Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cpnnen | Structured version Visualization version GIF version |
Description: The complex numbers are equinumerous to the powerset of the positive integers. (Contributed by Mario Carneiro, 16-Jun-2013.) |
Ref | Expression |
---|---|
cpnnen | ⊢ ℂ ≈ 𝒫 ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexpen 15629 | . . 3 ⊢ (ℝ × ℝ) ≈ ℝ | |
2 | eleq1w 2834 | . . . . . . . . 9 ⊢ (𝑣 = 𝑥 → (𝑣 ∈ ℝ ↔ 𝑥 ∈ ℝ)) | |
3 | eleq1w 2834 | . . . . . . . . 9 ⊢ (𝑤 = 𝑦 → (𝑤 ∈ ℝ ↔ 𝑦 ∈ ℝ)) | |
4 | 2, 3 | bi2anan9 638 | . . . . . . . 8 ⊢ ((𝑣 = 𝑥 ∧ 𝑤 = 𝑦) → ((𝑣 ∈ ℝ ∧ 𝑤 ∈ ℝ) ↔ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ))) |
5 | oveq2 7158 | . . . . . . . . . 10 ⊢ (𝑤 = 𝑦 → (i · 𝑤) = (i · 𝑦)) | |
6 | oveq12 7159 | . . . . . . . . . 10 ⊢ ((𝑣 = 𝑥 ∧ (i · 𝑤) = (i · 𝑦)) → (𝑣 + (i · 𝑤)) = (𝑥 + (i · 𝑦))) | |
7 | 5, 6 | sylan2 595 | . . . . . . . . 9 ⊢ ((𝑣 = 𝑥 ∧ 𝑤 = 𝑦) → (𝑣 + (i · 𝑤)) = (𝑥 + (i · 𝑦))) |
8 | 7 | eqeq2d 2769 | . . . . . . . 8 ⊢ ((𝑣 = 𝑥 ∧ 𝑤 = 𝑦) → (𝑧 = (𝑣 + (i · 𝑤)) ↔ 𝑧 = (𝑥 + (i · 𝑦)))) |
9 | 4, 8 | anbi12d 633 | . . . . . . 7 ⊢ ((𝑣 = 𝑥 ∧ 𝑤 = 𝑦) → (((𝑣 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ 𝑧 = (𝑣 + (i · 𝑤))) ↔ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑧 = (𝑥 + (i · 𝑦))))) |
10 | 9 | cbvoprab12v 7238 | . . . . . 6 ⊢ {〈〈𝑣, 𝑤〉, 𝑧〉 ∣ ((𝑣 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ 𝑧 = (𝑣 + (i · 𝑤)))} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑧 = (𝑥 + (i · 𝑦)))} |
11 | df-mpo 7155 | . . . . . 6 ⊢ (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦))) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑧 = (𝑥 + (i · 𝑦)))} | |
12 | 10, 11 | eqtr4i 2784 | . . . . 5 ⊢ {〈〈𝑣, 𝑤〉, 𝑧〉 ∣ ((𝑣 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ 𝑧 = (𝑣 + (i · 𝑤)))} = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦))) |
13 | 12 | cnref1o 12425 | . . . 4 ⊢ {〈〈𝑣, 𝑤〉, 𝑧〉 ∣ ((𝑣 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ 𝑧 = (𝑣 + (i · 𝑤)))}:(ℝ × ℝ)–1-1-onto→ℂ |
14 | reex 10666 | . . . . . 6 ⊢ ℝ ∈ V | |
15 | 14, 14 | xpex 7474 | . . . . 5 ⊢ (ℝ × ℝ) ∈ V |
16 | 15 | f1oen 8548 | . . . 4 ⊢ ({〈〈𝑣, 𝑤〉, 𝑧〉 ∣ ((𝑣 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ 𝑧 = (𝑣 + (i · 𝑤)))}:(ℝ × ℝ)–1-1-onto→ℂ → (ℝ × ℝ) ≈ ℂ) |
17 | 13, 16 | ax-mp 5 | . . 3 ⊢ (ℝ × ℝ) ≈ ℂ |
18 | 1, 17 | entr3i 8583 | . 2 ⊢ ℝ ≈ ℂ |
19 | rpnnen 15628 | . 2 ⊢ ℝ ≈ 𝒫 ℕ | |
20 | 18, 19 | entr3i 8583 | 1 ⊢ ℂ ≈ 𝒫 ℕ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 399 = wceq 1538 ∈ wcel 2111 𝒫 cpw 4494 class class class wbr 5032 × cxp 5522 –1-1-onto→wf1o 6334 (class class class)co 7150 {coprab 7151 ∈ cmpo 7152 ≈ cen 8524 ℂcc 10573 ℝcr 10574 ici 10577 + caddc 10578 · cmul 10580 ℕcn 11674 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-inf2 9137 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 ax-pre-sup 10653 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-int 4839 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-se 5484 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-isom 6344 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-1st 7693 df-2nd 7694 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-1o 8112 df-2o 8113 df-oadd 8116 df-omul 8117 df-er 8299 df-map 8418 df-pm 8419 df-en 8528 df-dom 8529 df-sdom 8530 df-fin 8531 df-sup 8939 df-inf 8940 df-oi 9007 df-card 9401 df-acn 9404 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-div 11336 df-nn 11675 df-2 11737 df-3 11738 df-n0 11935 df-z 12021 df-uz 12283 df-q 12389 df-rp 12431 df-ico 12785 df-icc 12786 df-fz 12940 df-fzo 13083 df-fl 13211 df-seq 13419 df-exp 13480 df-hash 13741 df-cj 14506 df-re 14507 df-im 14508 df-sqrt 14642 df-abs 14643 df-limsup 14876 df-clim 14893 df-rlim 14894 df-sum 15091 |
This theorem is referenced by: cnso 15648 |
Copyright terms: Public domain | W3C validator |