| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvoprab3v | Structured version Visualization version GIF version | ||
| Description: Rule used to change the third bound variable in an operation abstraction, using implicit substitution. (Contributed by NM, 8-Oct-2004.) (Revised by David Abernethy, 19-Jun-2012.) |
| Ref | Expression |
|---|---|
| cbvoprab3v.1 | ⊢ (𝑧 = 𝑤 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvoprab3v | ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈〈𝑥, 𝑦〉, 𝑤〉 ∣ 𝜓} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq2 4856 | . . . . . . 7 ⊢ (𝑧 = 𝑤 → 〈〈𝑥, 𝑦〉, 𝑧〉 = 〈〈𝑥, 𝑦〉, 𝑤〉) | |
| 2 | 1 | eqeq2d 2745 | . . . . . 6 ⊢ (𝑧 = 𝑤 → (𝑣 = 〈〈𝑥, 𝑦〉, 𝑧〉 ↔ 𝑣 = 〈〈𝑥, 𝑦〉, 𝑤〉)) |
| 3 | cbvoprab3v.1 | . . . . . 6 ⊢ (𝑧 = 𝑤 → (𝜑 ↔ 𝜓)) | |
| 4 | 2, 3 | anbi12d 632 | . . . . 5 ⊢ (𝑧 = 𝑤 → ((𝑣 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) ↔ (𝑣 = 〈〈𝑥, 𝑦〉, 𝑤〉 ∧ 𝜓))) |
| 5 | 4 | cbvexvw 2035 | . . . 4 ⊢ (∃𝑧(𝑣 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) ↔ ∃𝑤(𝑣 = 〈〈𝑥, 𝑦〉, 𝑤〉 ∧ 𝜓)) |
| 6 | 5 | 2exbii 1848 | . . 3 ⊢ (∃𝑥∃𝑦∃𝑧(𝑣 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) ↔ ∃𝑥∃𝑦∃𝑤(𝑣 = 〈〈𝑥, 𝑦〉, 𝑤〉 ∧ 𝜓)) |
| 7 | 6 | abbii 2801 | . 2 ⊢ {𝑣 ∣ ∃𝑥∃𝑦∃𝑧(𝑣 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑)} = {𝑣 ∣ ∃𝑥∃𝑦∃𝑤(𝑣 = 〈〈𝑥, 𝑦〉, 𝑤〉 ∧ 𝜓)} |
| 8 | df-oprab 7418 | . 2 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {𝑣 ∣ ∃𝑥∃𝑦∃𝑧(𝑣 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑)} | |
| 9 | df-oprab 7418 | . 2 ⊢ {〈〈𝑥, 𝑦〉, 𝑤〉 ∣ 𝜓} = {𝑣 ∣ ∃𝑥∃𝑦∃𝑤(𝑣 = 〈〈𝑥, 𝑦〉, 𝑤〉 ∧ 𝜓)} | |
| 10 | 7, 8, 9 | 3eqtr4i 2767 | 1 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈〈𝑥, 𝑦〉, 𝑤〉 ∣ 𝜓} |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∃wex 1778 {cab 2712 〈cop 4614 {coprab 7415 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-oprab 7418 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |