Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  f1omptsn Structured version   Visualization version   GIF version

Theorem f1omptsn 34622
Description: A function mapping to singletons is bijective onto a set of singletons. (Contributed by ML, 16-Jul-2020.)
Hypotheses
Ref Expression
f1omptsn.f 𝐹 = (𝑥𝐴 ↦ {𝑥})
f1omptsn.r 𝑅 = {𝑢 ∣ ∃𝑥𝐴 𝑢 = {𝑥}}
Assertion
Ref Expression
f1omptsn 𝐹:𝐴1-1-onto𝑅
Distinct variable group:   𝑢,𝐴,𝑥
Allowed substitution hints:   𝑅(𝑥,𝑢)   𝐹(𝑥,𝑢)

Proof of Theorem f1omptsn
Dummy variables 𝑎 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sneq 4580 . . . . . 6 (𝑥 = 𝑎 → {𝑥} = {𝑎})
21cbvmptv 5172 . . . . 5 (𝑥𝐴 ↦ {𝑥}) = (𝑎𝐴 ↦ {𝑎})
32eqcomi 2833 . . . 4 (𝑎𝐴 ↦ {𝑎}) = (𝑥𝐴 ↦ {𝑥})
4 id 22 . . . . . . . 8 (𝑢 = 𝑧𝑢 = 𝑧)
54, 1eqeqan12d 2841 . . . . . . 7 ((𝑢 = 𝑧𝑥 = 𝑎) → (𝑢 = {𝑥} ↔ 𝑧 = {𝑎}))
65cbvrexdva 3463 . . . . . 6 (𝑢 = 𝑧 → (∃𝑥𝐴 𝑢 = {𝑥} ↔ ∃𝑎𝐴 𝑧 = {𝑎}))
76cbvabv 2892 . . . . 5 {𝑢 ∣ ∃𝑥𝐴 𝑢 = {𝑥}} = {𝑧 ∣ ∃𝑎𝐴 𝑧 = {𝑎}}
87eqcomi 2833 . . . 4 {𝑧 ∣ ∃𝑎𝐴 𝑧 = {𝑎}} = {𝑢 ∣ ∃𝑥𝐴 𝑢 = {𝑥}}
93, 8f1omptsnlem 34621 . . 3 (𝑎𝐴 ↦ {𝑎}):𝐴1-1-onto→{𝑧 ∣ ∃𝑎𝐴 𝑧 = {𝑎}}
10 f1omptsn.r . . . . 5 𝑅 = {𝑢 ∣ ∃𝑥𝐴 𝑢 = {𝑥}}
1110, 7eqtri 2847 . . . 4 𝑅 = {𝑧 ∣ ∃𝑎𝐴 𝑧 = {𝑎}}
12 f1oeq3 6609 . . . 4 (𝑅 = {𝑧 ∣ ∃𝑎𝐴 𝑧 = {𝑎}} → ((𝑎𝐴 ↦ {𝑎}):𝐴1-1-onto𝑅 ↔ (𝑎𝐴 ↦ {𝑎}):𝐴1-1-onto→{𝑧 ∣ ∃𝑎𝐴 𝑧 = {𝑎}}))
1311, 12ax-mp 5 . . 3 ((𝑎𝐴 ↦ {𝑎}):𝐴1-1-onto𝑅 ↔ (𝑎𝐴 ↦ {𝑎}):𝐴1-1-onto→{𝑧 ∣ ∃𝑎𝐴 𝑧 = {𝑎}})
149, 13mpbir 233 . 2 (𝑎𝐴 ↦ {𝑎}):𝐴1-1-onto𝑅
15 f1omptsn.f . . . 4 𝐹 = (𝑥𝐴 ↦ {𝑥})
1615, 2eqtri 2847 . . 3 𝐹 = (𝑎𝐴 ↦ {𝑎})
17 f1oeq1 6607 . . 3 (𝐹 = (𝑎𝐴 ↦ {𝑎}) → (𝐹:𝐴1-1-onto𝑅 ↔ (𝑎𝐴 ↦ {𝑎}):𝐴1-1-onto𝑅))
1816, 17ax-mp 5 . 2 (𝐹:𝐴1-1-onto𝑅 ↔ (𝑎𝐴 ↦ {𝑎}):𝐴1-1-onto𝑅)
1914, 18mpbir 233 1 𝐹:𝐴1-1-onto𝑅
Colors of variables: wff setvar class
Syntax hints:  wb 208   = wceq 1536  {cab 2802  wrex 3142  {csn 4570  cmpt 5149  1-1-ontowf1o 6357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator