| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cpnnen | Structured version Visualization version GIF version | ||
| Description: The complex numbers are equinumerous to the powerset of the positive integers. (Contributed by Mario Carneiro, 16-Jun-2013.) |
| Ref | Expression |
|---|---|
| cpnnen | ⊢ ℂ ≈ 𝒫 ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexpen 16246 | . . 3 ⊢ (ℝ × ℝ) ≈ ℝ | |
| 2 | eleq1w 2817 | . . . . . . . . 9 ⊢ (𝑣 = 𝑥 → (𝑣 ∈ ℝ ↔ 𝑥 ∈ ℝ)) | |
| 3 | eleq1w 2817 | . . . . . . . . 9 ⊢ (𝑤 = 𝑦 → (𝑤 ∈ ℝ ↔ 𝑦 ∈ ℝ)) | |
| 4 | 2, 3 | bi2anan9 638 | . . . . . . . 8 ⊢ ((𝑣 = 𝑥 ∧ 𝑤 = 𝑦) → ((𝑣 ∈ ℝ ∧ 𝑤 ∈ ℝ) ↔ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ))) |
| 5 | oveq2 7413 | . . . . . . . . . 10 ⊢ (𝑤 = 𝑦 → (i · 𝑤) = (i · 𝑦)) | |
| 6 | oveq12 7414 | . . . . . . . . . 10 ⊢ ((𝑣 = 𝑥 ∧ (i · 𝑤) = (i · 𝑦)) → (𝑣 + (i · 𝑤)) = (𝑥 + (i · 𝑦))) | |
| 7 | 5, 6 | sylan2 593 | . . . . . . . . 9 ⊢ ((𝑣 = 𝑥 ∧ 𝑤 = 𝑦) → (𝑣 + (i · 𝑤)) = (𝑥 + (i · 𝑦))) |
| 8 | 7 | eqeq2d 2746 | . . . . . . . 8 ⊢ ((𝑣 = 𝑥 ∧ 𝑤 = 𝑦) → (𝑧 = (𝑣 + (i · 𝑤)) ↔ 𝑧 = (𝑥 + (i · 𝑦)))) |
| 9 | 4, 8 | anbi12d 632 | . . . . . . 7 ⊢ ((𝑣 = 𝑥 ∧ 𝑤 = 𝑦) → (((𝑣 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ 𝑧 = (𝑣 + (i · 𝑤))) ↔ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑧 = (𝑥 + (i · 𝑦))))) |
| 10 | 9 | cbvoprab12v 7497 | . . . . . 6 ⊢ {〈〈𝑣, 𝑤〉, 𝑧〉 ∣ ((𝑣 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ 𝑧 = (𝑣 + (i · 𝑤)))} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑧 = (𝑥 + (i · 𝑦)))} |
| 11 | df-mpo 7410 | . . . . . 6 ⊢ (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦))) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑧 = (𝑥 + (i · 𝑦)))} | |
| 12 | 10, 11 | eqtr4i 2761 | . . . . 5 ⊢ {〈〈𝑣, 𝑤〉, 𝑧〉 ∣ ((𝑣 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ 𝑧 = (𝑣 + (i · 𝑤)))} = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦))) |
| 13 | 12 | cnref1o 13001 | . . . 4 ⊢ {〈〈𝑣, 𝑤〉, 𝑧〉 ∣ ((𝑣 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ 𝑧 = (𝑣 + (i · 𝑤)))}:(ℝ × ℝ)–1-1-onto→ℂ |
| 14 | reex 11220 | . . . . . 6 ⊢ ℝ ∈ V | |
| 15 | 14, 14 | xpex 7747 | . . . . 5 ⊢ (ℝ × ℝ) ∈ V |
| 16 | 15 | f1oen 8987 | . . . 4 ⊢ ({〈〈𝑣, 𝑤〉, 𝑧〉 ∣ ((𝑣 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ 𝑧 = (𝑣 + (i · 𝑤)))}:(ℝ × ℝ)–1-1-onto→ℂ → (ℝ × ℝ) ≈ ℂ) |
| 17 | 13, 16 | ax-mp 5 | . . 3 ⊢ (ℝ × ℝ) ≈ ℂ |
| 18 | 1, 17 | entr3i 9024 | . 2 ⊢ ℝ ≈ ℂ |
| 19 | rpnnen 16245 | . 2 ⊢ ℝ ≈ 𝒫 ℕ | |
| 20 | 18, 19 | entr3i 9024 | 1 ⊢ ℂ ≈ 𝒫 ℕ |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2108 𝒫 cpw 4575 class class class wbr 5119 × cxp 5652 –1-1-onto→wf1o 6530 (class class class)co 7405 {coprab 7406 ∈ cmpo 7407 ≈ cen 8956 ℂcc 11127 ℝcr 11128 ici 11131 + caddc 11132 · cmul 11134 ℕcn 12240 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-oadd 8484 df-omul 8485 df-er 8719 df-map 8842 df-pm 8843 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-sup 9454 df-inf 9455 df-oi 9524 df-card 9953 df-acn 9956 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-n0 12502 df-z 12589 df-uz 12853 df-q 12965 df-rp 13009 df-ico 13368 df-icc 13369 df-fz 13525 df-fzo 13672 df-fl 13809 df-seq 14020 df-exp 14080 df-hash 14349 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-limsup 15487 df-clim 15504 df-rlim 15505 df-sum 15703 |
| This theorem is referenced by: cnso 16265 |
| Copyright terms: Public domain | W3C validator |