MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgasa1 Structured version   Visualization version   GIF version

Theorem tgasa1 28769
Description: Second congruence theorem: ASA. (Angle-Side-Angle): If two pairs of angles of two triangles are equal in measurement, and the included sides are equal in length, then the triangles are congruent. Theorem 11.50 of [Schwabhauser] p. 108. (Contributed by Thierry Arnoux, 15-Aug-2020.)
Hypotheses
Ref Expression
tgsas.p 𝑃 = (Base‘𝐺)
tgsas.m = (dist‘𝐺)
tgsas.i 𝐼 = (Itv‘𝐺)
tgsas.g (𝜑𝐺 ∈ TarskiG)
tgsas.a (𝜑𝐴𝑃)
tgsas.b (𝜑𝐵𝑃)
tgsas.c (𝜑𝐶𝑃)
tgsas.d (𝜑𝐷𝑃)
tgsas.e (𝜑𝐸𝑃)
tgsas.f (𝜑𝐹𝑃)
tgasa.l 𝐿 = (LineG‘𝐺)
tgasa.1 (𝜑 → ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
tgasa.2 (𝜑 → (𝐴 𝐵) = (𝐷 𝐸))
tgasa.3 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
tgasa.4 (𝜑 → ⟨“𝐶𝐴𝐵”⟩(cgrA‘𝐺)⟨“𝐹𝐷𝐸”⟩)
Assertion
Ref Expression
tgasa1 (𝜑 → (𝐵 𝐶) = (𝐸 𝐹))

Proof of Theorem tgasa1
Dummy variables 𝑎 𝑏 𝑓 𝑤 𝑡 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprr 772 . . 3 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → (𝐸 𝑓) = (𝐵 𝐶))
2 tgsas.p . . . . 5 𝑃 = (Base‘𝐺)
3 tgsas.i . . . . 5 𝐼 = (Itv‘𝐺)
4 tgasa.l . . . . 5 𝐿 = (LineG‘𝐺)
5 tgsas.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
65ad2antrr 726 . . . . 5 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝐺 ∈ TarskiG)
7 tgsas.f . . . . . 6 (𝜑𝐹𝑃)
87ad2antrr 726 . . . . 5 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝐹𝑃)
9 tgsas.d . . . . . 6 (𝜑𝐷𝑃)
109ad2antrr 726 . . . . 5 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝐷𝑃)
11 tgsas.e . . . . . 6 (𝜑𝐸𝑃)
1211ad2antrr 726 . . . . 5 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝐸𝑃)
13 tgsas.m . . . . . . 7 = (dist‘𝐺)
14 tgsas.a . . . . . . 7 (𝜑𝐴𝑃)
15 tgsas.b . . . . . . 7 (𝜑𝐵𝑃)
16 tgsas.c . . . . . . 7 (𝜑𝐶𝑃)
17 tgasa.3 . . . . . . 7 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
18 tgasa.1 . . . . . . 7 (𝜑 → ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
192, 3, 13, 5, 14, 15, 16, 9, 11, 7, 17, 4, 18cgrancol 28740 . . . . . 6 (𝜑 → ¬ (𝐹 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸))
2019ad2antrr 726 . . . . 5 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → ¬ (𝐹 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸))
21 eqid 2734 . . . . . 6 (hlG‘𝐺) = (hlG‘𝐺)
22 simplr 768 . . . . . 6 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝑓𝑃)
2316ad2antrr 726 . . . . . . 7 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝐶𝑃)
2414ad2antrr 726 . . . . . . 7 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝐴𝑃)
2515ad2antrr 726 . . . . . . 7 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝐵𝑃)
2618ad2antrr 726 . . . . . . 7 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
275ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) ∧ (𝐸 ∈ (𝐷𝐿𝐹) ∨ 𝐷 = 𝐹)) → 𝐺 ∈ TarskiG)
289ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) ∧ (𝐸 ∈ (𝐷𝐿𝐹) ∨ 𝐷 = 𝐹)) → 𝐷𝑃)
2911ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) ∧ (𝐸 ∈ (𝐷𝐿𝐹) ∨ 𝐷 = 𝐹)) → 𝐸𝑃)
307ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) ∧ (𝐸 ∈ (𝐷𝐿𝐹) ∨ 𝐷 = 𝐹)) → 𝐹𝑃)
3114ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) ∧ (𝐸 ∈ (𝐷𝐿𝐹) ∨ 𝐷 = 𝐹)) → 𝐴𝑃)
3215ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) ∧ (𝐸 ∈ (𝐷𝐿𝐹) ∨ 𝐷 = 𝐹)) → 𝐵𝑃)
3316ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) ∧ (𝐸 ∈ (𝐷𝐿𝐹) ∨ 𝐷 = 𝐹)) → 𝐶𝑃)
342, 3, 5, 21, 14, 15, 16, 9, 11, 7, 17cgracom 28733 . . . . . . . . . 10 (𝜑 → ⟨“𝐷𝐸𝐹”⟩(cgrA‘𝐺)⟨“𝐴𝐵𝐶”⟩)
3534ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) ∧ (𝐸 ∈ (𝐷𝐿𝐹) ∨ 𝐷 = 𝐹)) → ⟨“𝐷𝐸𝐹”⟩(cgrA‘𝐺)⟨“𝐴𝐵𝐶”⟩)
36 simpr 484 . . . . . . . . . . 11 ((((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) ∧ (𝐸 ∈ (𝐷𝐿𝐹) ∨ 𝐷 = 𝐹)) → (𝐸 ∈ (𝐷𝐿𝐹) ∨ 𝐷 = 𝐹))
372, 4, 3, 27, 28, 30, 29, 36colcom 28469 . . . . . . . . . 10 ((((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) ∧ (𝐸 ∈ (𝐷𝐿𝐹) ∨ 𝐷 = 𝐹)) → (𝐸 ∈ (𝐹𝐿𝐷) ∨ 𝐹 = 𝐷))
382, 4, 3, 27, 30, 28, 29, 37colrot1 28470 . . . . . . . . 9 ((((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) ∧ (𝐸 ∈ (𝐷𝐿𝐹) ∨ 𝐷 = 𝐹)) → (𝐹 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸))
392, 3, 13, 27, 28, 29, 30, 31, 32, 33, 35, 4, 38cgracol 28739 . . . . . . . 8 ((((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) ∧ (𝐸 ∈ (𝐷𝐿𝐹) ∨ 𝐷 = 𝐹)) → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
4018ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) ∧ (𝐸 ∈ (𝐷𝐿𝐹) ∨ 𝐷 = 𝐹)) → ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
4139, 40pm2.65da 816 . . . . . . 7 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → ¬ (𝐸 ∈ (𝐷𝐿𝐹) ∨ 𝐷 = 𝐹))
42 eqid 2734 . . . . . . . . . 10 (cgrG‘𝐺) = (cgrG‘𝐺)
4317ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
44 simprl 770 . . . . . . . . . . . . 13 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝑓((hlG‘𝐺)‘𝐸)𝐹)
452, 3, 21, 6, 24, 25, 23, 10, 12, 8, 43, 22, 44cgrahl2 28728 . . . . . . . . . . . 12 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝑓”⟩)
462, 3, 21, 5, 14, 15, 16, 9, 11, 7, 17cgrane1 28723 . . . . . . . . . . . . . 14 (𝜑𝐴𝐵)
472, 3, 21, 14, 14, 15, 5, 46hlid 28520 . . . . . . . . . . . . 13 (𝜑𝐴((hlG‘𝐺)‘𝐵)𝐴)
4847ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝐴((hlG‘𝐺)‘𝐵)𝐴)
492, 3, 21, 5, 14, 15, 16, 9, 11, 7, 17cgrane2 28724 . . . . . . . . . . . . . . 15 (𝜑𝐵𝐶)
5049necomd 2986 . . . . . . . . . . . . . 14 (𝜑𝐶𝐵)
512, 3, 21, 16, 14, 15, 5, 50hlid 28520 . . . . . . . . . . . . 13 (𝜑𝐶((hlG‘𝐺)‘𝐵)𝐶)
5251ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝐶((hlG‘𝐺)‘𝐵)𝐶)
53 tgasa.2 . . . . . . . . . . . . . 14 (𝜑 → (𝐴 𝐵) = (𝐷 𝐸))
542, 13, 3, 5, 14, 15, 9, 11, 53tgcgrcomlr 28391 . . . . . . . . . . . . 13 (𝜑 → (𝐵 𝐴) = (𝐸 𝐷))
5554ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → (𝐵 𝐴) = (𝐸 𝐷))
561eqcomd 2740 . . . . . . . . . . . 12 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → (𝐵 𝐶) = (𝐸 𝑓))
572, 3, 21, 6, 24, 25, 23, 10, 12, 22, 45, 24, 13, 23, 48, 52, 55, 56cgracgr 28729 . . . . . . . . . . 11 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → (𝐴 𝐶) = (𝐷 𝑓))
582, 13, 3, 6, 24, 23, 10, 22, 57tgcgrcomlr 28391 . . . . . . . . . 10 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → (𝐶 𝐴) = (𝑓 𝐷))
5953ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → (𝐴 𝐵) = (𝐷 𝐸))
602, 13, 42, 6, 23, 24, 25, 22, 10, 12, 58, 59, 56trgcgr 28427 . . . . . . . . 9 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → ⟨“𝐶𝐴𝐵”⟩(cgrG‘𝐺)⟨“𝑓𝐷𝐸”⟩)
612, 3, 4, 5, 16, 14, 15, 18ncolne1 28536 . . . . . . . . . . . 12 (𝜑𝐶𝐴)
6261ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝐶𝐴)
632, 13, 3, 6, 23, 24, 22, 10, 58, 62tgcgrneq 28394 . . . . . . . . . 10 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝑓𝐷)
642, 3, 21, 22, 8, 10, 6, 63hlid 28520 . . . . . . . . 9 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝑓((hlG‘𝐺)‘𝐷)𝑓)
65 tgasa.4 . . . . . . . . . . . . 13 (𝜑 → ⟨“𝐶𝐴𝐵”⟩(cgrA‘𝐺)⟨“𝐹𝐷𝐸”⟩)
662, 3, 21, 5, 16, 14, 15, 7, 9, 11, 65cgrane4 28726 . . . . . . . . . . . 12 (𝜑𝐷𝐸)
6766necomd 2986 . . . . . . . . . . 11 (𝜑𝐸𝐷)
682, 3, 21, 11, 14, 9, 5, 67hlid 28520 . . . . . . . . . 10 (𝜑𝐸((hlG‘𝐺)‘𝐷)𝐸)
6968ad2antrr 726 . . . . . . . . 9 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝐸((hlG‘𝐺)‘𝐷)𝐸)
702, 3, 21, 6, 23, 24, 25, 22, 10, 12, 22, 12, 60, 64, 69iscgrad 28722 . . . . . . . 8 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → ⟨“𝐶𝐴𝐵”⟩(cgrA‘𝐺)⟨“𝑓𝐷𝐸”⟩)
7166ad2antrr 726 . . . . . . . . 9 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝐷𝐸)
722, 3, 6, 21, 22, 10, 12, 63, 71cgraswap 28731 . . . . . . . 8 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → ⟨“𝑓𝐷𝐸”⟩(cgrA‘𝐺)⟨“𝐸𝐷𝑓”⟩)
732, 3, 6, 21, 23, 24, 25, 22, 10, 12, 70, 12, 10, 22, 72cgratr 28734 . . . . . . 7 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → ⟨“𝐶𝐴𝐵”⟩(cgrA‘𝐺)⟨“𝐸𝐷𝑓”⟩)
742, 3, 21, 5, 16, 14, 15, 7, 9, 11, 65cgrane3 28725 . . . . . . . . . . 11 (𝜑𝐷𝐹)
7574necomd 2986 . . . . . . . . . 10 (𝜑𝐹𝐷)
762, 3, 5, 21, 7, 9, 11, 75, 66cgraswap 28731 . . . . . . . . 9 (𝜑 → ⟨“𝐹𝐷𝐸”⟩(cgrA‘𝐺)⟨“𝐸𝐷𝐹”⟩)
772, 3, 5, 21, 16, 14, 15, 7, 9, 11, 65, 11, 9, 7, 76cgratr 28734 . . . . . . . 8 (𝜑 → ⟨“𝐶𝐴𝐵”⟩(cgrA‘𝐺)⟨“𝐸𝐷𝐹”⟩)
7877ad2antrr 726 . . . . . . 7 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → ⟨“𝐶𝐴𝐵”⟩(cgrA‘𝐺)⟨“𝐸𝐷𝐹”⟩)
792, 3, 4, 5, 11, 9, 67tgelrnln 28541 . . . . . . . . 9 (𝜑 → (𝐸𝐿𝐷) ∈ ran 𝐿)
8079ad2antrr 726 . . . . . . . 8 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → (𝐸𝐿𝐷) ∈ ran 𝐿)
81 simpl 482 . . . . . . . . . . . 12 ((𝑎 = 𝑢𝑏 = 𝑣) → 𝑎 = 𝑢)
8281eleq1d 2818 . . . . . . . . . . 11 ((𝑎 = 𝑢𝑏 = 𝑣) → (𝑎 ∈ (𝑃 ∖ (𝐸𝐿𝐷)) ↔ 𝑢 ∈ (𝑃 ∖ (𝐸𝐿𝐷))))
83 simpr 484 . . . . . . . . . . . 12 ((𝑎 = 𝑢𝑏 = 𝑣) → 𝑏 = 𝑣)
8483eleq1d 2818 . . . . . . . . . . 11 ((𝑎 = 𝑢𝑏 = 𝑣) → (𝑏 ∈ (𝑃 ∖ (𝐸𝐿𝐷)) ↔ 𝑣 ∈ (𝑃 ∖ (𝐸𝐿𝐷))))
8582, 84anbi12d 632 . . . . . . . . . 10 ((𝑎 = 𝑢𝑏 = 𝑣) → ((𝑎 ∈ (𝑃 ∖ (𝐸𝐿𝐷)) ∧ 𝑏 ∈ (𝑃 ∖ (𝐸𝐿𝐷))) ↔ (𝑢 ∈ (𝑃 ∖ (𝐸𝐿𝐷)) ∧ 𝑣 ∈ (𝑃 ∖ (𝐸𝐿𝐷)))))
86 simpr 484 . . . . . . . . . . . 12 (((𝑎 = 𝑢𝑏 = 𝑣) ∧ 𝑡 = 𝑤) → 𝑡 = 𝑤)
87 simpll 766 . . . . . . . . . . . . 13 (((𝑎 = 𝑢𝑏 = 𝑣) ∧ 𝑡 = 𝑤) → 𝑎 = 𝑢)
88 simplr 768 . . . . . . . . . . . . 13 (((𝑎 = 𝑢𝑏 = 𝑣) ∧ 𝑡 = 𝑤) → 𝑏 = 𝑣)
8987, 88oveq12d 7417 . . . . . . . . . . . 12 (((𝑎 = 𝑢𝑏 = 𝑣) ∧ 𝑡 = 𝑤) → (𝑎𝐼𝑏) = (𝑢𝐼𝑣))
9086, 89eleq12d 2827 . . . . . . . . . . 11 (((𝑎 = 𝑢𝑏 = 𝑣) ∧ 𝑡 = 𝑤) → (𝑡 ∈ (𝑎𝐼𝑏) ↔ 𝑤 ∈ (𝑢𝐼𝑣)))
9190cbvrexdva 3221 . . . . . . . . . 10 ((𝑎 = 𝑢𝑏 = 𝑣) → (∃𝑡 ∈ (𝐸𝐿𝐷)𝑡 ∈ (𝑎𝐼𝑏) ↔ ∃𝑤 ∈ (𝐸𝐿𝐷)𝑤 ∈ (𝑢𝐼𝑣)))
9285, 91anbi12d 632 . . . . . . . . 9 ((𝑎 = 𝑢𝑏 = 𝑣) → (((𝑎 ∈ (𝑃 ∖ (𝐸𝐿𝐷)) ∧ 𝑏 ∈ (𝑃 ∖ (𝐸𝐿𝐷))) ∧ ∃𝑡 ∈ (𝐸𝐿𝐷)𝑡 ∈ (𝑎𝐼𝑏)) ↔ ((𝑢 ∈ (𝑃 ∖ (𝐸𝐿𝐷)) ∧ 𝑣 ∈ (𝑃 ∖ (𝐸𝐿𝐷))) ∧ ∃𝑤 ∈ (𝐸𝐿𝐷)𝑤 ∈ (𝑢𝐼𝑣))))
9392cbvopabv 5189 . . . . . . . 8 {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃 ∖ (𝐸𝐿𝐷)) ∧ 𝑏 ∈ (𝑃 ∖ (𝐸𝐿𝐷))) ∧ ∃𝑡 ∈ (𝐸𝐿𝐷)𝑡 ∈ (𝑎𝐼𝑏))} = {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ (𝑃 ∖ (𝐸𝐿𝐷)) ∧ 𝑣 ∈ (𝑃 ∖ (𝐸𝐿𝐷))) ∧ ∃𝑤 ∈ (𝐸𝐿𝐷)𝑤 ∈ (𝑢𝐼𝑣))}
942, 3, 4, 5, 11, 9, 67tglinerflx1 28544 . . . . . . . . . 10 (𝜑𝐸 ∈ (𝐸𝐿𝐷))
9594ad2antrr 726 . . . . . . . . 9 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝐸 ∈ (𝐸𝐿𝐷))
962, 4, 3, 5, 9, 11, 7, 19ncolcom 28472 . . . . . . . . . . 11 (𝜑 → ¬ (𝐹 ∈ (𝐸𝐿𝐷) ∨ 𝐸 = 𝐷))
97 pm2.45 881 . . . . . . . . . . 11 (¬ (𝐹 ∈ (𝐸𝐿𝐷) ∨ 𝐸 = 𝐷) → ¬ 𝐹 ∈ (𝐸𝐿𝐷))
9896, 97syl 17 . . . . . . . . . 10 (𝜑 → ¬ 𝐹 ∈ (𝐸𝐿𝐷))
9998ad2antrr 726 . . . . . . . . 9 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → ¬ 𝐹 ∈ (𝐸𝐿𝐷))
1002, 3, 21, 22, 8, 12, 6, 44hlcomd 28515 . . . . . . . . 9 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝐹((hlG‘𝐺)‘𝐸)𝑓)
1012, 3, 4, 6, 80, 12, 93, 21, 95, 8, 22, 99, 100hphl 28682 . . . . . . . 8 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝐹((hpG‘𝐺)‘(𝐸𝐿𝐷))𝑓)
1022, 3, 4, 6, 80, 8, 93, 22, 101hpgcom 28678 . . . . . . 7 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝑓((hpG‘𝐺)‘(𝐸𝐿𝐷))𝐹)
1032, 3, 4, 5, 79, 7, 93, 98hpgid 28677 . . . . . . . 8 (𝜑𝐹((hpG‘𝐺)‘(𝐸𝐿𝐷))𝐹)
104103ad2antrr 726 . . . . . . 7 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝐹((hpG‘𝐺)‘(𝐸𝐿𝐷))𝐹)
1052, 3, 13, 6, 23, 24, 25, 12, 10, 8, 4, 26, 41, 22, 8, 21, 73, 78, 102, 104acopyeu 28745 . . . . . 6 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝑓((hlG‘𝐺)‘𝐷)𝐹)
1062, 3, 21, 22, 8, 10, 6, 4, 105hlln 28518 . . . . 5 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝑓 ∈ (𝐹𝐿𝐷))
1072, 3, 4, 5, 7, 9, 75tglinerflx1 28544 . . . . . 6 (𝜑𝐹 ∈ (𝐹𝐿𝐷))
108107ad2antrr 726 . . . . 5 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝐹 ∈ (𝐹𝐿𝐷))
1092, 3, 21, 5, 14, 15, 16, 9, 11, 7, 17cgrane4 28726 . . . . . . 7 (𝜑𝐸𝐹)
110109ad2antrr 726 . . . . . 6 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝐸𝐹)
1112, 3, 21, 22, 8, 12, 6, 4, 44hlln 28518 . . . . . 6 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝑓 ∈ (𝐹𝐿𝐸))
1122, 3, 4, 6, 12, 8, 22, 110, 111lncom 28533 . . . . 5 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝑓 ∈ (𝐸𝐿𝐹))
1132, 3, 4, 6, 12, 8, 110tglinerflx2 28545 . . . . 5 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝐹 ∈ (𝐸𝐿𝐹))
1142, 3, 4, 6, 8, 10, 12, 8, 20, 106, 108, 112, 113tglineinteq 28556 . . . 4 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝑓 = 𝐹)
115114oveq2d 7415 . . 3 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → (𝐸 𝑓) = (𝐸 𝐹))
1161, 115eqtr3d 2771 . 2 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → (𝐵 𝐶) = (𝐸 𝐹))
117109necomd 2986 . . 3 (𝜑𝐹𝐸)
1182, 3, 21, 11, 15, 16, 5, 7, 13, 117, 49hlcgrex 28527 . 2 (𝜑 → ∃𝑓𝑃 (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶)))
119116, 118r19.29a 3146 1 (𝜑 → (𝐵 𝐶) = (𝐸 𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1539  wcel 2107  wne 2931  wrex 3059  cdif 3921   class class class wbr 5116  {copab 5178  ran crn 5652  cfv 6527  (class class class)co 7399  ⟨“cs3 14848  Basecbs 17213  distcds 17265  TarskiGcstrkg 28338  Itvcitv 28344  LineGclng 28345  cgrGccgrg 28421  hlGchlg 28511  hpGchpg 28668  cgrAccgra 28718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5246  ax-sep 5263  ax-nul 5273  ax-pow 5332  ax-pr 5399  ax-un 7723  ax-cnex 11177  ax-resscn 11178  ax-1cn 11179  ax-icn 11180  ax-addcl 11181  ax-addrcl 11182  ax-mulcl 11183  ax-mulrcl 11184  ax-mulcom 11185  ax-addass 11186  ax-mulass 11187  ax-distr 11188  ax-i2m1 11189  ax-1ne0 11190  ax-1rid 11191  ax-rnegex 11192  ax-rrecex 11193  ax-cnre 11194  ax-pre-lttri 11195  ax-pre-lttrn 11196  ax-pre-ltadd 11197  ax-pre-mulgt0 11198
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-tp 4604  df-op 4606  df-uni 4881  df-int 4920  df-iun 4966  df-br 5117  df-opab 5179  df-mpt 5199  df-tr 5227  df-id 5545  df-eprel 5550  df-po 5558  df-so 5559  df-fr 5603  df-we 5605  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-pred 6287  df-ord 6352  df-on 6353  df-lim 6354  df-suc 6355  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-riota 7356  df-ov 7402  df-oprab 7403  df-mpo 7404  df-om 7856  df-1st 7982  df-2nd 7983  df-frecs 8274  df-wrecs 8305  df-recs 8379  df-rdg 8418  df-1o 8474  df-oadd 8478  df-er 8713  df-map 8836  df-pm 8837  df-en 8954  df-dom 8955  df-sdom 8956  df-fin 8957  df-dju 9907  df-card 9945  df-pnf 11263  df-mnf 11264  df-xr 11265  df-ltxr 11266  df-le 11267  df-sub 11460  df-neg 11461  df-nn 12233  df-2 12295  df-3 12296  df-n0 12494  df-xnn0 12567  df-z 12581  df-uz 12845  df-fz 13514  df-fzo 13661  df-hash 14337  df-word 14520  df-concat 14576  df-s1 14601  df-s2 14854  df-s3 14855  df-trkgc 28359  df-trkgb 28360  df-trkgcb 28361  df-trkgld 28363  df-trkg 28364  df-cgrg 28422  df-leg 28494  df-hlg 28512  df-mir 28564  df-rag 28605  df-perpg 28607  df-hpg 28669  df-mid 28685  df-lmi 28686  df-cgra 28719
This theorem is referenced by:  tgasa  28770
  Copyright terms: Public domain W3C validator