MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cpnnen Structured version   Visualization version   GIF version

Theorem cpnnen 15938
Description: The complex numbers are equinumerous to the powerset of the positive integers. (Contributed by Mario Carneiro, 16-Jun-2013.)
Assertion
Ref Expression
cpnnen ℂ ≈ 𝒫 ℕ

Proof of Theorem cpnnen
Dummy variables 𝑤 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexpen 15937 . . 3 (ℝ × ℝ) ≈ ℝ
2 eleq1w 2821 . . . . . . . . 9 (𝑣 = 𝑥 → (𝑣 ∈ ℝ ↔ 𝑥 ∈ ℝ))
3 eleq1w 2821 . . . . . . . . 9 (𝑤 = 𝑦 → (𝑤 ∈ ℝ ↔ 𝑦 ∈ ℝ))
42, 3bi2anan9 636 . . . . . . . 8 ((𝑣 = 𝑥𝑤 = 𝑦) → ((𝑣 ∈ ℝ ∧ 𝑤 ∈ ℝ) ↔ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)))
5 oveq2 7283 . . . . . . . . . 10 (𝑤 = 𝑦 → (i · 𝑤) = (i · 𝑦))
6 oveq12 7284 . . . . . . . . . 10 ((𝑣 = 𝑥 ∧ (i · 𝑤) = (i · 𝑦)) → (𝑣 + (i · 𝑤)) = (𝑥 + (i · 𝑦)))
75, 6sylan2 593 . . . . . . . . 9 ((𝑣 = 𝑥𝑤 = 𝑦) → (𝑣 + (i · 𝑤)) = (𝑥 + (i · 𝑦)))
87eqeq2d 2749 . . . . . . . 8 ((𝑣 = 𝑥𝑤 = 𝑦) → (𝑧 = (𝑣 + (i · 𝑤)) ↔ 𝑧 = (𝑥 + (i · 𝑦))))
94, 8anbi12d 631 . . . . . . 7 ((𝑣 = 𝑥𝑤 = 𝑦) → (((𝑣 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ 𝑧 = (𝑣 + (i · 𝑤))) ↔ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑧 = (𝑥 + (i · 𝑦)))))
109cbvoprab12v 7365 . . . . . 6 {⟨⟨𝑣, 𝑤⟩, 𝑧⟩ ∣ ((𝑣 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ 𝑧 = (𝑣 + (i · 𝑤)))} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑧 = (𝑥 + (i · 𝑦)))}
11 df-mpo 7280 . . . . . 6 (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦))) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑧 = (𝑥 + (i · 𝑦)))}
1210, 11eqtr4i 2769 . . . . 5 {⟨⟨𝑣, 𝑤⟩, 𝑧⟩ ∣ ((𝑣 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ 𝑧 = (𝑣 + (i · 𝑤)))} = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦)))
1312cnref1o 12725 . . . 4 {⟨⟨𝑣, 𝑤⟩, 𝑧⟩ ∣ ((𝑣 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ 𝑧 = (𝑣 + (i · 𝑤)))}:(ℝ × ℝ)–1-1-onto→ℂ
14 reex 10962 . . . . . 6 ℝ ∈ V
1514, 14xpex 7603 . . . . 5 (ℝ × ℝ) ∈ V
1615f1oen 8761 . . . 4 ({⟨⟨𝑣, 𝑤⟩, 𝑧⟩ ∣ ((𝑣 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ 𝑧 = (𝑣 + (i · 𝑤)))}:(ℝ × ℝ)–1-1-onto→ℂ → (ℝ × ℝ) ≈ ℂ)
1713, 16ax-mp 5 . . 3 (ℝ × ℝ) ≈ ℂ
181, 17entr3i 8796 . 2 ℝ ≈ ℂ
19 rpnnen 15936 . 2 ℝ ≈ 𝒫 ℕ
2018, 19entr3i 8796 1 ℂ ≈ 𝒫 ℕ
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1539  wcel 2106  𝒫 cpw 4533   class class class wbr 5074   × cxp 5587  1-1-ontowf1o 6432  (class class class)co 7275  {coprab 7276  cmpo 7277  cen 8730  cc 10869  cr 10870  ici 10873   + caddc 10874   · cmul 10876  cn 11973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-omul 8302  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-acn 9700  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-q 12689  df-rp 12731  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-sum 15398
This theorem is referenced by:  cnso  15956
  Copyright terms: Public domain W3C validator