| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cpnnen | Structured version Visualization version GIF version | ||
| Description: The complex numbers are equinumerous to the powerset of the positive integers. (Contributed by Mario Carneiro, 16-Jun-2013.) |
| Ref | Expression |
|---|---|
| cpnnen | ⊢ ℂ ≈ 𝒫 ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexpen 16137 | . . 3 ⊢ (ℝ × ℝ) ≈ ℝ | |
| 2 | eleq1w 2814 | . . . . . . . . 9 ⊢ (𝑣 = 𝑥 → (𝑣 ∈ ℝ ↔ 𝑥 ∈ ℝ)) | |
| 3 | eleq1w 2814 | . . . . . . . . 9 ⊢ (𝑤 = 𝑦 → (𝑤 ∈ ℝ ↔ 𝑦 ∈ ℝ)) | |
| 4 | 2, 3 | bi2anan9 638 | . . . . . . . 8 ⊢ ((𝑣 = 𝑥 ∧ 𝑤 = 𝑦) → ((𝑣 ∈ ℝ ∧ 𝑤 ∈ ℝ) ↔ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ))) |
| 5 | oveq2 7354 | . . . . . . . . . 10 ⊢ (𝑤 = 𝑦 → (i · 𝑤) = (i · 𝑦)) | |
| 6 | oveq12 7355 | . . . . . . . . . 10 ⊢ ((𝑣 = 𝑥 ∧ (i · 𝑤) = (i · 𝑦)) → (𝑣 + (i · 𝑤)) = (𝑥 + (i · 𝑦))) | |
| 7 | 5, 6 | sylan2 593 | . . . . . . . . 9 ⊢ ((𝑣 = 𝑥 ∧ 𝑤 = 𝑦) → (𝑣 + (i · 𝑤)) = (𝑥 + (i · 𝑦))) |
| 8 | 7 | eqeq2d 2742 | . . . . . . . 8 ⊢ ((𝑣 = 𝑥 ∧ 𝑤 = 𝑦) → (𝑧 = (𝑣 + (i · 𝑤)) ↔ 𝑧 = (𝑥 + (i · 𝑦)))) |
| 9 | 4, 8 | anbi12d 632 | . . . . . . 7 ⊢ ((𝑣 = 𝑥 ∧ 𝑤 = 𝑦) → (((𝑣 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ 𝑧 = (𝑣 + (i · 𝑤))) ↔ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑧 = (𝑥 + (i · 𝑦))))) |
| 10 | 9 | cbvoprab12v 7436 | . . . . . 6 ⊢ {〈〈𝑣, 𝑤〉, 𝑧〉 ∣ ((𝑣 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ 𝑧 = (𝑣 + (i · 𝑤)))} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑧 = (𝑥 + (i · 𝑦)))} |
| 11 | df-mpo 7351 | . . . . . 6 ⊢ (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦))) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑧 = (𝑥 + (i · 𝑦)))} | |
| 12 | 10, 11 | eqtr4i 2757 | . . . . 5 ⊢ {〈〈𝑣, 𝑤〉, 𝑧〉 ∣ ((𝑣 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ 𝑧 = (𝑣 + (i · 𝑤)))} = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦))) |
| 13 | 12 | cnref1o 12883 | . . . 4 ⊢ {〈〈𝑣, 𝑤〉, 𝑧〉 ∣ ((𝑣 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ 𝑧 = (𝑣 + (i · 𝑤)))}:(ℝ × ℝ)–1-1-onto→ℂ |
| 14 | reex 11097 | . . . . . 6 ⊢ ℝ ∈ V | |
| 15 | 14, 14 | xpex 7686 | . . . . 5 ⊢ (ℝ × ℝ) ∈ V |
| 16 | 15 | f1oen 8895 | . . . 4 ⊢ ({〈〈𝑣, 𝑤〉, 𝑧〉 ∣ ((𝑣 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ 𝑧 = (𝑣 + (i · 𝑤)))}:(ℝ × ℝ)–1-1-onto→ℂ → (ℝ × ℝ) ≈ ℂ) |
| 17 | 13, 16 | ax-mp 5 | . . 3 ⊢ (ℝ × ℝ) ≈ ℂ |
| 18 | 1, 17 | entr3i 8932 | . 2 ⊢ ℝ ≈ ℂ |
| 19 | rpnnen 16136 | . 2 ⊢ ℝ ≈ 𝒫 ℕ | |
| 20 | 18, 19 | entr3i 8932 | 1 ⊢ ℂ ≈ 𝒫 ℕ |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2111 𝒫 cpw 4547 class class class wbr 5089 × cxp 5612 –1-1-onto→wf1o 6480 (class class class)co 7346 {coprab 7347 ∈ cmpo 7348 ≈ cen 8866 ℂcc 11004 ℝcr 11005 ici 11008 + caddc 11009 · cmul 11011 ℕcn 12125 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-oadd 8389 df-omul 8390 df-er 8622 df-map 8752 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9832 df-acn 9835 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-q 12847 df-rp 12891 df-ico 13251 df-icc 13252 df-fz 13408 df-fzo 13555 df-fl 13696 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-limsup 15378 df-clim 15395 df-rlim 15396 df-sum 15594 |
| This theorem is referenced by: cnso 16156 |
| Copyright terms: Public domain | W3C validator |