![]() |
Mathbox for ML |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > f1omptsn | Structured version Visualization version GIF version |
Description: A function mapping to singletons is bijective onto a set of singletons. (Contributed by ML, 16-Jul-2020.) |
Ref | Expression |
---|---|
f1omptsn.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ {𝑥}) |
f1omptsn.r | ⊢ 𝑅 = {𝑢 ∣ ∃𝑥 ∈ 𝐴 𝑢 = {𝑥}} |
Ref | Expression |
---|---|
f1omptsn | ⊢ 𝐹:𝐴–1-1-onto→𝑅 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 4635 | . . . . . 6 ⊢ (𝑥 = 𝑎 → {𝑥} = {𝑎}) | |
2 | 1 | cbvmptv 5258 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 ↦ {𝑥}) = (𝑎 ∈ 𝐴 ↦ {𝑎}) |
3 | 2 | eqcomi 2735 | . . . 4 ⊢ (𝑎 ∈ 𝐴 ↦ {𝑎}) = (𝑥 ∈ 𝐴 ↦ {𝑥}) |
4 | id 22 | . . . . . . . 8 ⊢ (𝑢 = 𝑧 → 𝑢 = 𝑧) | |
5 | 4, 1 | eqeqan12d 2740 | . . . . . . 7 ⊢ ((𝑢 = 𝑧 ∧ 𝑥 = 𝑎) → (𝑢 = {𝑥} ↔ 𝑧 = {𝑎})) |
6 | 5 | cbvrexdva 3228 | . . . . . 6 ⊢ (𝑢 = 𝑧 → (∃𝑥 ∈ 𝐴 𝑢 = {𝑥} ↔ ∃𝑎 ∈ 𝐴 𝑧 = {𝑎})) |
7 | 6 | cbvabv 2799 | . . . . 5 ⊢ {𝑢 ∣ ∃𝑥 ∈ 𝐴 𝑢 = {𝑥}} = {𝑧 ∣ ∃𝑎 ∈ 𝐴 𝑧 = {𝑎}} |
8 | 7 | eqcomi 2735 | . . . 4 ⊢ {𝑧 ∣ ∃𝑎 ∈ 𝐴 𝑧 = {𝑎}} = {𝑢 ∣ ∃𝑥 ∈ 𝐴 𝑢 = {𝑥}} |
9 | 3, 8 | f1omptsnlem 37055 | . . 3 ⊢ (𝑎 ∈ 𝐴 ↦ {𝑎}):𝐴–1-1-onto→{𝑧 ∣ ∃𝑎 ∈ 𝐴 𝑧 = {𝑎}} |
10 | f1omptsn.r | . . . . 5 ⊢ 𝑅 = {𝑢 ∣ ∃𝑥 ∈ 𝐴 𝑢 = {𝑥}} | |
11 | 10, 7 | eqtri 2754 | . . . 4 ⊢ 𝑅 = {𝑧 ∣ ∃𝑎 ∈ 𝐴 𝑧 = {𝑎}} |
12 | f1oeq3 6824 | . . . 4 ⊢ (𝑅 = {𝑧 ∣ ∃𝑎 ∈ 𝐴 𝑧 = {𝑎}} → ((𝑎 ∈ 𝐴 ↦ {𝑎}):𝐴–1-1-onto→𝑅 ↔ (𝑎 ∈ 𝐴 ↦ {𝑎}):𝐴–1-1-onto→{𝑧 ∣ ∃𝑎 ∈ 𝐴 𝑧 = {𝑎}})) | |
13 | 11, 12 | ax-mp 5 | . . 3 ⊢ ((𝑎 ∈ 𝐴 ↦ {𝑎}):𝐴–1-1-onto→𝑅 ↔ (𝑎 ∈ 𝐴 ↦ {𝑎}):𝐴–1-1-onto→{𝑧 ∣ ∃𝑎 ∈ 𝐴 𝑧 = {𝑎}}) |
14 | 9, 13 | mpbir 230 | . 2 ⊢ (𝑎 ∈ 𝐴 ↦ {𝑎}):𝐴–1-1-onto→𝑅 |
15 | f1omptsn.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ {𝑥}) | |
16 | 15, 2 | eqtri 2754 | . . 3 ⊢ 𝐹 = (𝑎 ∈ 𝐴 ↦ {𝑎}) |
17 | f1oeq1 6822 | . . 3 ⊢ (𝐹 = (𝑎 ∈ 𝐴 ↦ {𝑎}) → (𝐹:𝐴–1-1-onto→𝑅 ↔ (𝑎 ∈ 𝐴 ↦ {𝑎}):𝐴–1-1-onto→𝑅)) | |
18 | 16, 17 | ax-mp 5 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝑅 ↔ (𝑎 ∈ 𝐴 ↦ {𝑎}):𝐴–1-1-onto→𝑅) |
19 | 14, 18 | mpbir 230 | 1 ⊢ 𝐹:𝐴–1-1-onto→𝑅 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1534 {cab 2703 ∃wrex 3060 {csn 4625 ↦ cmpt 5228 –1-1-onto→wf1o 6544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pr 5425 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3421 df-v 3466 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4325 df-if 4526 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4908 df-br 5146 df-opab 5208 df-mpt 5229 df-id 5572 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-iota 6497 df-fun 6547 df-fn 6548 df-f 6549 df-f1 6550 df-fo 6551 df-f1o 6552 df-fv 6553 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |