MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cpnnen Structured version   Visualization version   GIF version

Theorem cpnnen 16204
Description: The complex numbers are equinumerous to the powerset of the positive integers. (Contributed by Mario Carneiro, 16-Jun-2013.)
Assertion
Ref Expression
cpnnen ℂ ≈ 𝒫 ℕ

Proof of Theorem cpnnen
Dummy variables 𝑤 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexpen 16203 . . 3 (ℝ × ℝ) ≈ ℝ
2 eleq1w 2812 . . . . . . . . 9 (𝑣 = 𝑥 → (𝑣 ∈ ℝ ↔ 𝑥 ∈ ℝ))
3 eleq1w 2812 . . . . . . . . 9 (𝑤 = 𝑦 → (𝑤 ∈ ℝ ↔ 𝑦 ∈ ℝ))
42, 3bi2anan9 638 . . . . . . . 8 ((𝑣 = 𝑥𝑤 = 𝑦) → ((𝑣 ∈ ℝ ∧ 𝑤 ∈ ℝ) ↔ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)))
5 oveq2 7398 . . . . . . . . . 10 (𝑤 = 𝑦 → (i · 𝑤) = (i · 𝑦))
6 oveq12 7399 . . . . . . . . . 10 ((𝑣 = 𝑥 ∧ (i · 𝑤) = (i · 𝑦)) → (𝑣 + (i · 𝑤)) = (𝑥 + (i · 𝑦)))
75, 6sylan2 593 . . . . . . . . 9 ((𝑣 = 𝑥𝑤 = 𝑦) → (𝑣 + (i · 𝑤)) = (𝑥 + (i · 𝑦)))
87eqeq2d 2741 . . . . . . . 8 ((𝑣 = 𝑥𝑤 = 𝑦) → (𝑧 = (𝑣 + (i · 𝑤)) ↔ 𝑧 = (𝑥 + (i · 𝑦))))
94, 8anbi12d 632 . . . . . . 7 ((𝑣 = 𝑥𝑤 = 𝑦) → (((𝑣 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ 𝑧 = (𝑣 + (i · 𝑤))) ↔ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑧 = (𝑥 + (i · 𝑦)))))
109cbvoprab12v 7482 . . . . . 6 {⟨⟨𝑣, 𝑤⟩, 𝑧⟩ ∣ ((𝑣 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ 𝑧 = (𝑣 + (i · 𝑤)))} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑧 = (𝑥 + (i · 𝑦)))}
11 df-mpo 7395 . . . . . 6 (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦))) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑧 = (𝑥 + (i · 𝑦)))}
1210, 11eqtr4i 2756 . . . . 5 {⟨⟨𝑣, 𝑤⟩, 𝑧⟩ ∣ ((𝑣 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ 𝑧 = (𝑣 + (i · 𝑤)))} = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦)))
1312cnref1o 12951 . . . 4 {⟨⟨𝑣, 𝑤⟩, 𝑧⟩ ∣ ((𝑣 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ 𝑧 = (𝑣 + (i · 𝑤)))}:(ℝ × ℝ)–1-1-onto→ℂ
14 reex 11166 . . . . . 6 ℝ ∈ V
1514, 14xpex 7732 . . . . 5 (ℝ × ℝ) ∈ V
1615f1oen 8947 . . . 4 ({⟨⟨𝑣, 𝑤⟩, 𝑧⟩ ∣ ((𝑣 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ 𝑧 = (𝑣 + (i · 𝑤)))}:(ℝ × ℝ)–1-1-onto→ℂ → (ℝ × ℝ) ≈ ℂ)
1713, 16ax-mp 5 . . 3 (ℝ × ℝ) ≈ ℂ
181, 17entr3i 8984 . 2 ℝ ≈ ℂ
19 rpnnen 16202 . 2 ℝ ≈ 𝒫 ℕ
2018, 19entr3i 8984 1 ℂ ≈ 𝒫 ℕ
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  𝒫 cpw 4566   class class class wbr 5110   × cxp 5639  1-1-ontowf1o 6513  (class class class)co 7390  {coprab 7391  cmpo 7392  cen 8918  cc 11073  cr 11074  ici 11077   + caddc 11078   · cmul 11080  cn 12193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-omul 8442  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-acn 9902  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-q 12915  df-rp 12959  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660
This theorem is referenced by:  cnso  16222
  Copyright terms: Public domain W3C validator