MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cpnnen Structured version   Visualization version   GIF version

Theorem cpnnen 16138
Description: The complex numbers are equinumerous to the powerset of the positive integers. (Contributed by Mario Carneiro, 16-Jun-2013.)
Assertion
Ref Expression
cpnnen ℂ ≈ 𝒫 ℕ

Proof of Theorem cpnnen
Dummy variables 𝑤 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexpen 16137 . . 3 (ℝ × ℝ) ≈ ℝ
2 eleq1w 2814 . . . . . . . . 9 (𝑣 = 𝑥 → (𝑣 ∈ ℝ ↔ 𝑥 ∈ ℝ))
3 eleq1w 2814 . . . . . . . . 9 (𝑤 = 𝑦 → (𝑤 ∈ ℝ ↔ 𝑦 ∈ ℝ))
42, 3bi2anan9 638 . . . . . . . 8 ((𝑣 = 𝑥𝑤 = 𝑦) → ((𝑣 ∈ ℝ ∧ 𝑤 ∈ ℝ) ↔ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)))
5 oveq2 7354 . . . . . . . . . 10 (𝑤 = 𝑦 → (i · 𝑤) = (i · 𝑦))
6 oveq12 7355 . . . . . . . . . 10 ((𝑣 = 𝑥 ∧ (i · 𝑤) = (i · 𝑦)) → (𝑣 + (i · 𝑤)) = (𝑥 + (i · 𝑦)))
75, 6sylan2 593 . . . . . . . . 9 ((𝑣 = 𝑥𝑤 = 𝑦) → (𝑣 + (i · 𝑤)) = (𝑥 + (i · 𝑦)))
87eqeq2d 2742 . . . . . . . 8 ((𝑣 = 𝑥𝑤 = 𝑦) → (𝑧 = (𝑣 + (i · 𝑤)) ↔ 𝑧 = (𝑥 + (i · 𝑦))))
94, 8anbi12d 632 . . . . . . 7 ((𝑣 = 𝑥𝑤 = 𝑦) → (((𝑣 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ 𝑧 = (𝑣 + (i · 𝑤))) ↔ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑧 = (𝑥 + (i · 𝑦)))))
109cbvoprab12v 7436 . . . . . 6 {⟨⟨𝑣, 𝑤⟩, 𝑧⟩ ∣ ((𝑣 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ 𝑧 = (𝑣 + (i · 𝑤)))} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑧 = (𝑥 + (i · 𝑦)))}
11 df-mpo 7351 . . . . . 6 (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦))) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑧 = (𝑥 + (i · 𝑦)))}
1210, 11eqtr4i 2757 . . . . 5 {⟨⟨𝑣, 𝑤⟩, 𝑧⟩ ∣ ((𝑣 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ 𝑧 = (𝑣 + (i · 𝑤)))} = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦)))
1312cnref1o 12883 . . . 4 {⟨⟨𝑣, 𝑤⟩, 𝑧⟩ ∣ ((𝑣 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ 𝑧 = (𝑣 + (i · 𝑤)))}:(ℝ × ℝ)–1-1-onto→ℂ
14 reex 11097 . . . . . 6 ℝ ∈ V
1514, 14xpex 7686 . . . . 5 (ℝ × ℝ) ∈ V
1615f1oen 8895 . . . 4 ({⟨⟨𝑣, 𝑤⟩, 𝑧⟩ ∣ ((𝑣 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ 𝑧 = (𝑣 + (i · 𝑤)))}:(ℝ × ℝ)–1-1-onto→ℂ → (ℝ × ℝ) ≈ ℂ)
1713, 16ax-mp 5 . . 3 (ℝ × ℝ) ≈ ℂ
181, 17entr3i 8932 . 2 ℝ ≈ ℂ
19 rpnnen 16136 . 2 ℝ ≈ 𝒫 ℕ
2018, 19entr3i 8932 1 ℂ ≈ 𝒫 ℕ
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wcel 2111  𝒫 cpw 4547   class class class wbr 5089   × cxp 5612  1-1-ontowf1o 6480  (class class class)co 7346  {coprab 7347  cmpo 7348  cen 8866  cc 11004  cr 11005  ici 11008   + caddc 11009   · cmul 11011  cn 12125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-omul 8390  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-acn 9835  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-q 12847  df-rp 12891  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-fl 13696  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594
This theorem is referenced by:  cnso  16156
  Copyright terms: Public domain W3C validator