Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smflimlem6 Structured version   Visualization version   GIF version

Theorem smflimlem6 46774
Description: Lemma for the proof that the limit of sigma-measurable functions is sigma-measurable, Proposition 121F (a) of [Fremlin1] p. 38 . This lemma proves that the preimages of right-closed, unbounded-below intervals are in the subspace sigma-algebra induced by 𝐷. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smflimlem6.1 (𝜑𝑀 ∈ ℤ)
smflimlem6.2 𝑍 = (ℤ𝑀)
smflimlem6.3 (𝜑𝑆 ∈ SAlg)
smflimlem6.4 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smflimlem6.5 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
smflimlem6.6 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
smflimlem6.7 (𝜑𝐴 ∈ ℝ)
smflimlem6.8 𝑃 = (𝑚𝑍, 𝑘 ∈ ℕ ↦ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
Assertion
Ref Expression
smflimlem6 (𝜑 → {𝑥𝐷 ∣ (𝐺𝑥) ≤ 𝐴} ∈ (𝑆t 𝐷))
Distinct variable groups:   𝐴,𝑘,𝑚,𝑛,𝑥   𝐴,𝑠,𝑘,𝑚,𝑥   𝐷,𝑘,𝑚,𝑛,𝑥   𝑘,𝐹,𝑚,𝑛,𝑥   𝐹,𝑠   𝑘,𝐺,𝑚,𝑛   𝑚,𝑀   𝑃,𝑘,𝑚,𝑛,𝑥   𝑃,𝑠   𝑆,𝑘,𝑚,𝑛   𝑆,𝑠   𝑘,𝑍,𝑚,𝑛,𝑥   𝑍,𝑠   𝜑,𝑘,𝑚,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑠)   𝐷(𝑠)   𝑆(𝑥)   𝐺(𝑥,𝑠)   𝑀(𝑥,𝑘,𝑛,𝑠)

Proof of Theorem smflimlem6
Dummy variables 𝑐 𝑟 𝑖 𝑗 𝑙 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smflimlem6.2 . . . . . . . 8 𝑍 = (ℤ𝑀)
21fvexi 6872 . . . . . . 7 𝑍 ∈ V
3 nnex 12192 . . . . . . 7 ℕ ∈ V
42, 3xpex 7729 . . . . . 6 (𝑍 × ℕ) ∈ V
54a1i 11 . . . . 5 (𝜑 → (𝑍 × ℕ) ∈ V)
6 eqid 2729 . . . . . . . . 9 {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))}
7 smflimlem6.3 . . . . . . . . 9 (𝜑𝑆 ∈ SAlg)
86, 7rabexd 5295 . . . . . . . 8 (𝜑 → {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V)
98adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑚𝑍𝑘 ∈ ℕ)) → {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V)
109ralrimivva 3180 . . . . . 6 (𝜑 → ∀𝑚𝑍𝑘 ∈ ℕ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V)
11 smflimlem6.8 . . . . . . 7 𝑃 = (𝑚𝑍, 𝑘 ∈ ℕ ↦ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
1211fnmpo 8048 . . . . . 6 (∀𝑚𝑍𝑘 ∈ ℕ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V → 𝑃 Fn (𝑍 × ℕ))
1310, 12syl 17 . . . . 5 (𝜑𝑃 Fn (𝑍 × ℕ))
14 fnrndomg 10489 . . . . 5 ((𝑍 × ℕ) ∈ V → (𝑃 Fn (𝑍 × ℕ) → ran 𝑃 ≼ (𝑍 × ℕ)))
155, 13, 14sylc 65 . . . 4 (𝜑 → ran 𝑃 ≼ (𝑍 × ℕ))
161uzct 45057 . . . . . . 7 𝑍 ≼ ω
17 nnct 13946 . . . . . . 7 ℕ ≼ ω
1816, 17pm3.2i 470 . . . . . 6 (𝑍 ≼ ω ∧ ℕ ≼ ω)
19 xpct 9969 . . . . . 6 ((𝑍 ≼ ω ∧ ℕ ≼ ω) → (𝑍 × ℕ) ≼ ω)
2018, 19ax-mp 5 . . . . 5 (𝑍 × ℕ) ≼ ω
2120a1i 11 . . . 4 (𝜑 → (𝑍 × ℕ) ≼ ω)
22 domtr 8978 . . . 4 ((ran 𝑃 ≼ (𝑍 × ℕ) ∧ (𝑍 × ℕ) ≼ ω) → ran 𝑃 ≼ ω)
2315, 21, 22syl2anc 584 . . 3 (𝜑 → ran 𝑃 ≼ ω)
24 vex 3451 . . . . . . 7 𝑦 ∈ V
2511elrnmpog 7524 . . . . . . 7 (𝑦 ∈ V → (𝑦 ∈ ran 𝑃 ↔ ∃𝑚𝑍𝑘 ∈ ℕ 𝑦 = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))}))
2624, 25ax-mp 5 . . . . . 6 (𝑦 ∈ ran 𝑃 ↔ ∃𝑚𝑍𝑘 ∈ ℕ 𝑦 = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
2726biimpi 216 . . . . 5 (𝑦 ∈ ran 𝑃 → ∃𝑚𝑍𝑘 ∈ ℕ 𝑦 = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
2827adantl 481 . . . 4 ((𝜑𝑦 ∈ ran 𝑃) → ∃𝑚𝑍𝑘 ∈ ℕ 𝑦 = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
29 simp3 1138 . . . . . . . 8 ((𝜑 ∧ (𝑚𝑍𝑘 ∈ ℕ) ∧ 𝑦 = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))}) → 𝑦 = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
307adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚𝑍𝑘 ∈ ℕ)) → 𝑆 ∈ SAlg)
31 smflimlem6.4 . . . . . . . . . . . . . 14 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
3231ffvelcdmda 7056 . . . . . . . . . . . . 13 ((𝜑𝑚𝑍) → (𝐹𝑚) ∈ (SMblFn‘𝑆))
3332adantrr 717 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚𝑍𝑘 ∈ ℕ)) → (𝐹𝑚) ∈ (SMblFn‘𝑆))
34 eqid 2729 . . . . . . . . . . . 12 dom (𝐹𝑚) = dom (𝐹𝑚)
35 smflimlem6.7 . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ ℝ)
3635adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ ℝ)
37 nnrecre 12228 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℝ)
3837adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (1 / 𝑘) ∈ ℝ)
3936, 38readdcld 11203 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (𝐴 + (1 / 𝑘)) ∈ ℝ)
4039adantrl 716 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚𝑍𝑘 ∈ ℕ)) → (𝐴 + (1 / 𝑘)) ∈ ℝ)
4130, 33, 34, 40smfpreimalt 46729 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚𝑍𝑘 ∈ ℕ)) → {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} ∈ (𝑆t dom (𝐹𝑚)))
42 fvex 6871 . . . . . . . . . . . . . . 15 (𝐹𝑚) ∈ V
4342dmex 7885 . . . . . . . . . . . . . 14 dom (𝐹𝑚) ∈ V
4443a1i 11 . . . . . . . . . . . . 13 (𝜑 → dom (𝐹𝑚) ∈ V)
45 elrest 17390 . . . . . . . . . . . . 13 ((𝑆 ∈ SAlg ∧ dom (𝐹𝑚) ∈ V) → ({𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} ∈ (𝑆t dom (𝐹𝑚)) ↔ ∃𝑠𝑆 {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))))
467, 44, 45syl2anc 584 . . . . . . . . . . . 12 (𝜑 → ({𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} ∈ (𝑆t dom (𝐹𝑚)) ↔ ∃𝑠𝑆 {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))))
4746adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚𝑍𝑘 ∈ ℕ)) → ({𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} ∈ (𝑆t dom (𝐹𝑚)) ↔ ∃𝑠𝑆 {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))))
4841, 47mpbid 232 . . . . . . . . . 10 ((𝜑 ∧ (𝑚𝑍𝑘 ∈ ℕ)) → ∃𝑠𝑆 {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚)))
49 rabn0 4352 . . . . . . . . . 10 ({𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ≠ ∅ ↔ ∃𝑠𝑆 {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚)))
5048, 49sylibr 234 . . . . . . . . 9 ((𝜑 ∧ (𝑚𝑍𝑘 ∈ ℕ)) → {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ≠ ∅)
51503adant3 1132 . . . . . . . 8 ((𝜑 ∧ (𝑚𝑍𝑘 ∈ ℕ) ∧ 𝑦 = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))}) → {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ≠ ∅)
5229, 51eqnetrd 2992 . . . . . . 7 ((𝜑 ∧ (𝑚𝑍𝑘 ∈ ℕ) ∧ 𝑦 = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))}) → 𝑦 ≠ ∅)
53523exp 1119 . . . . . 6 (𝜑 → ((𝑚𝑍𝑘 ∈ ℕ) → (𝑦 = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} → 𝑦 ≠ ∅)))
5453rexlimdvv 3193 . . . . 5 (𝜑 → (∃𝑚𝑍𝑘 ∈ ℕ 𝑦 = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} → 𝑦 ≠ ∅))
5554adantr 480 . . . 4 ((𝜑𝑦 ∈ ran 𝑃) → (∃𝑚𝑍𝑘 ∈ ℕ 𝑦 = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} → 𝑦 ≠ ∅))
5628, 55mpd 15 . . 3 ((𝜑𝑦 ∈ ran 𝑃) → 𝑦 ≠ ∅)
5723, 56axccd2 45224 . 2 (𝜑 → ∃𝑐𝑦 ∈ ran 𝑃(𝑐𝑦) ∈ 𝑦)
58 smflimlem6.1 . . . . . 6 (𝜑𝑀 ∈ ℤ)
5958adantr 480 . . . . 5 ((𝜑 ∧ ∀𝑦 ∈ ran 𝑃(𝑐𝑦) ∈ 𝑦) → 𝑀 ∈ ℤ)
607adantr 480 . . . . 5 ((𝜑 ∧ ∀𝑦 ∈ ran 𝑃(𝑐𝑦) ∈ 𝑦) → 𝑆 ∈ SAlg)
6131adantr 480 . . . . 5 ((𝜑 ∧ ∀𝑦 ∈ ran 𝑃(𝑐𝑦) ∈ 𝑦) → 𝐹:𝑍⟶(SMblFn‘𝑆))
62 smflimlem6.5 . . . . 5 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
63 smflimlem6.6 . . . . 5 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
6435adantr 480 . . . . 5 ((𝜑 ∧ ∀𝑦 ∈ ran 𝑃(𝑐𝑦) ∈ 𝑦) → 𝐴 ∈ ℝ)
65 fvoveq1 7410 . . . . . 6 (𝑙 = 𝑚 → (𝑐‘(𝑙𝑃𝑗)) = (𝑐‘(𝑚𝑃𝑗)))
66 oveq2 7395 . . . . . . 7 (𝑗 = 𝑘 → (𝑚𝑃𝑗) = (𝑚𝑃𝑘))
6766fveq2d 6862 . . . . . 6 (𝑗 = 𝑘 → (𝑐‘(𝑚𝑃𝑗)) = (𝑐‘(𝑚𝑃𝑘)))
6865, 67cbvmpov 7484 . . . . 5 (𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗))) = (𝑚𝑍, 𝑘 ∈ ℕ ↦ (𝑐‘(𝑚𝑃𝑘)))
69 nfcv 2891 . . . . . 6 𝑘 𝑛𝑍 𝑖 ∈ (ℤ𝑛)(𝑖(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑗)
70 nfcv 2891 . . . . . . 7 𝑗𝑍
71 nfcv 2891 . . . . . . . 8 𝑗(ℤ𝑛)
72 nfcv 2891 . . . . . . . . 9 𝑗𝑚
73 nfmpo2 7470 . . . . . . . . 9 𝑗(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))
74 nfcv 2891 . . . . . . . . 9 𝑗𝑘
7572, 73, 74nfov 7417 . . . . . . . 8 𝑗(𝑚(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑘)
7671, 75nfiin 4988 . . . . . . 7 𝑗 𝑚 ∈ (ℤ𝑛)(𝑚(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑘)
7770, 76nfiun 4987 . . . . . 6 𝑗 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑘)
78 oveq2 7395 . . . . . . . . . . 11 (𝑗 = 𝑘 → (𝑖(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑗) = (𝑖(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑘))
7978adantr 480 . . . . . . . . . 10 ((𝑗 = 𝑘𝑖 ∈ (ℤ𝑛)) → (𝑖(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑗) = (𝑖(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑘))
8079iineq2dv 4981 . . . . . . . . 9 (𝑗 = 𝑘 𝑖 ∈ (ℤ𝑛)(𝑖(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑗) = 𝑖 ∈ (ℤ𝑛)(𝑖(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑘))
81 oveq1 7394 . . . . . . . . . . 11 (𝑖 = 𝑚 → (𝑖(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑘) = (𝑚(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑘))
8281cbviinv 5005 . . . . . . . . . 10 𝑖 ∈ (ℤ𝑛)(𝑖(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑘) = 𝑚 ∈ (ℤ𝑛)(𝑚(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑘)
8382a1i 11 . . . . . . . . 9 (𝑗 = 𝑘 𝑖 ∈ (ℤ𝑛)(𝑖(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑘) = 𝑚 ∈ (ℤ𝑛)(𝑚(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑘))
8480, 83eqtrd 2764 . . . . . . . 8 (𝑗 = 𝑘 𝑖 ∈ (ℤ𝑛)(𝑖(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑗) = 𝑚 ∈ (ℤ𝑛)(𝑚(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑘))
8584adantr 480 . . . . . . 7 ((𝑗 = 𝑘𝑛𝑍) → 𝑖 ∈ (ℤ𝑛)(𝑖(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑗) = 𝑚 ∈ (ℤ𝑛)(𝑚(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑘))
8685iuneq2dv 4980 . . . . . 6 (𝑗 = 𝑘 𝑛𝑍 𝑖 ∈ (ℤ𝑛)(𝑖(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑗) = 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑘))
8769, 77, 86cbviin 5001 . . . . 5 𝑗 ∈ ℕ 𝑛𝑍 𝑖 ∈ (ℤ𝑛)(𝑖(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑗) = 𝑘 ∈ ℕ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑘)
88 fveq2 6858 . . . . . . . 8 (𝑦 = 𝑟 → (𝑐𝑦) = (𝑐𝑟))
89 id 22 . . . . . . . 8 (𝑦 = 𝑟𝑦 = 𝑟)
9088, 89eleq12d 2822 . . . . . . 7 (𝑦 = 𝑟 → ((𝑐𝑦) ∈ 𝑦 ↔ (𝑐𝑟) ∈ 𝑟))
9190rspccva 3587 . . . . . 6 ((∀𝑦 ∈ ran 𝑃(𝑐𝑦) ∈ 𝑦𝑟 ∈ ran 𝑃) → (𝑐𝑟) ∈ 𝑟)
9291adantll 714 . . . . 5 (((𝜑 ∧ ∀𝑦 ∈ ran 𝑃(𝑐𝑦) ∈ 𝑦) ∧ 𝑟 ∈ ran 𝑃) → (𝑐𝑟) ∈ 𝑟)
9359, 1, 60, 61, 62, 63, 64, 11, 68, 87, 92smflimlem5 46773 . . . 4 ((𝜑 ∧ ∀𝑦 ∈ ran 𝑃(𝑐𝑦) ∈ 𝑦) → {𝑥𝐷 ∣ (𝐺𝑥) ≤ 𝐴} ∈ (𝑆t 𝐷))
9493ex 412 . . 3 (𝜑 → (∀𝑦 ∈ ran 𝑃(𝑐𝑦) ∈ 𝑦 → {𝑥𝐷 ∣ (𝐺𝑥) ≤ 𝐴} ∈ (𝑆t 𝐷)))
9594exlimdv 1933 . 2 (𝜑 → (∃𝑐𝑦 ∈ ran 𝑃(𝑐𝑦) ∈ 𝑦 → {𝑥𝐷 ∣ (𝐺𝑥) ≤ 𝐴} ∈ (𝑆t 𝐷)))
9657, 95mpd 15 1 (𝜑 → {𝑥𝐷 ∣ (𝐺𝑥) ≤ 𝐴} ∈ (𝑆t 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3405  Vcvv 3447  cin 3913  c0 4296   ciun 4955   ciin 4956   class class class wbr 5107  cmpt 5188   × cxp 5636  dom cdm 5638  ran crn 5639   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  cmpo 7389  ωcom 7842  cdom 8916  cr 11067  1c1 11069   + caddc 11071   < clt 11208  cle 11209   / cdiv 11835  cn 12186  cz 12529  cuz 12793  cli 15450  t crest 17383  SAlgcsalg 46306  SMblFncsmblfn 46693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cc 10388  ax-ac2 10416  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-oadd 8438  df-omul 8439  df-er 8671  df-map 8801  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-acn 9895  df-ac 10069  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-ioo 13310  df-ico 13312  df-fl 13754  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-rlim 15455  df-rest 17385  df-salg 46307  df-smblfn 46694
This theorem is referenced by:  smflim  46775
  Copyright terms: Public domain W3C validator