MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvoprab3 Structured version   Visualization version   GIF version

Theorem cbvoprab3 7101
Description: Rule used to change the third bound variable in an operation abstraction, using implicit substitution. (Contributed by NM, 22-Aug-2013.)
Hypotheses
Ref Expression
cbvoprab3.1 𝑤𝜑
cbvoprab3.2 𝑧𝜓
cbvoprab3.3 (𝑧 = 𝑤 → (𝜑𝜓))
Assertion
Ref Expression
cbvoprab3 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∣ 𝜓}
Distinct variable groups:   𝑥,𝑧,𝑤   𝑦,𝑧,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)   𝜓(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem cbvoprab3
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 nfv 1892 . . . . . 6 𝑤 𝑣 = ⟨𝑥, 𝑦
2 cbvoprab3.1 . . . . . 6 𝑤𝜑
31, 2nfan 1881 . . . . 5 𝑤(𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
43nfex 2306 . . . 4 𝑤𝑦(𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
54nfex 2306 . . 3 𝑤𝑥𝑦(𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
6 nfv 1892 . . . . . 6 𝑧 𝑣 = ⟨𝑥, 𝑦
7 cbvoprab3.2 . . . . . 6 𝑧𝜓
86, 7nfan 1881 . . . . 5 𝑧(𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)
98nfex 2306 . . . 4 𝑧𝑦(𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)
109nfex 2306 . . 3 𝑧𝑥𝑦(𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)
11 cbvoprab3.3 . . . . 5 (𝑧 = 𝑤 → (𝜑𝜓))
1211anbi2d 628 . . . 4 (𝑧 = 𝑤 → ((𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ (𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)))
13122exbidv 1902 . . 3 (𝑧 = 𝑤 → (∃𝑥𝑦(𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥𝑦(𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)))
145, 10, 13cbvopab2 5036 . 2 {⟨𝑣, 𝑧⟩ ∣ ∃𝑥𝑦(𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} = {⟨𝑣, 𝑤⟩ ∣ ∃𝑥𝑦(𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)}
15 dfoprab2 7071 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑣, 𝑧⟩ ∣ ∃𝑥𝑦(𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
16 dfoprab2 7071 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∣ 𝜓} = {⟨𝑣, 𝑤⟩ ∣ ∃𝑥𝑦(𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)}
1714, 15, 163eqtr4i 2829 1 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∣ 𝜓}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1522  wex 1761  wnf 1765  cop 4478  {copab 5024  {coprab 7017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-ext 2769  ax-sep 5094  ax-nul 5101  ax-pr 5221
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-rab 3114  df-v 3439  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-nul 4212  df-if 4382  df-sn 4473  df-pr 4475  df-op 4479  df-opab 5025  df-oprab 7020
This theorem is referenced by:  cbvoprab3v  7102  tposoprab  7779  erovlem  8243
  Copyright terms: Public domain W3C validator