MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvoprab3 Structured version   Visualization version   GIF version

Theorem cbvoprab3 7484
Description: Rule used to change the third bound variable in an operation abstraction, using implicit substitution. (Contributed by NM, 22-Aug-2013.)
Hypotheses
Ref Expression
cbvoprab3.1 𝑤𝜑
cbvoprab3.2 𝑧𝜓
cbvoprab3.3 (𝑧 = 𝑤 → (𝜑𝜓))
Assertion
Ref Expression
cbvoprab3 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∣ 𝜓}
Distinct variable groups:   𝑥,𝑧,𝑤   𝑦,𝑧,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)   𝜓(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem cbvoprab3
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 nfv 1917 . . . . . 6 𝑤 𝑣 = ⟨𝑥, 𝑦
2 cbvoprab3.1 . . . . . 6 𝑤𝜑
31, 2nfan 1902 . . . . 5 𝑤(𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
43nfex 2317 . . . 4 𝑤𝑦(𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
54nfex 2317 . . 3 𝑤𝑥𝑦(𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
6 nfv 1917 . . . . . 6 𝑧 𝑣 = ⟨𝑥, 𝑦
7 cbvoprab3.2 . . . . . 6 𝑧𝜓
86, 7nfan 1902 . . . . 5 𝑧(𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)
98nfex 2317 . . . 4 𝑧𝑦(𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)
109nfex 2317 . . 3 𝑧𝑥𝑦(𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)
11 cbvoprab3.3 . . . . 5 (𝑧 = 𝑤 → (𝜑𝜓))
1211anbi2d 629 . . . 4 (𝑧 = 𝑤 → ((𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ (𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)))
13122exbidv 1927 . . 3 (𝑧 = 𝑤 → (∃𝑥𝑦(𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥𝑦(𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)))
145, 10, 13cbvopab2 5218 . 2 {⟨𝑣, 𝑧⟩ ∣ ∃𝑥𝑦(𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} = {⟨𝑣, 𝑤⟩ ∣ ∃𝑥𝑦(𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)}
15 dfoprab2 7451 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑣, 𝑧⟩ ∣ ∃𝑥𝑦(𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
16 dfoprab2 7451 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∣ 𝜓} = {⟨𝑣, 𝑤⟩ ∣ ∃𝑥𝑦(𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)}
1714, 15, 163eqtr4i 2769 1 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∣ 𝜓}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wex 1781  wnf 1785  cop 4628  {copab 5203  {coprab 7394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2709  df-cleq 2723  df-clel 2809  df-rab 3432  df-v 3475  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4523  df-sn 4623  df-pr 4625  df-op 4629  df-opab 5204  df-oprab 7397
This theorem is referenced by:  cbvoprab3v  7485  tposoprab  8229  erovlem  8790
  Copyright terms: Public domain W3C validator