MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvoprab12v Structured version   Visualization version   GIF version

Theorem cbvoprab12v 7436
Description: Rule used to change first two bound variables in an operation abstraction, using implicit substitution. (Contributed by NM, 8-Oct-2004.)
Hypothesis
Ref Expression
cbvoprab12v.1 ((𝑥 = 𝑤𝑦 = 𝑣) → (𝜑𝜓))
Assertion
Ref Expression
cbvoprab12v {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑤, 𝑣⟩, 𝑧⟩ ∣ 𝜓}
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝑣   𝜑,𝑤,𝑣   𝜓,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑧,𝑤,𝑣)

Proof of Theorem cbvoprab12v
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 opeq12 4827 . . . . . . . 8 ((𝑥 = 𝑤𝑦 = 𝑣) → ⟨𝑥, 𝑦⟩ = ⟨𝑤, 𝑣⟩)
21opeq1d 4831 . . . . . . 7 ((𝑥 = 𝑤𝑦 = 𝑣) → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ = ⟨⟨𝑤, 𝑣⟩, 𝑧⟩)
32eqeq2d 2742 . . . . . 6 ((𝑥 = 𝑤𝑦 = 𝑣) → (𝑢 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ↔ 𝑢 = ⟨⟨𝑤, 𝑣⟩, 𝑧⟩))
4 cbvoprab12v.1 . . . . . 6 ((𝑥 = 𝑤𝑦 = 𝑣) → (𝜑𝜓))
53, 4anbi12d 632 . . . . 5 ((𝑥 = 𝑤𝑦 = 𝑣) → ((𝑢 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ (𝑢 = ⟨⟨𝑤, 𝑣⟩, 𝑧⟩ ∧ 𝜓)))
65exbidv 1922 . . . 4 ((𝑥 = 𝑤𝑦 = 𝑣) → (∃𝑧(𝑢 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ ∃𝑧(𝑢 = ⟨⟨𝑤, 𝑣⟩, 𝑧⟩ ∧ 𝜓)))
76cbvex2vw 2042 . . 3 (∃𝑥𝑦𝑧(𝑢 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ ∃𝑤𝑣𝑧(𝑢 = ⟨⟨𝑤, 𝑣⟩, 𝑧⟩ ∧ 𝜓))
87abbii 2798 . 2 {𝑢 ∣ ∃𝑥𝑦𝑧(𝑢 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)} = {𝑢 ∣ ∃𝑤𝑣𝑧(𝑢 = ⟨⟨𝑤, 𝑣⟩, 𝑧⟩ ∧ 𝜓)}
9 df-oprab 7350 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {𝑢 ∣ ∃𝑥𝑦𝑧(𝑢 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)}
10 df-oprab 7350 . 2 {⟨⟨𝑤, 𝑣⟩, 𝑧⟩ ∣ 𝜓} = {𝑢 ∣ ∃𝑤𝑣𝑧(𝑢 = ⟨⟨𝑤, 𝑣⟩, 𝑧⟩ ∧ 𝜓)}
118, 9, 103eqtr4i 2764 1 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑤, 𝑣⟩, 𝑧⟩ ∣ 𝜓}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wex 1780  {cab 2709  cop 4582  {coprab 7347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-oprab 7350
This theorem is referenced by:  cbvmpov  7441  cpnnen  16135  cbvmpovw2  36275
  Copyright terms: Public domain W3C validator