| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > meaiininc | Structured version Visualization version GIF version | ||
| Description: Measures are continuous from above: if 𝐸 is a nonincreasing sequence of measurable sets, and any of the sets has finite measure, then the measure of the intersection is the limit of the measures. This is Proposition 112C (f) of [Fremlin1] p. 16. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| Ref | Expression |
|---|---|
| meaiininc.f | ⊢ Ⅎ𝑛𝜑 |
| meaiininc.m | ⊢ (𝜑 → 𝑀 ∈ Meas) |
| meaiininc.n | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| meaiininc.z | ⊢ 𝑍 = (ℤ≥‘𝑁) |
| meaiininc.e | ⊢ (𝜑 → 𝐸:𝑍⟶dom 𝑀) |
| meaiininc.i | ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘(𝑛 + 1)) ⊆ (𝐸‘𝑛)) |
| meaiininc.k | ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘𝑁)) |
| meaiininc.r | ⊢ (𝜑 → (𝑀‘(𝐸‘𝐾)) ∈ ℝ) |
| meaiininc.s | ⊢ 𝑆 = (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) |
| Ref | Expression |
|---|---|
| meaiininc | ⊢ (𝜑 → 𝑆 ⇝ (𝑀‘∩ 𝑛 ∈ 𝑍 (𝐸‘𝑛))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | meaiininc.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ Meas) | |
| 2 | meaiininc.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
| 3 | meaiininc.z | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑁) | |
| 4 | meaiininc.e | . . 3 ⊢ (𝜑 → 𝐸:𝑍⟶dom 𝑀) | |
| 5 | meaiininc.f | . . . . . 6 ⊢ Ⅎ𝑛𝜑 | |
| 6 | nfv 1914 | . . . . . 6 ⊢ Ⅎ𝑛 𝑖 ∈ 𝑍 | |
| 7 | 5, 6 | nfan 1899 | . . . . 5 ⊢ Ⅎ𝑛(𝜑 ∧ 𝑖 ∈ 𝑍) |
| 8 | nfv 1914 | . . . . 5 ⊢ Ⅎ𝑛(𝐸‘(𝑖 + 1)) ⊆ (𝐸‘𝑖) | |
| 9 | 7, 8 | nfim 1896 | . . . 4 ⊢ Ⅎ𝑛((𝜑 ∧ 𝑖 ∈ 𝑍) → (𝐸‘(𝑖 + 1)) ⊆ (𝐸‘𝑖)) |
| 10 | eleq1w 2817 | . . . . . 6 ⊢ (𝑛 = 𝑖 → (𝑛 ∈ 𝑍 ↔ 𝑖 ∈ 𝑍)) | |
| 11 | 10 | anbi2d 630 | . . . . 5 ⊢ (𝑛 = 𝑖 → ((𝜑 ∧ 𝑛 ∈ 𝑍) ↔ (𝜑 ∧ 𝑖 ∈ 𝑍))) |
| 12 | fvoveq1 7428 | . . . . . 6 ⊢ (𝑛 = 𝑖 → (𝐸‘(𝑛 + 1)) = (𝐸‘(𝑖 + 1))) | |
| 13 | fveq2 6876 | . . . . . 6 ⊢ (𝑛 = 𝑖 → (𝐸‘𝑛) = (𝐸‘𝑖)) | |
| 14 | 12, 13 | sseq12d 3992 | . . . . 5 ⊢ (𝑛 = 𝑖 → ((𝐸‘(𝑛 + 1)) ⊆ (𝐸‘𝑛) ↔ (𝐸‘(𝑖 + 1)) ⊆ (𝐸‘𝑖))) |
| 15 | 11, 14 | imbi12d 344 | . . . 4 ⊢ (𝑛 = 𝑖 → (((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘(𝑛 + 1)) ⊆ (𝐸‘𝑛)) ↔ ((𝜑 ∧ 𝑖 ∈ 𝑍) → (𝐸‘(𝑖 + 1)) ⊆ (𝐸‘𝑖)))) |
| 16 | meaiininc.i | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘(𝑛 + 1)) ⊆ (𝐸‘𝑛)) | |
| 17 | 9, 15, 16 | chvarfv 2240 | . . 3 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → (𝐸‘(𝑖 + 1)) ⊆ (𝐸‘𝑖)) |
| 18 | meaiininc.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘𝑁)) | |
| 19 | meaiininc.r | . . 3 ⊢ (𝜑 → (𝑀‘(𝐸‘𝐾)) ∈ ℝ) | |
| 20 | 2fveq3 6881 | . . . 4 ⊢ (𝑚 = 𝑖 → (𝑀‘(𝐸‘𝑚)) = (𝑀‘(𝐸‘𝑖))) | |
