MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvoprab3v Structured version   Visualization version   GIF version

Theorem cbvoprab3v 7438
Description: Rule used to change the third bound variable in an operation abstraction, using implicit substitution. (Contributed by NM, 8-Oct-2004.) (Revised by David Abernethy, 19-Jun-2012.)
Hypothesis
Ref Expression
cbvoprab3v.1 (𝑧 = 𝑤 → (𝜑𝜓))
Assertion
Ref Expression
cbvoprab3v {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∣ 𝜓}
Distinct variable groups:   𝑥,𝑧,𝑤   𝑦,𝑧,𝑤   𝜑,𝑤   𝜓,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦,𝑤)

Proof of Theorem cbvoprab3v
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 opeq2 4823 . . . . . . 7 (𝑧 = 𝑤 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ = ⟨⟨𝑥, 𝑦⟩, 𝑤⟩)
21eqeq2d 2742 . . . . . 6 (𝑧 = 𝑤 → (𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ↔ 𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑤⟩))
3 cbvoprab3v.1 . . . . . 6 (𝑧 = 𝑤 → (𝜑𝜓))
42, 3anbi12d 632 . . . . 5 (𝑧 = 𝑤 → ((𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ (𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∧ 𝜓)))
54cbvexvw 2038 . . . 4 (∃𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ ∃𝑤(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∧ 𝜓))
652exbii 1850 . . 3 (∃𝑥𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ ∃𝑥𝑦𝑤(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∧ 𝜓))
76abbii 2798 . 2 {𝑣 ∣ ∃𝑥𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)} = {𝑣 ∣ ∃𝑥𝑦𝑤(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∧ 𝜓)}
8 df-oprab 7350 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {𝑣 ∣ ∃𝑥𝑦𝑧(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)}
9 df-oprab 7350 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∣ 𝜓} = {𝑣 ∣ ∃𝑥𝑦𝑤(𝑣 = ⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∧ 𝜓)}
107, 8, 93eqtr4i 2764 1 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∣ 𝜓}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wex 1780  {cab 2709  cop 4579  {coprab 7347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-oprab 7350
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator