MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvmpox Structured version   Visualization version   GIF version

Theorem cbvmpox 7240
Description: Rule to change the bound variable in a maps-to function, using implicit substitution. This version of cbvmpo 7241 allows 𝐵 to be a function of 𝑥. (Contributed by NM, 29-Dec-2014.)
Hypotheses
Ref Expression
cbvmpox.1 𝑧𝐵
cbvmpox.2 𝑥𝐷
cbvmpox.3 𝑧𝐶
cbvmpox.4 𝑤𝐶
cbvmpox.5 𝑥𝐸
cbvmpox.6 𝑦𝐸
cbvmpox.7 (𝑥 = 𝑧𝐵 = 𝐷)
cbvmpox.8 ((𝑥 = 𝑧𝑦 = 𝑤) → 𝐶 = 𝐸)
Assertion
Ref Expression
cbvmpox (𝑥𝐴, 𝑦𝐵𝐶) = (𝑧𝐴, 𝑤𝐷𝐸)
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐴   𝑤,𝐵   𝑦,𝐷
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑧)   𝐶(𝑥,𝑦,𝑧,𝑤)   𝐷(𝑥,𝑧,𝑤)   𝐸(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem cbvmpox
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 nfv 1914 . . . . 5 𝑧 𝑥𝐴
2 cbvmpox.1 . . . . . 6 𝑧𝐵
32nfcri 2970 . . . . 5 𝑧 𝑦𝐵
41, 3nfan 1899 . . . 4 𝑧(𝑥𝐴𝑦𝐵)
5 cbvmpox.3 . . . . 5 𝑧𝐶
65nfeq2 2994 . . . 4 𝑧 𝑢 = 𝐶
74, 6nfan 1899 . . 3 𝑧((𝑥𝐴𝑦𝐵) ∧ 𝑢 = 𝐶)
8 nfv 1914 . . . . 5 𝑤 𝑥𝐴
9 nfcv 2976 . . . . . 6 𝑤𝐵
109nfcri 2970 . . . . 5 𝑤 𝑦𝐵
118, 10nfan 1899 . . . 4 𝑤(𝑥𝐴𝑦𝐵)
12 cbvmpox.4 . . . . 5 𝑤𝐶
1312nfeq2 2994 . . . 4 𝑤 𝑢 = 𝐶
1411, 13nfan 1899 . . 3 𝑤((𝑥𝐴𝑦𝐵) ∧ 𝑢 = 𝐶)
15 nfv 1914 . . . . 5 𝑥 𝑧𝐴
16 cbvmpox.2 . . . . . 6 𝑥𝐷
1716nfcri 2970 . . . . 5 𝑥 𝑤𝐷
1815, 17nfan 1899 . . . 4 𝑥(𝑧𝐴𝑤𝐷)
19 cbvmpox.5 . . . . 5 𝑥𝐸
2019nfeq2 2994 . . . 4 𝑥 𝑢 = 𝐸
2118, 20nfan 1899 . . 3 𝑥((𝑧𝐴𝑤𝐷) ∧ 𝑢 = 𝐸)
22 nfv 1914 . . . 4 𝑦(𝑧𝐴𝑤𝐷)
23 cbvmpox.6 . . . . 5 𝑦𝐸
2423nfeq2 2994 . . . 4 𝑦 𝑢 = 𝐸
2522, 24nfan 1899 . . 3 𝑦((𝑧𝐴𝑤𝐷) ∧ 𝑢 = 𝐸)
26 eleq1w 2894 . . . . . 6 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
2726adantr 483 . . . . 5 ((𝑥 = 𝑧𝑦 = 𝑤) → (𝑥𝐴𝑧𝐴))
28 cbvmpox.7 . . . . . . 7 (𝑥 = 𝑧𝐵 = 𝐷)
2928eleq2d 2897 . . . . . 6 (𝑥 = 𝑧 → (𝑦𝐵𝑦𝐷))
30 eleq1w 2894 . . . . . 6 (𝑦 = 𝑤 → (𝑦𝐷𝑤𝐷))
3129, 30sylan9bb 512 . . . . 5 ((𝑥 = 𝑧𝑦 = 𝑤) → (𝑦𝐵𝑤𝐷))
3227, 31anbi12d 632 . . . 4 ((𝑥 = 𝑧𝑦 = 𝑤) → ((𝑥𝐴𝑦𝐵) ↔ (𝑧𝐴𝑤𝐷)))
33 cbvmpox.8 . . . . 5 ((𝑥 = 𝑧𝑦 = 𝑤) → 𝐶 = 𝐸)
3433eqeq2d 2831 . . . 4 ((𝑥 = 𝑧𝑦 = 𝑤) → (𝑢 = 𝐶𝑢 = 𝐸))
3532, 34anbi12d 632 . . 3 ((𝑥 = 𝑧𝑦 = 𝑤) → (((𝑥𝐴𝑦𝐵) ∧ 𝑢 = 𝐶) ↔ ((𝑧𝐴𝑤𝐷) ∧ 𝑢 = 𝐸)))
367, 14, 21, 25, 35cbvoprab12 7236 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑢⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑢 = 𝐶)} = {⟨⟨𝑧, 𝑤⟩, 𝑢⟩ ∣ ((𝑧𝐴𝑤𝐷) ∧ 𝑢 = 𝐸)}
37 df-mpo 7154 . 2 (𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑢⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑢 = 𝐶)}
38 df-mpo 7154 . 2 (𝑧𝐴, 𝑤𝐷𝐸) = {⟨⟨𝑧, 𝑤⟩, 𝑢⟩ ∣ ((𝑧𝐴𝑤𝐷) ∧ 𝑢 = 𝐸)}
3936, 37, 383eqtr4i 2853 1 (𝑥𝐴, 𝑦𝐵𝐶) = (𝑧𝐴, 𝑤𝐷𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1536  wcel 2113  wnfc 2960  {coprab 7150  cmpo 7151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-sep 5196  ax-nul 5203  ax-pr 5323
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-rab 3146  df-v 3493  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-nul 4285  df-if 4461  df-sn 4561  df-pr 4563  df-op 4567  df-opab 5122  df-oprab 7153  df-mpo 7154
This theorem is referenced by:  cbvmpo  7241  mpomptsx  7755  dmmpossx  7757  gsumcom2  19090  ptcmpg  22660
  Copyright terms: Public domain W3C validator