Step | Hyp | Ref
| Expression |
1 | | smflimlem6.2 |
. . . . . . . 8
⊢ 𝑍 =
(ℤ≥‘𝑀) |
2 | 1 | fvexi 6770 |
. . . . . . 7
⊢ 𝑍 ∈ V |
3 | | nnex 11909 |
. . . . . . 7
⊢ ℕ
∈ V |
4 | 2, 3 | xpex 7581 |
. . . . . 6
⊢ (𝑍 × ℕ) ∈
V |
5 | 4 | a1i 11 |
. . . . 5
⊢ (𝜑 → (𝑍 × ℕ) ∈ V) |
6 | | eqid 2738 |
. . . . . . . . 9
⊢ {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹‘𝑚))} = {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹‘𝑚))} |
7 | | smflimlem6.3 |
. . . . . . . . 9
⊢ (𝜑 → 𝑆 ∈ SAlg) |
8 | 6, 7 | rabexd 5252 |
. . . . . . . 8
⊢ (𝜑 → {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹‘𝑚))} ∈ V) |
9 | 8 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑍 ∧ 𝑘 ∈ ℕ)) → {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹‘𝑚))} ∈ V) |
10 | 9 | ralrimivva 3114 |
. . . . . 6
⊢ (𝜑 → ∀𝑚 ∈ 𝑍 ∀𝑘 ∈ ℕ {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹‘𝑚))} ∈ V) |
11 | | smflimlem6.8 |
. . . . . . 7
⊢ 𝑃 = (𝑚 ∈ 𝑍, 𝑘 ∈ ℕ ↦ {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹‘𝑚))}) |
12 | 11 | fnmpo 7882 |
. . . . . 6
⊢
(∀𝑚 ∈
𝑍 ∀𝑘 ∈ ℕ {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹‘𝑚))} ∈ V → 𝑃 Fn (𝑍 × ℕ)) |
13 | 10, 12 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑃 Fn (𝑍 × ℕ)) |
14 | | fnrndomg 10223 |
. . . . 5
⊢ ((𝑍 × ℕ) ∈ V
→ (𝑃 Fn (𝑍 × ℕ) → ran
𝑃 ≼ (𝑍 ×
ℕ))) |
15 | 5, 13, 14 | sylc 65 |
. . . 4
⊢ (𝜑 → ran 𝑃 ≼ (𝑍 × ℕ)) |
16 | 1 | uzct 42500 |
. . . . . . 7
⊢ 𝑍 ≼
ω |
17 | | nnct 13629 |
. . . . . . 7
⊢ ℕ
≼ ω |
18 | 16, 17 | pm3.2i 470 |
. . . . . 6
⊢ (𝑍 ≼ ω ∧ ℕ
≼ ω) |
19 | | xpct 9703 |
. . . . . 6
⊢ ((𝑍 ≼ ω ∧ ℕ
≼ ω) → (𝑍
× ℕ) ≼ ω) |
20 | 18, 19 | ax-mp 5 |
. . . . 5
⊢ (𝑍 × ℕ) ≼
ω |
21 | 20 | a1i 11 |
. . . 4
⊢ (𝜑 → (𝑍 × ℕ) ≼
ω) |
22 | | domtr 8748 |
. . . 4
⊢ ((ran
𝑃 ≼ (𝑍 × ℕ) ∧ (𝑍 × ℕ) ≼
ω) → ran 𝑃
≼ ω) |
23 | 15, 21, 22 | syl2anc 583 |
. . 3
⊢ (𝜑 → ran 𝑃 ≼ ω) |
24 | | vex 3426 |
. . . . . . 7
⊢ 𝑦 ∈ V |
25 | 11 | elrnmpog 7387 |
. . . . . . 7
⊢ (𝑦 ∈ V → (𝑦 ∈ ran 𝑃 ↔ ∃𝑚 ∈ 𝑍 ∃𝑘 ∈ ℕ 𝑦 = {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹‘𝑚))})) |
26 | 24, 25 | ax-mp 5 |
. . . . . 6
⊢ (𝑦 ∈ ran 𝑃 ↔ ∃𝑚 ∈ 𝑍 ∃𝑘 ∈ ℕ 𝑦 = {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹‘𝑚))}) |
27 | 26 | biimpi 215 |
. . . . 5
⊢ (𝑦 ∈ ran 𝑃 → ∃𝑚 ∈ 𝑍 ∃𝑘 ∈ ℕ 𝑦 = {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹‘𝑚))}) |
28 | 27 | adantl 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝑃) → ∃𝑚 ∈ 𝑍 ∃𝑘 ∈ ℕ 𝑦 = {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹‘𝑚))}) |
29 | | simp3 1136 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑍 ∧ 𝑘 ∈ ℕ) ∧ 𝑦 = {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹‘𝑚))}) → 𝑦 = {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹‘𝑚))}) |
30 | 7 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑍 ∧ 𝑘 ∈ ℕ)) → 𝑆 ∈ SAlg) |
31 | | smflimlem6.4 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) |
32 | 31 | ffvelrnda 6943 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝐹‘𝑚) ∈ (SMblFn‘𝑆)) |
33 | 32 | adantrr 713 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑍 ∧ 𝑘 ∈ ℕ)) → (𝐹‘𝑚) ∈ (SMblFn‘𝑆)) |
34 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ dom
(𝐹‘𝑚) = dom (𝐹‘𝑚) |
35 | | smflimlem6.7 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐴 ∈ ℝ) |
36 | 35 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ ℝ) |
37 | | nnrecre 11945 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ ℕ → (1 /
𝑘) ∈
ℝ) |
38 | 37 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (1 / 𝑘) ∈
ℝ) |
39 | 36, 38 | readdcld 10935 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐴 + (1 / 𝑘)) ∈ ℝ) |
40 | 39 | adantrl 712 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑍 ∧ 𝑘 ∈ ℕ)) → (𝐴 + (1 / 𝑘)) ∈ ℝ) |
41 | 30, 33, 34, 40 | smfpreimalt 44154 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑍 ∧ 𝑘 ∈ ℕ)) → {𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} ∈ (𝑆 ↾t dom (𝐹‘𝑚))) |
42 | | fvex 6769 |
. . . . . . . . . . . . . . 15
⊢ (𝐹‘𝑚) ∈ V |
43 | 42 | dmex 7732 |
. . . . . . . . . . . . . 14
⊢ dom
(𝐹‘𝑚) ∈ V |
44 | 43 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → dom (𝐹‘𝑚) ∈ V) |
45 | | elrest 17055 |
. . . . . . . . . . . . 13
⊢ ((𝑆 ∈ SAlg ∧ dom (𝐹‘𝑚) ∈ V) → ({𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} ∈ (𝑆 ↾t dom (𝐹‘𝑚)) ↔ ∃𝑠 ∈ 𝑆 {𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹‘𝑚)))) |
46 | 7, 44, 45 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ (𝜑 → ({𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} ∈ (𝑆 ↾t dom (𝐹‘𝑚)) ↔ ∃𝑠 ∈ 𝑆 {𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹‘𝑚)))) |
47 | 46 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑍 ∧ 𝑘 ∈ ℕ)) → ({𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} ∈ (𝑆 ↾t dom (𝐹‘𝑚)) ↔ ∃𝑠 ∈ 𝑆 {𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹‘𝑚)))) |
48 | 41, 47 | mpbid 231 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑍 ∧ 𝑘 ∈ ℕ)) → ∃𝑠 ∈ 𝑆 {𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹‘𝑚))) |
49 | | rabn0 4316 |
. . . . . . . . . 10
⊢ ({𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹‘𝑚))} ≠ ∅ ↔ ∃𝑠 ∈ 𝑆 {𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹‘𝑚))) |
50 | 48, 49 | sylibr 233 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑍 ∧ 𝑘 ∈ ℕ)) → {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹‘𝑚))} ≠ ∅) |
51 | 50 | 3adant3 1130 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑍 ∧ 𝑘 ∈ ℕ) ∧ 𝑦 = {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹‘𝑚))}) → {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹‘𝑚))} ≠ ∅) |
52 | 29, 51 | eqnetrd 3010 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑍 ∧ 𝑘 ∈ ℕ) ∧ 𝑦 = {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹‘𝑚))}) → 𝑦 ≠ ∅) |
53 | 52 | 3exp 1117 |
. . . . . 6
⊢ (𝜑 → ((𝑚 ∈ 𝑍 ∧ 𝑘 ∈ ℕ) → (𝑦 = {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹‘𝑚))} → 𝑦 ≠ ∅))) |
54 | 53 | rexlimdvv 3221 |
. . . . 5
⊢ (𝜑 → (∃𝑚 ∈ 𝑍 ∃𝑘 ∈ ℕ 𝑦 = {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹‘𝑚))} → 𝑦 ≠ ∅)) |
55 | 54 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝑃) → (∃𝑚 ∈ 𝑍 ∃𝑘 ∈ ℕ 𝑦 = {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹‘𝑚))} → 𝑦 ≠ ∅)) |
56 | 28, 55 | mpd 15 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝑃) → 𝑦 ≠ ∅) |
57 | 23, 56 | axccd2 42658 |
. 2
⊢ (𝜑 → ∃𝑐∀𝑦 ∈ ran 𝑃(𝑐‘𝑦) ∈ 𝑦) |
58 | | smflimlem6.1 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ ℤ) |
59 | 58 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ ∀𝑦 ∈ ran 𝑃(𝑐‘𝑦) ∈ 𝑦) → 𝑀 ∈ ℤ) |
60 | 7 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ ∀𝑦 ∈ ran 𝑃(𝑐‘𝑦) ∈ 𝑦) → 𝑆 ∈ SAlg) |
61 | 31 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ ∀𝑦 ∈ ran 𝑃(𝑐‘𝑦) ∈ 𝑦) → 𝐹:𝑍⟶(SMblFn‘𝑆)) |
62 | | smflimlem6.5 |
. . . . 5
⊢ 𝐷 = {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } |
63 | | smflimlem6.6 |
. . . . 5
⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) |
64 | 35 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ ∀𝑦 ∈ ran 𝑃(𝑐‘𝑦) ∈ 𝑦) → 𝐴 ∈ ℝ) |
65 | | fvoveq1 7278 |
. . . . . 6
⊢ (𝑙 = 𝑚 → (𝑐‘(𝑙𝑃𝑗)) = (𝑐‘(𝑚𝑃𝑗))) |
66 | | oveq2 7263 |
. . . . . . 7
⊢ (𝑗 = 𝑘 → (𝑚𝑃𝑗) = (𝑚𝑃𝑘)) |
67 | 66 | fveq2d 6760 |
. . . . . 6
⊢ (𝑗 = 𝑘 → (𝑐‘(𝑚𝑃𝑗)) = (𝑐‘(𝑚𝑃𝑘))) |
68 | 65, 67 | cbvmpov 7348 |
. . . . 5
⊢ (𝑙 ∈ 𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗))) = (𝑚 ∈ 𝑍, 𝑘 ∈ ℕ ↦ (𝑐‘(𝑚𝑃𝑘))) |
69 | | nfcv 2906 |
. . . . . 6
⊢
Ⅎ𝑘∪ 𝑛 ∈ 𝑍 ∩ 𝑖 ∈
(ℤ≥‘𝑛)(𝑖(𝑙 ∈ 𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑗) |
70 | | nfcv 2906 |
. . . . . . 7
⊢
Ⅎ𝑗𝑍 |
71 | | nfcv 2906 |
. . . . . . . 8
⊢
Ⅎ𝑗(ℤ≥‘𝑛) |
72 | | nfcv 2906 |
. . . . . . . . 9
⊢
Ⅎ𝑗𝑚 |
73 | | nfmpo2 7334 |
. . . . . . . . 9
⊢
Ⅎ𝑗(𝑙 ∈ 𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗))) |
74 | | nfcv 2906 |
. . . . . . . . 9
⊢
Ⅎ𝑗𝑘 |
75 | 72, 73, 74 | nfov 7285 |
. . . . . . . 8
⊢
Ⅎ𝑗(𝑚(𝑙 ∈ 𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑘) |
76 | 71, 75 | nfiin 4952 |
. . . . . . 7
⊢
Ⅎ𝑗∩ 𝑚 ∈
(ℤ≥‘𝑛)(𝑚(𝑙 ∈ 𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑘) |
77 | 70, 76 | nfiun 4951 |
. . . . . 6
⊢
Ⅎ𝑗∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)(𝑚(𝑙 ∈ 𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑘) |
78 | | oveq2 7263 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑘 → (𝑖(𝑙 ∈ 𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑗) = (𝑖(𝑙 ∈ 𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑘)) |
79 | 78 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑗 = 𝑘 ∧ 𝑖 ∈ (ℤ≥‘𝑛)) → (𝑖(𝑙 ∈ 𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑗) = (𝑖(𝑙 ∈ 𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑘)) |
80 | 79 | iineq2dv 4946 |
. . . . . . . . 9
⊢ (𝑗 = 𝑘 → ∩
𝑖 ∈
(ℤ≥‘𝑛)(𝑖(𝑙 ∈ 𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑗) = ∩ 𝑖 ∈
(ℤ≥‘𝑛)(𝑖(𝑙 ∈ 𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑘)) |
81 | | oveq1 7262 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑚 → (𝑖(𝑙 ∈ 𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑘) = (𝑚(𝑙 ∈ 𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑘)) |
82 | 81 | cbviinv 4967 |
. . . . . . . . . 10
⊢ ∩ 𝑖 ∈ (ℤ≥‘𝑛)(𝑖(𝑙 ∈ 𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑘) = ∩ 𝑚 ∈
(ℤ≥‘𝑛)(𝑚(𝑙 ∈ 𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑘) |
83 | 82 | a1i 11 |
. . . . . . . . 9
⊢ (𝑗 = 𝑘 → ∩
𝑖 ∈
(ℤ≥‘𝑛)(𝑖(𝑙 ∈ 𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑘) = ∩ 𝑚 ∈
(ℤ≥‘𝑛)(𝑚(𝑙 ∈ 𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑘)) |
84 | 80, 83 | eqtrd 2778 |
. . . . . . . 8
⊢ (𝑗 = 𝑘 → ∩
𝑖 ∈
(ℤ≥‘𝑛)(𝑖(𝑙 ∈ 𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑗) = ∩ 𝑚 ∈
(ℤ≥‘𝑛)(𝑚(𝑙 ∈ 𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑘)) |
85 | 84 | adantr 480 |
. . . . . . 7
⊢ ((𝑗 = 𝑘 ∧ 𝑛 ∈ 𝑍) → ∩
𝑖 ∈
(ℤ≥‘𝑛)(𝑖(𝑙 ∈ 𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑗) = ∩ 𝑚 ∈
(ℤ≥‘𝑛)(𝑚(𝑙 ∈ 𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑘)) |
86 | 85 | iuneq2dv 4945 |
. . . . . 6
⊢ (𝑗 = 𝑘 → ∪
𝑛 ∈ 𝑍 ∩ 𝑖 ∈
(ℤ≥‘𝑛)(𝑖(𝑙 ∈ 𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑗) = ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)(𝑚(𝑙 ∈ 𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑘)) |
87 | 69, 77, 86 | cbviin 4963 |
. . . . 5
⊢ ∩ 𝑗 ∈ ℕ ∪ 𝑛 ∈ 𝑍 ∩ 𝑖 ∈
(ℤ≥‘𝑛)(𝑖(𝑙 ∈ 𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑗) = ∩ 𝑘 ∈ ℕ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)(𝑚(𝑙 ∈ 𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑘) |
88 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑦 = 𝑟 → (𝑐‘𝑦) = (𝑐‘𝑟)) |
89 | | id 22 |
. . . . . . . 8
⊢ (𝑦 = 𝑟 → 𝑦 = 𝑟) |
90 | 88, 89 | eleq12d 2833 |
. . . . . . 7
⊢ (𝑦 = 𝑟 → ((𝑐‘𝑦) ∈ 𝑦 ↔ (𝑐‘𝑟) ∈ 𝑟)) |
91 | 90 | rspccva 3551 |
. . . . . 6
⊢
((∀𝑦 ∈
ran 𝑃(𝑐‘𝑦) ∈ 𝑦 ∧ 𝑟 ∈ ran 𝑃) → (𝑐‘𝑟) ∈ 𝑟) |
92 | 91 | adantll 710 |
. . . . 5
⊢ (((𝜑 ∧ ∀𝑦 ∈ ran 𝑃(𝑐‘𝑦) ∈ 𝑦) ∧ 𝑟 ∈ ran 𝑃) → (𝑐‘𝑟) ∈ 𝑟) |
93 | 59, 1, 60, 61, 62, 63, 64, 11, 68, 87, 92 | smflimlem5 44197 |
. . . 4
⊢ ((𝜑 ∧ ∀𝑦 ∈ ran 𝑃(𝑐‘𝑦) ∈ 𝑦) → {𝑥 ∈ 𝐷 ∣ (𝐺‘𝑥) ≤ 𝐴} ∈ (𝑆 ↾t 𝐷)) |
94 | 93 | ex 412 |
. . 3
⊢ (𝜑 → (∀𝑦 ∈ ran 𝑃(𝑐‘𝑦) ∈ 𝑦 → {𝑥 ∈ 𝐷 ∣ (𝐺‘𝑥) ≤ 𝐴} ∈ (𝑆 ↾t 𝐷))) |
95 | 94 | exlimdv 1937 |
. 2
⊢ (𝜑 → (∃𝑐∀𝑦 ∈ ran 𝑃(𝑐‘𝑦) ∈ 𝑦 → {𝑥 ∈ 𝐷 ∣ (𝐺‘𝑥) ≤ 𝐴} ∈ (𝑆 ↾t 𝐷))) |
96 | 57, 95 | mpd 15 |
1
⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ (𝐺‘𝑥) ≤ 𝐴} ∈ (𝑆 ↾t 𝐷)) |