Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smflimlem6 Structured version   Visualization version   GIF version

Theorem smflimlem6 45007
Description: Lemma for the proof that the limit of sigma-measurable functions is sigma-measurable, Proposition 121F (a) of [Fremlin1] p. 38 . This lemma proves that the preimages of right-closed, unbounded-below intervals are in the subspace sigma-algebra induced by 𝐷. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smflimlem6.1 (𝜑𝑀 ∈ ℤ)
smflimlem6.2 𝑍 = (ℤ𝑀)
smflimlem6.3 (𝜑𝑆 ∈ SAlg)
smflimlem6.4 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smflimlem6.5 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
smflimlem6.6 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
smflimlem6.7 (𝜑𝐴 ∈ ℝ)
smflimlem6.8 𝑃 = (𝑚𝑍, 𝑘 ∈ ℕ ↦ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
Assertion
Ref Expression
smflimlem6 (𝜑 → {𝑥𝐷 ∣ (𝐺𝑥) ≤ 𝐴} ∈ (𝑆t 𝐷))
Distinct variable groups:   𝐴,𝑘,𝑚,𝑛,𝑥   𝐴,𝑠,𝑘,𝑚,𝑥   𝐷,𝑘,𝑚,𝑛,𝑥   𝑘,𝐹,𝑚,𝑛,𝑥   𝐹,𝑠   𝑘,𝐺,𝑚,𝑛   𝑚,𝑀   𝑃,𝑘,𝑚,𝑛,𝑥   𝑃,𝑠   𝑆,𝑘,𝑚,𝑛   𝑆,𝑠   𝑘,𝑍,𝑚,𝑛,𝑥   𝑍,𝑠   𝜑,𝑘,𝑚,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑠)   𝐷(𝑠)   𝑆(𝑥)   𝐺(𝑥,𝑠)   𝑀(𝑥,𝑘,𝑛,𝑠)

Proof of Theorem smflimlem6
Dummy variables 𝑐 𝑟 𝑖 𝑗 𝑙 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smflimlem6.2 . . . . . . . 8 𝑍 = (ℤ𝑀)
21fvexi 6856 . . . . . . 7 𝑍 ∈ V
3 nnex 12159 . . . . . . 7 ℕ ∈ V
42, 3xpex 7687 . . . . . 6 (𝑍 × ℕ) ∈ V
54a1i 11 . . . . 5 (𝜑 → (𝑍 × ℕ) ∈ V)
6 eqid 2736 . . . . . . . . 9 {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))}
7 smflimlem6.3 . . . . . . . . 9 (𝜑𝑆 ∈ SAlg)
86, 7rabexd 5290 . . . . . . . 8 (𝜑 → {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V)
98adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑚𝑍𝑘 ∈ ℕ)) → {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V)
109ralrimivva 3197 . . . . . 6 (𝜑 → ∀𝑚𝑍𝑘 ∈ ℕ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V)
11 smflimlem6.8 . . . . . . 7 𝑃 = (𝑚𝑍, 𝑘 ∈ ℕ ↦ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
1211fnmpo 8001 . . . . . 6 (∀𝑚𝑍𝑘 ∈ ℕ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V → 𝑃 Fn (𝑍 × ℕ))
1310, 12syl 17 . . . . 5 (𝜑𝑃 Fn (𝑍 × ℕ))
14 fnrndomg 10472 . . . . 5 ((𝑍 × ℕ) ∈ V → (𝑃 Fn (𝑍 × ℕ) → ran 𝑃 ≼ (𝑍 × ℕ)))
155, 13, 14sylc 65 . . . 4 (𝜑 → ran 𝑃 ≼ (𝑍 × ℕ))
161uzct 43261 . . . . . . 7 𝑍 ≼ ω
17 nnct 13886 . . . . . . 7 ℕ ≼ ω
1816, 17pm3.2i 471 . . . . . 6 (𝑍 ≼ ω ∧ ℕ ≼ ω)
19 xpct 9952 . . . . . 6 ((𝑍 ≼ ω ∧ ℕ ≼ ω) → (𝑍 × ℕ) ≼ ω)
2018, 19ax-mp 5 . . . . 5 (𝑍 × ℕ) ≼ ω
2120a1i 11 . . . 4 (𝜑 → (𝑍 × ℕ) ≼ ω)
22 domtr 8947 . . . 4 ((ran 𝑃 ≼ (𝑍 × ℕ) ∧ (𝑍 × ℕ) ≼ ω) → ran 𝑃 ≼ ω)
2315, 21, 22syl2anc 584 . . 3 (𝜑 → ran 𝑃 ≼ ω)
24 vex 3449 . . . . . . 7 𝑦 ∈ V
2511elrnmpog 7491 . . . . . . 7 (𝑦 ∈ V → (𝑦 ∈ ran 𝑃 ↔ ∃𝑚𝑍𝑘 ∈ ℕ 𝑦 = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))}))
2624, 25ax-mp 5 . . . . . 6 (𝑦 ∈ ran 𝑃 ↔ ∃𝑚𝑍𝑘 ∈ ℕ 𝑦 = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
2726biimpi 215 . . . . 5 (𝑦 ∈ ran 𝑃 → ∃𝑚𝑍𝑘 ∈ ℕ 𝑦 = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
2827adantl 482 . . . 4 ((𝜑𝑦 ∈ ran 𝑃) → ∃𝑚𝑍𝑘 ∈ ℕ 𝑦 = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
29 simp3 1138 . . . . . . . 8 ((𝜑 ∧ (𝑚𝑍𝑘 ∈ ℕ) ∧ 𝑦 = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))}) → 𝑦 = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
307adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚𝑍𝑘 ∈ ℕ)) → 𝑆 ∈ SAlg)
31 smflimlem6.4 . . . . . . . . . . . . . 14 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
3231ffvelcdmda 7035 . . . . . . . . . . . . 13 ((𝜑𝑚𝑍) → (𝐹𝑚) ∈ (SMblFn‘𝑆))
3332adantrr 715 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚𝑍𝑘 ∈ ℕ)) → (𝐹𝑚) ∈ (SMblFn‘𝑆))
34 eqid 2736 . . . . . . . . . . . 12 dom (𝐹𝑚) = dom (𝐹𝑚)
35 smflimlem6.7 . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ ℝ)
3635adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ ℝ)
37 nnrecre 12195 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℝ)
3837adantl 482 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (1 / 𝑘) ∈ ℝ)
3936, 38readdcld 11184 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (𝐴 + (1 / 𝑘)) ∈ ℝ)
4039adantrl 714 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚𝑍𝑘 ∈ ℕ)) → (𝐴 + (1 / 𝑘)) ∈ ℝ)
4130, 33, 34, 40smfpreimalt 44962 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚𝑍𝑘 ∈ ℕ)) → {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} ∈ (𝑆t dom (𝐹𝑚)))
42 fvex 6855 . . . . . . . . . . . . . . 15 (𝐹𝑚) ∈ V
4342dmex 7848 . . . . . . . . . . . . . 14 dom (𝐹𝑚) ∈ V
4443a1i 11 . . . . . . . . . . . . 13 (𝜑 → dom (𝐹𝑚) ∈ V)
45 elrest 17309 . . . . . . . . . . . . 13 ((𝑆 ∈ SAlg ∧ dom (𝐹𝑚) ∈ V) → ({𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} ∈ (𝑆t dom (𝐹𝑚)) ↔ ∃𝑠𝑆 {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))))
467, 44, 45syl2anc 584 . . . . . . . . . . . 12 (𝜑 → ({𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} ∈ (𝑆t dom (𝐹𝑚)) ↔ ∃𝑠𝑆 {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))))
4746adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚𝑍𝑘 ∈ ℕ)) → ({𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} ∈ (𝑆t dom (𝐹𝑚)) ↔ ∃𝑠𝑆 {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))))
4841, 47mpbid 231 . . . . . . . . . 10 ((𝜑 ∧ (𝑚𝑍𝑘 ∈ ℕ)) → ∃𝑠𝑆 {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚)))
49 rabn0 4345 . . . . . . . . . 10 ({𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ≠ ∅ ↔ ∃𝑠𝑆 {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚)))
5048, 49sylibr 233 . . . . . . . . 9 ((𝜑 ∧ (𝑚𝑍𝑘 ∈ ℕ)) → {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ≠ ∅)
