∈ 𝑍 (𝐸‘𝑛) = ∩ 𝑖 ∈ 𝑍 (𝐸‘𝑖) |
| 33 | 32 | fveq2i 6864 | . . . 4 ⊢ (𝑀‘∩ 𝑛 ∈ 𝑍 (𝐸‘𝑛)) = (𝑀‘∩ 𝑖 ∈ 𝑍 (𝐸‘𝑖)) |
| 34 | 33 | a1i 11 | . . 3 ⊢ (𝜑 → (𝑀‘∩ 𝑛 ∈ 𝑍 (𝐸‘𝑛)) = (𝑀‘∩ 𝑖 ∈ 𝑍 (𝐸‘𝑖))) |
| 35 | 31, 34 | breq12d 5123 | . 2 ⊢ (𝜑 → (𝑆 ⇝ (𝑀‘∩ 𝑛 ∈ 𝑍 (𝐸‘𝑛)) ↔ (𝑚 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑚))) ⇝ (𝑀‘∩ 𝑖 ∈ 𝑍 (𝐸‘𝑖)))) |
| 36 | 26, 35 | mpbird 257 | 1 ⊢ (𝜑 → 𝑆 ⇝ (𝑀‘∩ 𝑛 ∈ 𝑍 (𝐸‘𝑛))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 ∖ cdif 3914 ⊆ wss 3917 ∪ ciun 4958 ∩ ciin 4959 class class class wbr 5110 ↦ cmpt 5191 dom cdm 5641 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ℝcr 11074 1c1 11076 + caddc 11078 ℤcz 12536 ℤ≥cuz 12800 ⇝ cli 15457 Meascmea 46454 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-disj 5078 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-oadd 8441 df-omul 8442 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-oi 9470 df-card 9899 df-acn 9902 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-z 12537 df-uz 12801 df-rp 12959 df-xadd 13080 df-ico 13319 df-icc 13320 df-fz 13476 df-fzo 13623 df-seq 13974 df-exp 14034 df-hash 14303 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-clim 15461 df-sum 15660 df-salg 46314 df-sumge0 46368 df-mea 46455 |
| This theorem is referenced by: meaiininc2 46493 vonicclem2 46689 |
| Copyright terms: Public domain | W3C validator |