MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvoprab3v Structured version   Visualization version   GIF version

Theorem cbvoprab3v 7345
Description: Rule used to change the third bound variable in an operation abstraction, using implicit substitution. (Contributed by NM, 8-Oct-2004.) (Revised by David Abernethy, 19-Jun-2012.)
Hypothesis
Ref Expression
cbvoprab3v.1 (𝑧 = 𝑤 → (𝜑𝜓))
Assertion
Ref Expression
cbvoprab3v {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∣ 𝜓}
Distinct variable groups:   𝑥,𝑧,𝑤   𝑦,𝑧,𝑤   𝜑,𝑤   𝜓,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦,𝑤)

Proof of Theorem cbvoprab3v
StepHypRef Expression
1 nfv 1918 . 2 𝑤𝜑
2 nfv 1918 . 2 𝑧𝜓
3 cbvoprab3v.1 . 2 (𝑧 = 𝑤 → (𝜑𝜓))
41, 2, 3cbvoprab3 7344 1 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∣ 𝜓}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  {coprab 7256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-opab 5133  df-oprab 7259
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator