Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  f1omptsn Structured version   Visualization version   GIF version

Theorem f1omptsn 37332
Description: A function mapping to singletons is bijective onto a set of singletons. (Contributed by ML, 16-Jul-2020.)
Hypotheses
Ref Expression
f1omptsn.f 𝐹 = (𝑥𝐴 ↦ {𝑥})
f1omptsn.r 𝑅 = {𝑢 ∣ ∃𝑥𝐴 𝑢 = {𝑥}}
Assertion
Ref Expression
f1omptsn 𝐹:𝐴1-1-onto𝑅
Distinct variable group:   𝑢,𝐴,𝑥
Allowed substitution hints:   𝑅(𝑥,𝑢)   𝐹(𝑥,𝑢)

Proof of Theorem f1omptsn
Dummy variables 𝑎 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sneq 4642 . . . . . 6 (𝑥 = 𝑎 → {𝑥} = {𝑎})
21cbvmptv 5262 . . . . 5 (𝑥𝐴 ↦ {𝑥}) = (𝑎𝐴 ↦ {𝑎})
32eqcomi 2745 . . . 4 (𝑎𝐴 ↦ {𝑎}) = (𝑥𝐴 ↦ {𝑥})
4 id 22 . . . . . . . 8 (𝑢 = 𝑧𝑢 = 𝑧)
54, 1eqeqan12d 2750 . . . . . . 7 ((𝑢 = 𝑧𝑥 = 𝑎) → (𝑢 = {𝑥} ↔ 𝑧 = {𝑎}))
65cbvrexdva 3239 . . . . . 6 (𝑢 = 𝑧 → (∃𝑥𝐴 𝑢 = {𝑥} ↔ ∃𝑎𝐴 𝑧 = {𝑎}))
76cbvabv 2811 . . . . 5 {𝑢 ∣ ∃𝑥𝐴 𝑢 = {𝑥}} = {𝑧 ∣ ∃𝑎𝐴 𝑧 = {𝑎}}
87eqcomi 2745 . . . 4 {𝑧 ∣ ∃𝑎𝐴 𝑧 = {𝑎}} = {𝑢 ∣ ∃𝑥𝐴 𝑢 = {𝑥}}
93, 8f1omptsnlem 37331 . . 3 (𝑎𝐴 ↦ {𝑎}):𝐴1-1-onto→{𝑧 ∣ ∃𝑎𝐴 𝑧 = {𝑎}}
10 f1omptsn.r . . . . 5 𝑅 = {𝑢 ∣ ∃𝑥𝐴 𝑢 = {𝑥}}
1110, 7eqtri 2764 . . . 4 𝑅 = {𝑧 ∣ ∃𝑎𝐴 𝑧 = {𝑎}}
12 f1oeq3 6843 . . . 4 (𝑅 = {𝑧 ∣ ∃𝑎𝐴 𝑧 = {𝑎}} → ((𝑎𝐴 ↦ {𝑎}):𝐴1-1-onto𝑅 ↔ (𝑎𝐴 ↦ {𝑎}):𝐴1-1-onto→{𝑧 ∣ ∃𝑎𝐴 𝑧 = {𝑎}}))
1311, 12ax-mp 5 . . 3 ((𝑎𝐴 ↦ {𝑎}):𝐴1-1-onto𝑅 ↔ (𝑎𝐴 ↦ {𝑎}):𝐴1-1-onto→{𝑧 ∣ ∃𝑎𝐴 𝑧 = {𝑎}})
149, 13mpbir 231 . 2 (𝑎𝐴 ↦ {𝑎}):𝐴1-1-onto𝑅
15 f1omptsn.f . . . 4 𝐹 = (𝑥𝐴 ↦ {𝑥})
1615, 2eqtri 2764 . . 3 𝐹 = (𝑎𝐴 ↦ {𝑎})
17 f1oeq1 6841 . . 3 (𝐹 = (𝑎𝐴 ↦ {𝑎}) → (𝐹:𝐴1-1-onto𝑅 ↔ (𝑎𝐴 ↦ {𝑎}):𝐴1-1-onto𝑅))
1816, 17ax-mp 5 . 2 (𝐹:𝐴1-1-onto𝑅 ↔ (𝑎𝐴 ↦ {𝑎}):𝐴1-1-onto𝑅)
1914, 18mpbir 231 1 𝐹:𝐴1-1-onto𝑅
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1538  {cab 2713  wrex 3069  {csn 4632  cmpt 5232  1-1-ontowf1o 6565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5303  ax-nul 5313  ax-pr 5439
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1541  df-fal 1551  df-ex 1778  df-nf 1782  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3435  df-v 3481  df-sbc 3793  df-csb 3910  df-dif 3967  df-un 3969  df-in 3971  df-ss 3981  df-nul 4341  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4914  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5584  df-xp 5696  df-rel 5697  df-cnv 5698  df-co 5699  df-dm 5700  df-rn 5701  df-res 5702  df-ima 5703  df-iota 6519  df-fun 6568  df-fn 6569  df-f 6570  df-f1 6571  df-fo 6572  df-f1o 6573  df-fv 6574
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator