| Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > f1omptsn | Structured version Visualization version GIF version | ||
| Description: A function mapping to singletons is bijective onto a set of singletons. (Contributed by ML, 16-Jul-2020.) |
| Ref | Expression |
|---|---|
| f1omptsn.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ {𝑥}) |
| f1omptsn.r | ⊢ 𝑅 = {𝑢 ∣ ∃𝑥 ∈ 𝐴 𝑢 = {𝑥}} |
| Ref | Expression |
|---|---|
| f1omptsn | ⊢ 𝐹:𝐴–1-1-onto→𝑅 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneq 4618 | . . . . . 6 ⊢ (𝑥 = 𝑎 → {𝑥} = {𝑎}) | |
| 2 | 1 | cbvmptv 5237 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 ↦ {𝑥}) = (𝑎 ∈ 𝐴 ↦ {𝑎}) |
| 3 | 2 | eqcomi 2743 | . . . 4 ⊢ (𝑎 ∈ 𝐴 ↦ {𝑎}) = (𝑥 ∈ 𝐴 ↦ {𝑥}) |
| 4 | id 22 | . . . . . . . 8 ⊢ (𝑢 = 𝑧 → 𝑢 = 𝑧) | |
| 5 | 4, 1 | eqeqan12d 2748 | . . . . . . 7 ⊢ ((𝑢 = 𝑧 ∧ 𝑥 = 𝑎) → (𝑢 = {𝑥} ↔ 𝑧 = {𝑎})) |
| 6 | 5 | cbvrexdva 3227 | . . . . . 6 ⊢ (𝑢 = 𝑧 → (∃𝑥 ∈ 𝐴 𝑢 = {𝑥} ↔ ∃𝑎 ∈ 𝐴 𝑧 = {𝑎})) |
| 7 | 6 | cbvabv 2804 | . . . . 5 ⊢ {𝑢 ∣ ∃𝑥 ∈ 𝐴 𝑢 = {𝑥}} = {𝑧 ∣ ∃𝑎 ∈ 𝐴 𝑧 = {𝑎}} |
| 8 | 7 | eqcomi 2743 | . . . 4 ⊢ {𝑧 ∣ ∃𝑎 ∈ 𝐴 𝑧 = {𝑎}} = {𝑢 ∣ ∃𝑥 ∈ 𝐴 𝑢 = {𝑥}} |
| 9 | 3, 8 | f1omptsnlem 37278 | . . 3 ⊢ (𝑎 ∈ 𝐴 ↦ {𝑎}):𝐴–1-1-onto→{𝑧 ∣ ∃𝑎 ∈ 𝐴 𝑧 = {𝑎}} |
| 10 | f1omptsn.r | . . . . 5 ⊢ 𝑅 = {𝑢 ∣ ∃𝑥 ∈ 𝐴 𝑢 = {𝑥}} | |
| 11 | 10, 7 | eqtri 2757 | . . . 4 ⊢ 𝑅 = {𝑧 ∣ ∃𝑎 ∈ 𝐴 𝑧 = {𝑎}} |
| 12 | f1oeq3 6819 | . . . 4 ⊢ (𝑅 = {𝑧 ∣ ∃𝑎 ∈ 𝐴 𝑧 = {𝑎}} → ((𝑎 ∈ 𝐴 ↦ {𝑎}):𝐴–1-1-onto→𝑅 ↔ (𝑎 ∈ 𝐴 ↦ {𝑎}):𝐴–1-1-onto→{𝑧 ∣ ∃𝑎 ∈ 𝐴 𝑧 = {𝑎}})) | |
| 13 | 11, 12 | ax-mp 5 | . . 3 ⊢ ((𝑎 ∈ 𝐴 ↦ {𝑎}):𝐴–1-1-onto→𝑅 ↔ (𝑎 ∈ 𝐴 ↦ {𝑎}):𝐴–1-1-onto→{𝑧 ∣ ∃𝑎 ∈ 𝐴 𝑧 = {𝑎}}) |
| 14 | 9, 13 | mpbir 231 | . 2 ⊢ (𝑎 ∈ 𝐴 ↦ {𝑎}):𝐴–1-1-onto→𝑅 |
| 15 | f1omptsn.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ {𝑥}) | |
| 16 | 15, 2 | eqtri 2757 | . . 3 ⊢ 𝐹 = (𝑎 ∈ 𝐴 ↦ {𝑎}) |
| 17 | f1oeq1 6817 | . . 3 ⊢ (𝐹 = (𝑎 ∈ 𝐴 ↦ {𝑎}) → (𝐹:𝐴–1-1-onto→𝑅 ↔ (𝑎 ∈ 𝐴 ↦ {𝑎}):𝐴–1-1-onto→𝑅)) | |
| 18 | 16, 17 | ax-mp 5 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝑅 ↔ (𝑎 ∈ 𝐴 ↦ {𝑎}):𝐴–1-1-onto→𝑅) |
| 19 | 14, 18 | mpbir 231 | 1 ⊢ 𝐹:𝐴–1-1-onto→𝑅 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1539 {cab 2712 ∃wrex 3059 {csn 4608 ↦ cmpt 5207 –1-1-onto→wf1o 6541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |