Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smflimlem6 Structured version   Visualization version   GIF version

Theorem smflimlem6 43072
Description: Lemma for the proof that the limit of sigma-measurable functions is sigma-measurable, Proposition 121F (a) of [Fremlin1] p. 38 . This lemma proves that the preimages of right-closed, unbounded-below intervals are in the subspace sigma-algebra induced by 𝐷. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smflimlem6.1 (𝜑𝑀 ∈ ℤ)
smflimlem6.2 𝑍 = (ℤ𝑀)
smflimlem6.3 (𝜑𝑆 ∈ SAlg)
smflimlem6.4 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smflimlem6.5 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
smflimlem6.6 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
smflimlem6.7 (𝜑𝐴 ∈ ℝ)
smflimlem6.8 𝑃 = (𝑚𝑍, 𝑘 ∈ ℕ ↦ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
Assertion
Ref Expression
smflimlem6 (𝜑 → {𝑥𝐷 ∣ (𝐺𝑥) ≤ 𝐴} ∈ (𝑆t 𝐷))
Distinct variable groups:   𝐴,𝑘,𝑚,𝑛,𝑥   𝐴,𝑠,𝑘,𝑚,𝑥   𝐷,𝑘,𝑚,𝑛,𝑥   𝑘,𝐹,𝑚,𝑛,𝑥   𝐹,𝑠   𝑘,𝐺,𝑚,𝑛   𝑚,𝑀   𝑃,𝑘,𝑚,𝑛,𝑥   𝑃,𝑠   𝑆,𝑘,𝑚,𝑛   𝑆,𝑠   𝑘,𝑍,𝑚,𝑛,𝑥   𝑍,𝑠   𝜑,𝑘,𝑚,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑠)   𝐷(𝑠)   𝑆(𝑥)   𝐺(𝑥,𝑠)   𝑀(𝑥,𝑘,𝑛,𝑠)

Proof of Theorem smflimlem6
Dummy variables 𝑐 𝑟 𝑖 𝑗 𝑙 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smflimlem6.2 . . . . . . . 8 𝑍 = (ℤ𝑀)
21fvexi 6684 . . . . . . 7 𝑍 ∈ V
3 nnex 11644 . . . . . . 7 ℕ ∈ V
42, 3xpex 7476 . . . . . 6 (𝑍 × ℕ) ∈ V
54a1i 11 . . . . 5 (𝜑 → (𝑍 × ℕ) ∈ V)
6 eqid 2821 . . . . . . . . 9 {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))}
7 smflimlem6.3 . . . . . . . . 9 (𝜑𝑆 ∈ SAlg)
86, 7rabexd 5236 . . . . . . . 8 (𝜑 → {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V)
98adantr 483 . . . . . . 7 ((𝜑 ∧ (𝑚𝑍𝑘 ∈ ℕ)) → {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V)
109ralrimivva 3191 . . . . . 6 (𝜑 → ∀𝑚𝑍𝑘 ∈ ℕ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V)
11 smflimlem6.8 . . . . . . 7 𝑃 = (𝑚𝑍, 𝑘 ∈ ℕ ↦ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
1211fnmpo 7767 . . . . . 6 (∀𝑚𝑍𝑘 ∈ ℕ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V → 𝑃 Fn (𝑍 × ℕ))
1310, 12syl 17 . . . . 5 (𝜑𝑃 Fn (𝑍 × ℕ))
14 fnrndomg 9958 . . . . 5 ((𝑍 × ℕ) ∈ V → (𝑃 Fn (𝑍 × ℕ) → ran 𝑃 ≼ (𝑍 × ℕ)))
155, 13, 14sylc 65 . . . 4 (𝜑 → ran 𝑃 ≼ (𝑍 × ℕ))
161uzct 41345 . . . . . . 7 𝑍 ≼ ω
17 nnct 13350 . . . . . . 7 ℕ ≼ ω
1816, 17pm3.2i 473 . . . . . 6 (𝑍 ≼ ω ∧ ℕ ≼ ω)
19 xpct 9442 . . . . . 6 ((𝑍 ≼ ω ∧ ℕ ≼ ω) → (𝑍 × ℕ) ≼ ω)
2018, 19ax-mp 5 . . . . 5 (𝑍 × ℕ) ≼ ω
2120a1i 11 . . . 4 (𝜑 → (𝑍 × ℕ) ≼ ω)
22 domtr 8562 . . . 4 ((ran 𝑃 ≼ (𝑍 × ℕ) ∧ (𝑍 × ℕ) ≼ ω) → ran 𝑃 ≼ ω)
2315, 21, 22syl2anc 586 . . 3 (𝜑 → ran 𝑃 ≼ ω)
24 vex 3497 . . . . . . 7 𝑦 ∈ V
2511elrnmpog 7286 . . . . . . 7 (𝑦 ∈ V → (𝑦 ∈ ran 𝑃 ↔ ∃𝑚𝑍𝑘 ∈ ℕ 𝑦 = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))}))
2624, 25ax-mp 5 . . . . . 6 (𝑦 ∈ ran 𝑃 ↔ ∃𝑚𝑍𝑘 ∈ ℕ 𝑦 = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
2726biimpi 218 . . . . 5 (𝑦 ∈ ran 𝑃 → ∃𝑚𝑍𝑘 ∈ ℕ 𝑦 = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
2827adantl 484 . . . 4 ((𝜑𝑦 ∈ ran 𝑃) → ∃𝑚𝑍𝑘 ∈ ℕ 𝑦 = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
29 simp3 1134 . . . . . . . 8 ((𝜑 ∧ (𝑚𝑍𝑘 ∈ ℕ) ∧ 𝑦 = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))}) → 𝑦 = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
307adantr 483 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚𝑍𝑘 ∈ ℕ)) → 𝑆 ∈ SAlg)
31 smflimlem6.4 . . . . . . . . . . . . . 14 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
3231ffvelrnda 6851 . . . . . . . . . . . . 13 ((𝜑𝑚𝑍) → (𝐹𝑚) ∈ (SMblFn‘𝑆))
3332adantrr 715 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚𝑍𝑘 ∈ ℕ)) → (𝐹𝑚) ∈ (SMblFn‘𝑆))
34 eqid 2821 . . . . . . . . . . . 12 dom (𝐹𝑚) = dom (𝐹𝑚)
35 smflimlem6.7 . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ ℝ)
3635adantr 483 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ ℝ)
37 nnrecre 11680 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℝ)
3837adantl 484 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (1 / 𝑘) ∈ ℝ)
3936, 38readdcld 10670 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (𝐴 + (1 / 𝑘)) ∈ ℝ)
4039adantrl 714 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚𝑍𝑘 ∈ ℕ)) → (𝐴 + (1 / 𝑘)) ∈ ℝ)
4130, 33, 34, 40smfpreimalt 43028 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚𝑍𝑘 ∈ ℕ)) → {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} ∈ (𝑆t dom (𝐹𝑚)))
42 fvex 6683 . . . . . . . . . . . . . . 15 (𝐹𝑚) ∈ V
4342dmex 7616 . . . . . . . . . . . . . 14 dom (𝐹𝑚) ∈ V
4443a1i 11 . . . . . . . . . . . . 13 (𝜑 → dom (𝐹𝑚) ∈ V)
45 elrest 16701 . . . . . . . . . . . . 13 ((𝑆 ∈ SAlg ∧ dom (𝐹𝑚) ∈ V) → ({𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} ∈ (𝑆t dom (𝐹𝑚)) ↔ ∃𝑠𝑆 {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))))
467, 44, 45syl2anc 586 . . . . . . . . . . . 12 (𝜑 → ({𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} ∈ (𝑆t dom (𝐹𝑚)) ↔ ∃𝑠𝑆 {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))))
4746adantr 483 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚𝑍𝑘 ∈ ℕ)) → ({𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} ∈ (𝑆t dom (𝐹𝑚)) ↔ ∃𝑠𝑆 {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))))
4841, 47mpbid 234 . . . . . . . . . 10 ((𝜑 ∧ (𝑚𝑍𝑘 ∈ ℕ)) → ∃𝑠𝑆 {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚)))
49 rabn0 4339 . . . . . . . . . 10 ({𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ≠ ∅ ↔ ∃𝑠𝑆 {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚)))
5048, 49sylibr 236 . . . . . . . . 9 ((𝜑 ∧ (𝑚𝑍𝑘 ∈ ℕ)) → {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ≠ ∅)
51503adant3 1128 . . . . . . . 8 ((𝜑 ∧ (𝑚𝑍𝑘 ∈ ℕ) ∧ 𝑦 = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))}) → {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ≠ ∅)
5229, 51eqnetrd 3083 . . . . . . 7 ((𝜑 ∧ (𝑚𝑍𝑘 ∈ ℕ) ∧ 𝑦 = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))}) → 𝑦 ≠ ∅)
53523exp 1115 . . . . . 6 (𝜑 → ((𝑚𝑍𝑘 ∈ ℕ) → (𝑦 = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} → 𝑦 ≠ ∅)))
5453rexlimdvv 3293 . . . . 5 (𝜑 → (∃𝑚𝑍𝑘 ∈ ℕ 𝑦 = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} → 𝑦 ≠ ∅))
5554adantr 483 . . . 4 ((𝜑𝑦 ∈ ran 𝑃) → (∃𝑚𝑍𝑘 ∈ ℕ 𝑦 = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} → 𝑦 ≠ ∅))
5628, 55mpd 15 . . 3 ((𝜑𝑦 ∈ ran 𝑃) → 𝑦 ≠ ∅)
5723, 56axccd2 41516 . 2 (𝜑 → ∃𝑐𝑦 ∈ ran 𝑃(𝑐𝑦) ∈ 𝑦)
58 smflimlem6.1 . . . . . 6 (𝜑𝑀 ∈ ℤ)
5958adantr 483 . . . . 5 ((𝜑 ∧ ∀𝑦 ∈ ran 𝑃(𝑐𝑦) ∈ 𝑦) → 𝑀 ∈ ℤ)
607adantr 483 . . . . 5 ((𝜑 ∧ ∀𝑦 ∈ ran 𝑃(𝑐𝑦) ∈ 𝑦) → 𝑆 ∈ SAlg)
6131adantr 483 . . . . 5 ((𝜑 ∧ ∀𝑦 ∈ ran 𝑃(𝑐𝑦) ∈ 𝑦) → 𝐹:𝑍⟶(SMblFn‘𝑆))
62 smflimlem6.5 . . . . 5 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
63 smflimlem6.6 . . . . 5 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
6435adantr 483 . . . . 5 ((𝜑 ∧ ∀𝑦 ∈ ran 𝑃(𝑐𝑦) ∈ 𝑦) → 𝐴 ∈ ℝ)
65 fvoveq1 7179 . . . . . 6 (𝑙 = 𝑚 → (𝑐‘(𝑙𝑃𝑗)) = (𝑐‘(𝑚𝑃𝑗)))
66 oveq2 7164 . . . . . . 7 (𝑗 = 𝑘 → (𝑚𝑃𝑗) = (𝑚𝑃𝑘))
6766fveq2d 6674 . . . . . 6 (𝑗 = 𝑘 → (𝑐‘(𝑚𝑃𝑗)) = (𝑐‘(𝑚𝑃𝑘)))
6865, 67cbvmpov 7249 . . . . 5 (𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗))) = (𝑚𝑍, 𝑘 ∈ ℕ ↦ (𝑐‘(𝑚𝑃𝑘)))
69 nfcv 2977 . . . . . 6 𝑘 𝑛𝑍 𝑖 ∈ (ℤ𝑛)(𝑖(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑗)
70 nfcv 2977 . . . . . . 7 𝑗𝑍
71 nfcv 2977 . . . . . . . 8 𝑗(ℤ𝑛)
72 nfcv 2977 . . . . . . . . 9 𝑗𝑚
73 nfmpo2 7235 . . . . . . . . 9 𝑗(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))
74 nfcv 2977 . . . . . . . . 9 𝑗𝑘
7572, 73, 74nfov 7186 . . . . . . . 8 𝑗(𝑚(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑘)
7671, 75nfiin 4950 . . . . . . 7 𝑗 𝑚 ∈ (ℤ𝑛)(𝑚(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑘)
7770, 76nfiun 4949 . . . . . 6 𝑗 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑘)
78 oveq2 7164 . . . . . . . . . . 11 (𝑗 = 𝑘 → (𝑖(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑗) = (𝑖(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑘))
7978adantr 483 . . . . . . . . . 10 ((𝑗 = 𝑘𝑖 ∈ (ℤ𝑛)) → (𝑖(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑗) = (𝑖(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑘))
8079iineq2dv 4944 . . . . . . . . 9 (𝑗 = 𝑘 𝑖 ∈ (ℤ𝑛)(𝑖(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑗) = 𝑖 ∈ (ℤ𝑛)(𝑖(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑘))
81 oveq1 7163 . . . . . . . . . . 11 (𝑖 = 𝑚 → (𝑖(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑘) = (𝑚(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑘))
8281cbviinv 4966 . . . . . . . . . 10 𝑖 ∈ (ℤ𝑛)(𝑖(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑘) = 𝑚 ∈ (ℤ𝑛)(𝑚(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑘)
8382a1i 11 . . . . . . . . 9 (𝑗 = 𝑘 𝑖 ∈ (ℤ𝑛)(𝑖(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑘) = 𝑚 ∈ (ℤ𝑛)(𝑚(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑘))
8480, 83eqtrd 2856 . . . . . . . 8 (𝑗 = 𝑘 𝑖 ∈ (ℤ𝑛)(𝑖(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑗) = 𝑚 ∈ (ℤ𝑛)(𝑚(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑘))
8584adantr 483 . . . . . . 7 ((𝑗 = 𝑘𝑛𝑍) → 𝑖 ∈ (ℤ𝑛)(𝑖(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑗) = 𝑚 ∈ (ℤ𝑛)(𝑚(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑘))
8685iuneq2dv 4943 . . . . . 6 (𝑗 = 𝑘 𝑛𝑍 𝑖 ∈ (ℤ𝑛)(𝑖(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑗) = 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑘))
8769, 77, 86cbviin 4962 . . . . 5 𝑗 ∈ ℕ 𝑛𝑍 𝑖 ∈ (ℤ𝑛)(𝑖(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑗) = 𝑘 ∈ ℕ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑘)
88 fveq2 6670 . . . . . . . 8 (𝑦 = 𝑟 → (𝑐𝑦) = (𝑐𝑟))
89 id 22 . . . . . . . 8 (𝑦 = 𝑟𝑦 = 𝑟)
9088, 89eleq12d 2907 . . . . . . 7 (𝑦 = 𝑟 → ((𝑐𝑦) ∈ 𝑦 ↔ (𝑐𝑟) ∈ 𝑟))
9190rspccva 3622 . . . . . 6 ((∀𝑦 ∈ ran 𝑃(𝑐𝑦) ∈ 𝑦𝑟 ∈ ran 𝑃) → (𝑐𝑟) ∈ 𝑟)
9291adantll 712 . . . . 5 (((𝜑 ∧ ∀𝑦 ∈ ran 𝑃(𝑐𝑦) ∈ 𝑦) ∧ 𝑟 ∈ ran 𝑃) → (𝑐𝑟) ∈ 𝑟)
9359, 1, 60, 61, 62, 63, 64, 11, 68, 87, 92smflimlem5 43071 . . . 4 ((𝜑 ∧ ∀𝑦 ∈ ran 𝑃(𝑐𝑦) ∈ 𝑦) → {𝑥𝐷 ∣ (𝐺𝑥) ≤ 𝐴} ∈ (𝑆t 𝐷))
9493ex 415 . . 3 (𝜑 → (∀𝑦 ∈ ran 𝑃(𝑐𝑦) ∈ 𝑦 → {𝑥𝐷 ∣ (𝐺𝑥) ≤ 𝐴} ∈ (𝑆t 𝐷)))
9594exlimdv 1934 . 2 (𝜑 → (∃𝑐𝑦 ∈ ran 𝑃(𝑐𝑦) ∈ 𝑦 → {𝑥𝐷 ∣ (𝐺𝑥) ≤ 𝐴} ∈ (𝑆t 𝐷)))
9657, 95mpd 15 1 (𝜑 → {𝑥𝐷 ∣ (𝐺𝑥) ≤ 𝐴} ∈ (𝑆t 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wex 1780  wcel 2114  wne 3016  wral 3138  wrex 3139  {crab 3142  Vcvv 3494  cin 3935  c0 4291   ciun 4919   ciin 4920   class class class wbr 5066  cmpt 5146   × cxp 5553  dom cdm 5555  ran crn 5556   Fn wfn 6350  wf 6351  cfv 6355  (class class class)co 7156  cmpo 7158  ωcom 7580  cdom 8507  cr 10536  1c1 10538   + caddc 10540   < clt 10675  cle 10676   / cdiv 11297  cn 11638  cz 11982  cuz 12244  cli 14841  t crest 16694  SAlgcsalg 42613  SMblFncsmblfn 42997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cc 9857  ax-ac2 9885  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-omul 8107  df-er 8289  df-map 8408  df-pm 8409  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-inf 8907  df-oi 8974  df-card 9368  df-acn 9371  df-ac 9542  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-q 12350  df-rp 12391  df-ioo 12743  df-ico 12745  df-fl 13163  df-seq 13371  df-exp 13431  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-rlim 14846  df-rest 16696  df-salg 42614  df-smblfn 42998
This theorem is referenced by:  smflim  43073
  Copyright terms: Public domain W3C validator