51503adant3 1132 . . . . . . . 8 ((𝜑 ∧ (𝑚𝑍𝑘 ∈ ℕ) ∧ 𝑦 = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))}) → {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ≠ ∅)
5229, 51eqnetrd 3011 . . . . . . 7 ((𝜑 ∧ (𝑚𝑍𝑘 ∈ ℕ) ∧ 𝑦 = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))}) → 𝑦 ≠ ∅)
53523exp 1119 . . . . . 6 (𝜑 → ((𝑚𝑍𝑘 ∈ ℕ) → (𝑦 = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} → 𝑦 ≠ ∅)))
5453rexlimdvv 3204 . . . . 5 (𝜑 → (∃𝑚𝑍𝑘 ∈ ℕ 𝑦 = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} → 𝑦 ≠ ∅))
5554adantr 481 . . . 4 ((𝜑𝑦 ∈ ran 𝑃) → (∃𝑚𝑍𝑘 ∈ ℕ 𝑦 = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} → 𝑦 ≠ ∅))
5628, 55mpd 15 . . 3 ((𝜑𝑦 ∈ ran 𝑃) → 𝑦 ≠ ∅)
5723, 56axccd2 43441 . 2 (𝜑 → ∃𝑐𝑦 ∈ ran 𝑃(𝑐𝑦) ∈ 𝑦)
58 smflimlem6.1 . . . . . 6 (𝜑𝑀 ∈ ℤ)
5958adantr 481 . . . . 5 ((𝜑 ∧ ∀𝑦 ∈ ran 𝑃(𝑐𝑦) ∈ 𝑦) → 𝑀 ∈ ℤ)
607adantr 481 . . . . 5 ((𝜑 ∧ ∀𝑦 ∈ ran 𝑃(𝑐𝑦) ∈ 𝑦) → 𝑆 ∈ SAlg)
6131adantr 481 . . . . 5 ((𝜑 ∧ ∀𝑦 ∈ ran 𝑃(𝑐𝑦) ∈ 𝑦) → 𝐹:𝑍⟶(SMblFn‘𝑆))
62 smflimlem6.5 . . . . 5 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
63 smflimlem6.6 . . . . 5 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
6435adantr 481 . . . . 5 ((𝜑 ∧ ∀𝑦 ∈ ran 𝑃(𝑐𝑦) ∈ 𝑦) → 𝐴 ∈ ℝ)
65 fvoveq1 7380 . . . . . 6 (𝑙 = 𝑚 → (𝑐‘(𝑙𝑃𝑗)) = (𝑐‘(𝑚𝑃𝑗)))
66 oveq2 7365 . . . . . . 7 (𝑗 = 𝑘 → (𝑚𝑃𝑗) = (𝑚𝑃𝑘))
6766fveq2d 6846 . . . . . 6 (𝑗 = 𝑘 → (𝑐‘(𝑚𝑃𝑗)) = (𝑐‘(𝑚𝑃𝑘)))
6865, 67cbvmpov 7452 . . . . 5 (𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗))) = (𝑚𝑍, 𝑘 ∈ ℕ ↦ (𝑐‘(𝑚𝑃𝑘)))
69 nfcv 2907 . . . . . 6 𝑘 𝑛𝑍 𝑖 ∈ (ℤ𝑛)(𝑖(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑗)
70 nfcv 2907 . . . . . . 7 𝑗𝑍
71 nfcv 2907 . . . . . . . 8 𝑗(ℤ𝑛)
72 nfcv 2907 . . . . . . . . 9 𝑗𝑚
73 nfmpo2 7438 . . . . . . . . 9 𝑗(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))
74 nfcv 2907 . . . . . . . . 9 𝑗𝑘
7572, 73, 74nfov 7387 . . . . . . . 8 𝑗(𝑚(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑘)
7671, 75nfiin 4985 . . . . . . 7 𝑗 𝑚 ∈ (ℤ𝑛)(𝑚(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑘)
7770, 76nfiun 4984 . . . . . 6 𝑗 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑘)
78 oveq2 7365 . . . . . . . . . . 11 (𝑗 = 𝑘 → (𝑖(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑗) = (𝑖(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑘))
7978adantr 481 . . . . . . . . . 10 ((𝑗 = 𝑘𝑖 ∈ (ℤ𝑛)) → (𝑖(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑗) = (𝑖(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑘))
8079iineq2dv 4979 . . . . . . . . 9 (𝑗 = 𝑘 𝑖 ∈ (ℤ𝑛)(𝑖(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑗) = 𝑖 ∈ (ℤ𝑛)(𝑖(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑘))
81 oveq1 7364 . . . . . . . . . . 11 (𝑖 = 𝑚 → (𝑖(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑘) = (𝑚(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑘))
8281cbviinv 5001 . . . . . . . . . 10 𝑖 ∈ (ℤ𝑛)(𝑖(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑘) = 𝑚 ∈ (ℤ𝑛)(𝑚(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑘)
8382a1i 11 . . . . . . . . 9 (𝑗 = 𝑘 𝑖 ∈ (ℤ𝑛)(𝑖(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑘) = 𝑚 ∈ (ℤ𝑛)(𝑚(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑘))
8480, 83eqtrd 2776 . . . . . . . 8 (𝑗 = 𝑘 𝑖 ∈ (ℤ𝑛)(𝑖(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑗) = 𝑚 ∈ (ℤ𝑛)(𝑚(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑘))
8584adantr 481 . . . . . . 7 ((𝑗 = 𝑘𝑛𝑍) → 𝑖 ∈ (ℤ𝑛)(𝑖(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑗) = 𝑚 ∈ (ℤ𝑛)(𝑚(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑘))
8685iuneq2dv 4978 . . . . . 6 (𝑗 = 𝑘 𝑛𝑍 𝑖 ∈ (ℤ𝑛)(𝑖(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑗) = 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑘))
8769, 77, 86cbviin 4997 . . . . 5 𝑗 ∈ ℕ 𝑛𝑍 𝑖 ∈ (ℤ𝑛)(𝑖(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑗) = 𝑘 ∈ ℕ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑘)
88 fveq2 6842 . . . . . . . 8 (𝑦 = 𝑟 → (𝑐𝑦) = (𝑐𝑟))
89 id 22 . . . . . . . 8 (𝑦 = 𝑟𝑦 = 𝑟)
9088, 89eleq12d 2832 . . . . . . 7 (𝑦 = 𝑟 → ((𝑐𝑦) ∈ 𝑦 ↔ (𝑐𝑟) ∈ 𝑟))
9190rspccva 3580 . . . . . 6 ((∀𝑦 ∈ ran 𝑃(𝑐𝑦) ∈ 𝑦𝑟 ∈ ran 𝑃) → (𝑐𝑟) ∈ 𝑟)
9291adantll 712 . . . . 5 (((𝜑 ∧ ∀𝑦 ∈ ran 𝑃(𝑐𝑦) ∈ 𝑦) ∧ 𝑟 ∈ ran 𝑃) → (𝑐𝑟) ∈ 𝑟)
9359, 1, 60, 61, 62, 63, 64, 11, 68, 87, 92smflimlem5 45006 . . . 4 ((𝜑 ∧ ∀𝑦 ∈ ran 𝑃(𝑐𝑦) ∈ 𝑦) → {𝑥𝐷 ∣ (𝐺𝑥) ≤ 𝐴} ∈ (𝑆t 𝐷))
9493ex 413 . . 3 (𝜑 → (∀𝑦 ∈ ran 𝑃(𝑐𝑦) ∈ 𝑦 → {𝑥𝐷 ∣ (𝐺𝑥) ≤ 𝐴} ∈ (𝑆t 𝐷)))
9594exlimdv 1936 . 2 (𝜑 → (∃𝑐𝑦 ∈ ran 𝑃(𝑐𝑦) ∈ 𝑦 → {𝑥𝐷 ∣ (𝐺𝑥) ≤ 𝐴} ∈ (𝑆t 𝐷)))
9657, 95mpd 15 1 (𝜑 → {𝑥𝐷 ∣ (𝐺𝑥) ≤ 𝐴} ∈ (𝑆t 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wex 1781  wcel 2106  wne 2943  wral 3064  wrex 3073  {crab 3407  Vcvv 3445  cin 3909  c0 4282   ciun 4954   ciin 4955   class class class wbr 5105  cmpt 5188   × cxp 5631  dom cdm 5633  ran crn 5634   Fn wfn 6491  wf 6492  cfv 6496  (class class class)co 7357  cmpo 7359  ωcom 7802  cdom 8881  cr 11050  1c1 11052   + caddc 11054   < clt 11189  cle 11190   / cdiv 11812  cn 12153  cz 12499  cuz 12763  cli 15366  t crest 17302  SAlgcsalg 44539  SMblFncsmblfn 44926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cc 10371  ax-ac2 10399  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-oadd 8416  df-omul 8417  df-er 8648  df-map 8767  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-acn 9878  df-ac 10052  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-q 12874  df-rp 12916  df-ioo 13268  df-ico 13270  df-fl 13697  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-rlim 15371  df-rest 17304  df-salg 44540  df-smblfn 44927
This theorem is referenced by:  smflim  45008
  Copyright terms: Public domain W3C validator