| 21 | 20 | cbvmptv 5225 | . . 3 ⊢ (𝑚 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑚))) = (𝑖 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑖))) |
| 22 | 13 | difeq2d 4101 | . . . 4 ⊢ (𝑛 = 𝑖 → ((𝐸‘𝐾) ∖ (𝐸‘𝑛)) = ((𝐸‘𝐾) ∖ (𝐸‘𝑖))) |
| 23 | 22 | cbvmptv 5225 | . . 3 ⊢ (𝑛 ∈ 𝑍 ↦ ((𝐸‘𝐾) ∖ (𝐸‘𝑛))) = (𝑖 ∈ 𝑍 ↦ ((𝐸‘𝐾) ∖ (𝐸‘𝑖))) |
| 24 | fveq2 6876 | . . . 4 ⊢ (𝑚 = 𝑖 → ((𝑛 ∈ 𝑍 ↦ ((𝐸‘𝐾) ∖ (𝐸‘𝑛)))‘𝑚) = ((𝑛 ∈ 𝑍 ↦ ((𝐸‘𝐾) ∖ (𝐸‘𝑛)))‘𝑖)) | |
| 25 | 24 | cbviunv 5016 | . . 3 ⊢ ∪ 𝑚 ∈ 𝑍 ((𝑛 ∈ 𝑍 ↦ ((𝐸‘𝐾) ∖ (𝐸‘𝑛)))‘𝑚) = ∪ 𝑖 ∈ 𝑍 ((𝑛 ∈ 𝑍 ↦ ((𝐸‘𝐾) ∖ (𝐸‘𝑛)))‘𝑖) |
| 26 | 1, 2, 3, 4, 17, 18, 19, 21, 23, 25 | meaiininclem 46515 | . 2 ⊢ (𝜑 → (𝑚 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑚))) ⇝ (𝑀‘∩ 𝑖 ∈ 𝑍 (𝐸‘𝑖))) |
| 27 | meaiininc.s | . . . . 5 ⊢ 𝑆 = (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) | |
| 28 | 2fveq3 6881 | . . . . . 6 ⊢ (𝑛 = 𝑚 → (𝑀‘(𝐸‘𝑛)) = (𝑀‘(𝐸‘𝑚))) | |
| 29 | 28 | cbvmptv 5225 | . . . . 5 ⊢ (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) = (𝑚 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑚))) |
| 30 | 27, 29 | eqtri 2758 | . . . 4 ⊢ 𝑆 = (𝑚 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑚))) |
| 31 | 30 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑆 = (𝑚 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑚)))) |
| 32 | 13 | cbviinv 5017 | . . . . 5 ⊢ ∩ 𝑛 ∈ 𝑍 (𝐸‘𝑛) = ∩ 𝑖 ∈ 𝑍 (𝐸‘𝑖) |
| 33 | 32 | fveq2i 6879 | . . . 4 ⊢ (𝑀‘∩ 𝑛 ∈ 𝑍 (𝐸‘𝑛)) = (𝑀‘∩ 𝑖 ∈ 𝑍 (𝐸‘𝑖)) |
| 34 | 33 | a1i 11 | . . 3 ⊢ (𝜑 → (𝑀‘∩ 𝑛 ∈ 𝑍 (𝐸‘𝑛)) = (𝑀‘∩ 𝑖 ∈ 𝑍 (𝐸‘𝑖))) |
| 35 | 31, 34 | breq12d 5132 | . 2 ⊢ (𝜑 → (𝑆 ⇝ (𝑀‘∩ 𝑛 ∈ 𝑍 (𝐸‘𝑛)) ↔ (𝑚 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑚))) ⇝ (𝑀‘∩ 𝑖 ∈ 𝑍 (𝐸‘𝑖)))) |
| 36 | 26, 35 | mpbird 257 | 1 ⊢ (𝜑 → 𝑆 ⇝ (𝑀‘∩ 𝑛 ∈ 𝑍 (𝐸‘𝑛))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2108 ∖ cdif 3923 ⊆ wss 3926 ∪ ciun 4967 ∩ ciin 4968 class class class wbr 5119 ↦ cmpt 5201 dom cdm 5654 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 ℝcr 11128 1c1 11130 + caddc 11132 ℤcz 12588 ℤ≥cuz 12852 ⇝ cli 15500 Meascmea 46478 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-disj 5087 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-oadd 8484 df-omul 8485 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-sup 9454 df-oi 9524 df-card 9953 df-acn 9956 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-n0 12502 df-z 12589 df-uz 12853 df-rp 13009 df-xadd 13129 df-ico 13368 df-icc 13369 df-fz 13525 df-fzo 13672 df-seq 14020 df-exp 14080 df-hash 14349 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-clim 15504 df-sum 15703 df-salg 46338 df-sumge0 46392 df-mea 46479 |
| This theorem is referenced by: meaiininc2 46517 vonicclem2 46713 |
| Copyright terms: Public domain | W3C validator |