Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > f1omptsn | Structured version Visualization version GIF version |
Description: A function mapping to singletons is bijective onto a set of singletons. (Contributed by ML, 16-Jul-2020.) |
Ref | Expression |
---|---|
f1omptsn.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ {𝑥}) |
f1omptsn.r | ⊢ 𝑅 = {𝑢 ∣ ∃𝑥 ∈ 𝐴 𝑢 = {𝑥}} |
Ref | Expression |
---|---|
f1omptsn | ⊢ 𝐹:𝐴–1-1-onto→𝑅 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 4568 | . . . . . 6 ⊢ (𝑥 = 𝑎 → {𝑥} = {𝑎}) | |
2 | 1 | cbvmptv 5183 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 ↦ {𝑥}) = (𝑎 ∈ 𝐴 ↦ {𝑎}) |
3 | 2 | eqcomi 2747 | . . . 4 ⊢ (𝑎 ∈ 𝐴 ↦ {𝑎}) = (𝑥 ∈ 𝐴 ↦ {𝑥}) |
4 | id 22 | . . . . . . . 8 ⊢ (𝑢 = 𝑧 → 𝑢 = 𝑧) | |
5 | 4, 1 | eqeqan12d 2752 | . . . . . . 7 ⊢ ((𝑢 = 𝑧 ∧ 𝑥 = 𝑎) → (𝑢 = {𝑥} ↔ 𝑧 = {𝑎})) |
6 | 5 | cbvrexdva 3384 | . . . . . 6 ⊢ (𝑢 = 𝑧 → (∃𝑥 ∈ 𝐴 𝑢 = {𝑥} ↔ ∃𝑎 ∈ 𝐴 𝑧 = {𝑎})) |
7 | 6 | cbvabv 2812 | . . . . 5 ⊢ {𝑢 ∣ ∃𝑥 ∈ 𝐴 𝑢 = {𝑥}} = {𝑧 ∣ ∃𝑎 ∈ 𝐴 𝑧 = {𝑎}} |
8 | 7 | eqcomi 2747 | . . . 4 ⊢ {𝑧 ∣ ∃𝑎 ∈ 𝐴 𝑧 = {𝑎}} = {𝑢 ∣ ∃𝑥 ∈ 𝐴 𝑢 = {𝑥}} |
9 | 3, 8 | f1omptsnlem 35434 | . . 3 ⊢ (𝑎 ∈ 𝐴 ↦ {𝑎}):𝐴–1-1-onto→{𝑧 ∣ ∃𝑎 ∈ 𝐴 𝑧 = {𝑎}} |
10 | f1omptsn.r | . . . . 5 ⊢ 𝑅 = {𝑢 ∣ ∃𝑥 ∈ 𝐴 𝑢 = {𝑥}} | |
11 | 10, 7 | eqtri 2766 | . . . 4 ⊢ 𝑅 = {𝑧 ∣ ∃𝑎 ∈ 𝐴 𝑧 = {𝑎}} |
12 | f1oeq3 6690 | . . . 4 ⊢ (𝑅 = {𝑧 ∣ ∃𝑎 ∈ 𝐴 𝑧 = {𝑎}} → ((𝑎 ∈ 𝐴 ↦ {𝑎}):𝐴–1-1-onto→𝑅 ↔ (𝑎 ∈ 𝐴 ↦ {𝑎}):𝐴–1-1-onto→{𝑧 ∣ ∃𝑎 ∈ 𝐴 𝑧 = {𝑎}})) | |
13 | 11, 12 | ax-mp 5 | . . 3 ⊢ ((𝑎 ∈ 𝐴 ↦ {𝑎}):𝐴–1-1-onto→𝑅 ↔ (𝑎 ∈ 𝐴 ↦ {𝑎}):𝐴–1-1-onto→{𝑧 ∣ ∃𝑎 ∈ 𝐴 𝑧 = {𝑎}}) |
14 | 9, 13 | mpbir 230 | . 2 ⊢ (𝑎 ∈ 𝐴 ↦ {𝑎}):𝐴–1-1-onto→𝑅 |
15 | f1omptsn.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ {𝑥}) | |
16 | 15, 2 | eqtri 2766 | . . 3 ⊢ 𝐹 = (𝑎 ∈ 𝐴 ↦ {𝑎}) |
17 | f1oeq1 6688 | . . 3 ⊢ (𝐹 = (𝑎 ∈ 𝐴 ↦ {𝑎}) → (𝐹:𝐴–1-1-onto→𝑅 ↔ (𝑎 ∈ 𝐴 ↦ {𝑎}):𝐴–1-1-onto→𝑅)) | |
18 | 16, 17 | ax-mp 5 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝑅 ↔ (𝑎 ∈ 𝐴 ↦ {𝑎}):𝐴–1-1-onto→𝑅) |
19 | 14, 18 | mpbir 230 | 1 ⊢ 𝐹:𝐴–1-1-onto→𝑅 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 {cab 2715 ∃wrex 3064 {csn 4558 ↦ cmpt 5153 –1-1-onto→wf1o 6417 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |