| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > meaiininc | Structured version Visualization version GIF version | ||
| Description: Measures are continuous from above: if 𝐸 is a nonincreasing sequence of measurable sets, and any of the sets has finite measure, then the measure of the intersection is the limit of the measures. This is Proposition 112C (f) of [Fremlin1] p. 16. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| Ref | Expression |
|---|---|
| meaiininc.f | ⊢ Ⅎ𝑛𝜑 |
| meaiininc.m | ⊢ (𝜑 → 𝑀 ∈ Meas) |
| meaiininc.n | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| meaiininc.z | ⊢ 𝑍 = (ℤ≥‘𝑁) |
| meaiininc.e | ⊢ (𝜑 → 𝐸:𝑍⟶dom 𝑀) |
| meaiininc.i | ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘(𝑛 + 1)) ⊆ (𝐸‘𝑛)) |
| meaiininc.k | ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘𝑁)) |
| meaiininc.r | ⊢ (𝜑 → (𝑀‘(𝐸‘𝐾)) ∈ ℝ) |
| meaiininc.s | ⊢ 𝑆 = (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) |
| Ref | Expression |
|---|---|
| meaiininc | ⊢ (𝜑 → 𝑆 ⇝ (𝑀‘∩ 𝑛 ∈ 𝑍 (𝐸‘𝑛))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | meaiininc.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ Meas) | |
| 2 | meaiininc.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
| 3 | meaiininc.z | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑁) | |
| 4 | meaiininc.e | . . 3 ⊢ (𝜑 → 𝐸:𝑍⟶dom 𝑀) | |
| 5 | meaiininc.f | . . . . . 6 ⊢ Ⅎ𝑛𝜑 | |
| 6 | nfv 1913 | . . . . . 6 ⊢ Ⅎ𝑛 𝑖 ∈ 𝑍 | |
| 7 | 5, 6 | nfan 1898 | . . . . 5 ⊢ Ⅎ𝑛(𝜑 ∧ 𝑖 ∈ 𝑍) |
| 8 | nfv 1913 | . . . . 5 ⊢ Ⅎ𝑛(𝐸‘(𝑖 + 1)) ⊆ (𝐸‘𝑖) | |
| 9 | 7, 8 | nfim 1895 | . . . 4 ⊢ Ⅎ𝑛((𝜑 ∧ 𝑖 ∈ 𝑍) → (𝐸‘(𝑖 + 1)) ⊆ (𝐸‘𝑖)) |
| 10 | eleq1w 2816 | . . . . . 6 ⊢ (𝑛 = 𝑖 → (𝑛 ∈ 𝑍 ↔ 𝑖 ∈ 𝑍)) | |
| 11 | 10 | anbi2d 630 | . . . . 5 ⊢ (𝑛 = 𝑖 → ((𝜑 ∧ 𝑛 ∈ 𝑍) ↔ (𝜑 ∧ 𝑖 ∈ 𝑍))) |
| 12 | fvoveq1 7436 | . . . . . 6 ⊢ (𝑛 = 𝑖 → (𝐸‘(𝑛 + 1)) = (𝐸‘(𝑖 + 1))) | |
| 13 | fveq2 6886 | . . . . . 6 ⊢ (𝑛 = 𝑖 → (𝐸‘𝑛) = (𝐸‘𝑖)) | |
| 14 | 12, 13 | sseq12d 3997 | . . . . 5 ⊢ (𝑛 = 𝑖 → ((𝐸‘(𝑛 + 1)) ⊆ (𝐸‘𝑛) ↔ (𝐸‘(𝑖 + 1)) ⊆ (𝐸‘𝑖))) |
| 15 | 11, 14 | imbi12d 344 | . . . 4 ⊢ (𝑛 = 𝑖 → (((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘(𝑛 + 1)) ⊆ (𝐸‘𝑛)) ↔ ((𝜑 ∧ 𝑖 ∈ 𝑍) → (𝐸‘(𝑖 + 1)) ⊆ (𝐸‘𝑖)))) |
| 16 | meaiininc.i | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘(𝑛 + 1)) ⊆ (𝐸‘𝑛)) | |
| 17 | 9, 15, 16 | chvarfv 2239 | . . 3 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → (𝐸‘(𝑖 + 1)) ⊆ (𝐸‘𝑖)) |
| 18 | meaiininc.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘𝑁)) | |
| 19 | meaiininc.r | . . 3 ⊢ (𝜑 → (𝑀‘(𝐸‘𝐾)) ∈ ℝ) | |
| 20 | 2fveq3 6891 | . . . 4 ⊢ (𝑚 = 𝑖 → (𝑀‘(𝐸‘𝑚)) = (𝑀‘(𝐸‘𝑖))) | |
| 21 | 20 | cbvmptv 5235 | . . 3 ⊢ (𝑚 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑚))) = (𝑖 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑖))) |
| 22 | 13 | difeq2d 4106 | . . . 4 ⊢ (𝑛 = 𝑖 → ((𝐸‘𝐾) ∖ (𝐸‘𝑛)) = ((𝐸‘𝐾) ∖ (𝐸‘𝑖))) |
| 23 | 22 | cbvmptv 5235 | . . 3 ⊢ (𝑛 ∈ 𝑍 ↦ ((𝐸‘𝐾) ∖ (𝐸‘𝑛))) = (𝑖 ∈ 𝑍 ↦ ((𝐸‘𝐾) ∖ (𝐸‘𝑖))) |
| 24 | fveq2 6886 | . . . 4 ⊢ (𝑚 = 𝑖 → ((𝑛 ∈ 𝑍 ↦ ((𝐸‘𝐾) ∖ (𝐸‘𝑛)))‘𝑚) = ((𝑛 ∈ 𝑍 ↦ ((𝐸‘𝐾) ∖ (𝐸‘𝑛)))‘𝑖)) | |
| 25 | 24 | cbviunv 5020 | . . 3 ⊢ ∪ 𝑚 ∈ 𝑍 ((𝑛 ∈ 𝑍 ↦ ((𝐸‘𝐾) ∖ (𝐸‘𝑛)))‘𝑚) = ∪ 𝑖 ∈ 𝑍 ((𝑛 ∈ 𝑍 ↦ ((𝐸‘𝐾) ∖ (𝐸‘𝑛)))‘𝑖) |
| 26 | 1, 2, 3, 4, 17, 18, 19, 21, 23, 25 | meaiininclem 46473 | . 2 ⊢ (𝜑 → (𝑚 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑚))) ⇝ (𝑀‘∩ 𝑖 ∈ 𝑍 (𝐸‘𝑖))) |
| 27 | meaiininc.s | . . . . 5 ⊢ 𝑆 = (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) | |
| 28 | 2fveq3 6891 | . . . . . 6 ⊢ (𝑛 = 𝑚 → (𝑀‘(𝐸‘𝑛)) = (𝑀‘(𝐸‘𝑚))) | |
| 29 | 28 | cbvmptv 5235 | . . . . 5 ⊢ (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) = (𝑚 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑚))) |
| 30 | 27, 29 | eqtri 2757 | . . . 4 ⊢ 𝑆 = (𝑚 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑚))) |
| 31 | 30 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑆 = (𝑚 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑚)))) |
| 32 | 13 | cbviinv 5021 | . . . . 5 ⊢ ∩ 𝑛 ∈ 𝑍 (𝐸‘𝑛) = ∩ 𝑖 ∈ 𝑍 (𝐸‘𝑖) |
| 33 | 32 | fveq2i 6889 | . . . 4 ⊢ (𝑀‘∩ 𝑛 ∈ 𝑍 (𝐸‘𝑛)) = (𝑀‘∩ 𝑖 ∈ 𝑍 (𝐸‘𝑖)) |
| 34 | 33 | a1i 11 | . . 3 ⊢ (𝜑 → (𝑀‘∩ 𝑛 ∈ 𝑍 (𝐸‘𝑛)) = (𝑀‘∩ 𝑖 ∈ 𝑍 (𝐸‘𝑖))) |
| 35 | 31, 34 | breq12d 5136 | . 2 ⊢ (𝜑 → (𝑆 ⇝ (𝑀‘∩ 𝑛 ∈ 𝑍 (𝐸‘𝑛)) ↔ (𝑚 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑚))) ⇝ (𝑀‘∩ 𝑖 ∈ 𝑍 (𝐸‘𝑖)))) |
| 36 | 26, 35 | mpbird 257 | 1 ⊢ (𝜑 → 𝑆 ⇝ (𝑀‘∩ 𝑛 ∈ 𝑍 (𝐸‘𝑛))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 Ⅎwnf 1782 ∈ wcel 2107 ∖ cdif 3928 ⊆ wss 3931 ∪ ciun 4971 ∩ ciin 4972 class class class wbr 5123 ↦ cmpt 5205 dom cdm 5665 ⟶wf 6537 ‘cfv 6541 (class class class)co 7413 ℝcr 11136 1c1 11138 + caddc 11140 ℤcz 12596 ℤ≥cuz 12860 ⇝ cli 15503 Meascmea 46436 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-inf2 9663 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 ax-pre-sup 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-iin 4974 df-disj 5091 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-se 5618 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-isom 6550 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-2o 8489 df-oadd 8492 df-omul 8493 df-er 8727 df-map 8850 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-sup 9464 df-oi 9532 df-card 9961 df-acn 9964 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-div 11903 df-nn 12249 df-2 12311 df-3 12312 df-n0 12510 df-z 12597 df-uz 12861 df-rp 13017 df-xadd 13137 df-ico 13375 df-icc 13376 df-fz 13530 df-fzo 13677 df-seq 14025 df-exp 14085 df-hash 14353 df-cj 15121 df-re 15122 df-im 15123 df-sqrt 15257 df-abs 15258 df-clim 15507 df-sum 15706 df-salg 46296 df-sumge0 46350 df-mea 46437 |
| This theorem is referenced by: meaiininc2 46475 vonicclem2 46671 |
| Copyright terms: Public domain | W3C validator |