MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvoprab3v Structured version   Visualization version   GIF version

Theorem cbvoprab3v 7508
Description: Rule used to change the third bound variable in an operation abstraction, using implicit substitution. (Contributed by NM, 8-Oct-2004.) (Revised by David Abernethy, 19-Jun-2012.)
Hypothesis
Ref Expression
cbvoprab3v.1 (𝑧 = 𝑤 → (𝜑𝜓))
Assertion
Ref Expression
cbvoprab3v {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∣ 𝜓}
Distinct variable groups:   𝑥,𝑧,𝑤   𝑦,𝑧,𝑤   𝜑,𝑤   𝜓,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦,𝑤)

Proof of Theorem cbvoprab3v
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 opeq2 4856 . . . . . . 7 (𝑧 = 𝑤 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ = ⟨⟨𝑥, 𝑦⟩, 𝑤⟩)
21eqeq2d 2745 . . . . . 6 (𝑧 = 𝑤 → (𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ↔ 𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑤⟩))
3 cbvoprab3v.1 . . . . . 6 (𝑧 = 𝑤 → (𝜑𝜓))
42, 3anbi12d 632 . . . . 5 (𝑧 = 𝑤 → ((𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ (𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∧ 𝜓)))
54cbvexvw 2035 . . . 4 (∃𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ ∃𝑤(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∧ 𝜓))
652exbii 1848 . . 3 (∃𝑥𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ ∃𝑥𝑦𝑤(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∧ 𝜓))
76abbii 2801 . 2 {𝑣 ∣ ∃𝑥𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)} = {𝑣 ∣ ∃𝑥𝑦𝑤(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∧ 𝜓)}
8 df-oprab 7418 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {𝑣 ∣ ∃𝑥𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)}
9 df-oprab 7418 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∣ 𝜓} = {𝑣 ∣ ∃𝑥𝑦𝑤(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∧ 𝜓)}
107, 8, 93eqtr4i 2767 1 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∣ 𝜓}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wex 1778  {cab 2712  cop 4614  {coprab 7415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-rab 3421  df-v 3466  df-dif 3936  df-un 3938  df-ss 3950  df-nul 4316  df-if 4508  df-sn 4609  df-pr 4611  df-op 4615  df-oprab 7418
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator