![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cpnnen | Structured version Visualization version GIF version |
Description: The complex numbers are equinumerous to the powerset of the positive integers. (Contributed by Mario Carneiro, 16-Jun-2013.) |
Ref | Expression |
---|---|
cpnnen | ⊢ ℂ ≈ 𝒫 ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexpen 16276 | . . 3 ⊢ (ℝ × ℝ) ≈ ℝ | |
2 | eleq1w 2827 | . . . . . . . . 9 ⊢ (𝑣 = 𝑥 → (𝑣 ∈ ℝ ↔ 𝑥 ∈ ℝ)) | |
3 | eleq1w 2827 | . . . . . . . . 9 ⊢ (𝑤 = 𝑦 → (𝑤 ∈ ℝ ↔ 𝑦 ∈ ℝ)) | |
4 | 2, 3 | bi2anan9 637 | . . . . . . . 8 ⊢ ((𝑣 = 𝑥 ∧ 𝑤 = 𝑦) → ((𝑣 ∈ ℝ ∧ 𝑤 ∈ ℝ) ↔ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ))) |
5 | oveq2 7456 | . . . . . . . . . 10 ⊢ (𝑤 = 𝑦 → (i · 𝑤) = (i · 𝑦)) | |
6 | oveq12 7457 | . . . . . . . . . 10 ⊢ ((𝑣 = 𝑥 ∧ (i · 𝑤) = (i · 𝑦)) → (𝑣 + (i · 𝑤)) = (𝑥 + (i · 𝑦))) | |
7 | 5, 6 | sylan2 592 | . . . . . . . . 9 ⊢ ((𝑣 = 𝑥 ∧ 𝑤 = 𝑦) → (𝑣 + (i · 𝑤)) = (𝑥 + (i · 𝑦))) |
8 | 7 | eqeq2d 2751 | . . . . . . . 8 ⊢ ((𝑣 = 𝑥 ∧ 𝑤 = 𝑦) → (𝑧 = (𝑣 + (i · 𝑤)) ↔ 𝑧 = (𝑥 + (i · 𝑦)))) |
9 | 4, 8 | anbi12d 631 | . . . . . . 7 ⊢ ((𝑣 = 𝑥 ∧ 𝑤 = 𝑦) → (((𝑣 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ 𝑧 = (𝑣 + (i · 𝑤))) ↔ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑧 = (𝑥 + (i · 𝑦))))) |
10 | 9 | cbvoprab12v 7540 | . . . . . 6 ⊢ {〈〈𝑣, 𝑤〉, 𝑧〉 ∣ ((𝑣 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ 𝑧 = (𝑣 + (i · 𝑤)))} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑧 = (𝑥 + (i · 𝑦)))} |
11 | df-mpo 7453 | . . . . . 6 ⊢ (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦))) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑧 = (𝑥 + (i · 𝑦)))} | |
12 | 10, 11 | eqtr4i 2771 | . . . . 5 ⊢ {〈〈𝑣, 𝑤〉, 𝑧〉 ∣ ((𝑣 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ 𝑧 = (𝑣 + (i · 𝑤)))} = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦))) |
13 | 12 | cnref1o 13050 | . . . 4 ⊢ {〈〈𝑣, 𝑤〉, 𝑧〉 ∣ ((𝑣 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ 𝑧 = (𝑣 + (i · 𝑤)))}:(ℝ × ℝ)–1-1-onto→ℂ |
14 | reex 11275 | . . . . . 6 ⊢ ℝ ∈ V | |
15 | 14, 14 | xpex 7788 | . . . . 5 ⊢ (ℝ × ℝ) ∈ V |
16 | 15 | f1oen 9033 | . . . 4 ⊢ ({〈〈𝑣, 𝑤〉, 𝑧〉 ∣ ((𝑣 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ 𝑧 = (𝑣 + (i · 𝑤)))}:(ℝ × ℝ)–1-1-onto→ℂ → (ℝ × ℝ) ≈ ℂ) |
17 | 13, 16 | ax-mp 5 | . . 3 ⊢ (ℝ × ℝ) ≈ ℂ |
18 | 1, 17 | entr3i 9070 | . 2 ⊢ ℝ ≈ ℂ |
19 | rpnnen 16275 | . 2 ⊢ ℝ ≈ 𝒫 ℕ | |
20 | 18, 19 | entr3i 9070 | 1 ⊢ ℂ ≈ 𝒫 ℕ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∈ wcel 2108 𝒫 cpw 4622 class class class wbr 5166 × cxp 5698 –1-1-onto→wf1o 6572 (class class class)co 7448 {coprab 7449 ∈ cmpo 7450 ≈ cen 9000 ℂcc 11182 ℝcr 11183 ici 11186 + caddc 11187 · cmul 11189 ℕcn 12293 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-oadd 8526 df-omul 8527 df-er 8763 df-map 8886 df-pm 8887 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-inf 9512 df-oi 9579 df-card 10008 df-acn 10011 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-z 12640 df-uz 12904 df-q 13014 df-rp 13058 df-ico 13413 df-icc 13414 df-fz 13568 df-fzo 13712 df-fl 13843 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-limsup 15517 df-clim 15534 df-rlim 15535 df-sum 15735 |
This theorem is referenced by: cnso 16295 |
Copyright terms: Public domain | W3C validator |