| Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > f1omptsn | Structured version Visualization version GIF version | ||
| Description: A function mapping to singletons is bijective onto a set of singletons. (Contributed by ML, 16-Jul-2020.) |
| Ref | Expression |
|---|---|
| f1omptsn.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ {𝑥}) |
| f1omptsn.r | ⊢ 𝑅 = {𝑢 ∣ ∃𝑥 ∈ 𝐴 𝑢 = {𝑥}} |
| Ref | Expression |
|---|---|
| f1omptsn | ⊢ 𝐹:𝐴–1-1-onto→𝑅 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneq 4595 | . . . . . 6 ⊢ (𝑥 = 𝑎 → {𝑥} = {𝑎}) | |
| 2 | 1 | cbvmptv 5206 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 ↦ {𝑥}) = (𝑎 ∈ 𝐴 ↦ {𝑎}) |
| 3 | 2 | eqcomi 2738 | . . . 4 ⊢ (𝑎 ∈ 𝐴 ↦ {𝑎}) = (𝑥 ∈ 𝐴 ↦ {𝑥}) |
| 4 | id 22 | . . . . . . . 8 ⊢ (𝑢 = 𝑧 → 𝑢 = 𝑧) | |
| 5 | 4, 1 | eqeqan12d 2743 | . . . . . . 7 ⊢ ((𝑢 = 𝑧 ∧ 𝑥 = 𝑎) → (𝑢 = {𝑥} ↔ 𝑧 = {𝑎})) |
| 6 | 5 | cbvrexdva 3216 | . . . . . 6 ⊢ (𝑢 = 𝑧 → (∃𝑥 ∈ 𝐴 𝑢 = {𝑥} ↔ ∃𝑎 ∈ 𝐴 𝑧 = {𝑎})) |
| 7 | 6 | cbvabv 2799 | . . . . 5 ⊢ {𝑢 ∣ ∃𝑥 ∈ 𝐴 𝑢 = {𝑥}} = {𝑧 ∣ ∃𝑎 ∈ 𝐴 𝑧 = {𝑎}} |
| 8 | 7 | eqcomi 2738 | . . . 4 ⊢ {𝑧 ∣ ∃𝑎 ∈ 𝐴 𝑧 = {𝑎}} = {𝑢 ∣ ∃𝑥 ∈ 𝐴 𝑢 = {𝑥}} |
| 9 | 3, 8 | f1omptsnlem 37317 | . . 3 ⊢ (𝑎 ∈ 𝐴 ↦ {𝑎}):𝐴–1-1-onto→{𝑧 ∣ ∃𝑎 ∈ 𝐴 𝑧 = {𝑎}} |
| 10 | f1omptsn.r | . . . . 5 ⊢ 𝑅 = {𝑢 ∣ ∃𝑥 ∈ 𝐴 𝑢 = {𝑥}} | |
| 11 | 10, 7 | eqtri 2752 | . . . 4 ⊢ 𝑅 = {𝑧 ∣ ∃𝑎 ∈ 𝐴 𝑧 = {𝑎}} |
| 12 | f1oeq3 6772 | . . . 4 ⊢ (𝑅 = {𝑧 ∣ ∃𝑎 ∈ 𝐴 𝑧 = {𝑎}} → ((𝑎 ∈ 𝐴 ↦ {𝑎}):𝐴–1-1-onto→𝑅 ↔ (𝑎 ∈ 𝐴 ↦ {𝑎}):𝐴–1-1-onto→{𝑧 ∣ ∃𝑎 ∈ 𝐴 𝑧 = {𝑎}})) | |
| 13 | 11, 12 | ax-mp 5 | . . 3 ⊢ ((𝑎 ∈ 𝐴 ↦ {𝑎}):𝐴–1-1-onto→𝑅 ↔ (𝑎 ∈ 𝐴 ↦ {𝑎}):𝐴–1-1-onto→{𝑧 ∣ ∃𝑎 ∈ 𝐴 𝑧 = {𝑎}}) |
| 14 | 9, 13 | mpbir 231 | . 2 ⊢ (𝑎 ∈ 𝐴 ↦ {𝑎}):𝐴–1-1-onto→𝑅 |
| 15 | f1omptsn.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ {𝑥}) | |
| 16 | 15, 2 | eqtri 2752 | . . 3 ⊢ 𝐹 = (𝑎 ∈ 𝐴 ↦ {𝑎}) |
| 17 | f1oeq1 6770 | . . 3 ⊢ (𝐹 = (𝑎 ∈ 𝐴 ↦ {𝑎}) → (𝐹:𝐴–1-1-onto→𝑅 ↔ (𝑎 ∈ 𝐴 ↦ {𝑎}):𝐴–1-1-onto→𝑅)) | |
| 18 | 16, 17 | ax-mp 5 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝑅 ↔ (𝑎 ∈ 𝐴 ↦ {𝑎}):𝐴–1-1-onto→𝑅) |
| 19 | 14, 18 | mpbir 231 | 1 ⊢ 𝐹:𝐴–1-1-onto→𝑅 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 {cab 2707 ∃wrex 3053 {csn 4585 ↦ cmpt 5183 –1-1-onto→wf1o 6498 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |