MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgasa1 Structured version   Visualization version   GIF version

Theorem tgasa1 26644
Description: Second congruence theorem: ASA. (Angle-Side-Angle): If two pairs of angles of two triangles are equal in measurement, and the included sides are equal in length, then the triangles are congruent. Theorem 11.50 of [Schwabhauser] p. 108. (Contributed by Thierry Arnoux, 15-Aug-2020.)
Hypotheses
Ref Expression
tgsas.p 𝑃 = (Base‘𝐺)
tgsas.m = (dist‘𝐺)
tgsas.i 𝐼 = (Itv‘𝐺)
tgsas.g (𝜑𝐺 ∈ TarskiG)
tgsas.a (𝜑𝐴𝑃)
tgsas.b (𝜑𝐵𝑃)
tgsas.c (𝜑𝐶𝑃)
tgsas.d (𝜑𝐷𝑃)
tgsas.e (𝜑𝐸𝑃)
tgsas.f (𝜑𝐹𝑃)
tgasa.l 𝐿 = (LineG‘𝐺)
tgasa.1 (𝜑 → ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
tgasa.2 (𝜑 → (𝐴 𝐵) = (𝐷 𝐸))
tgasa.3 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
tgasa.4 (𝜑 → ⟨“𝐶𝐴𝐵”⟩(cgrA‘𝐺)⟨“𝐹𝐷𝐸”⟩)
Assertion
Ref Expression
tgasa1 (𝜑 → (𝐵 𝐶) = (𝐸 𝐹))

Proof of Theorem tgasa1
Dummy variables 𝑎 𝑏 𝑓 𝑤 𝑡 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprr 771 . . 3 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → (𝐸 𝑓) = (𝐵 𝐶))
2 tgsas.p . . . . 5 𝑃 = (Base‘𝐺)
3 tgsas.i . . . . 5 𝐼 = (Itv‘𝐺)
4 tgasa.l . . . . 5 𝐿 = (LineG‘𝐺)
5 tgsas.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
65ad2antrr 724 . . . . 5 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝐺 ∈ TarskiG)
7 tgsas.f . . . . . 6 (𝜑𝐹𝑃)
87ad2antrr 724 . . . . 5 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝐹𝑃)
9 tgsas.d . . . . . 6 (𝜑𝐷𝑃)
109ad2antrr 724 . . . . 5 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝐷𝑃)
11 tgsas.e . . . . . 6 (𝜑𝐸𝑃)
1211ad2antrr 724 . . . . 5 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝐸𝑃)
13 tgsas.m . . . . . . 7 = (dist‘𝐺)
14 tgsas.a . . . . . . 7 (𝜑𝐴𝑃)
15 tgsas.b . . . . . . 7 (𝜑𝐵𝑃)
16 tgsas.c . . . . . . 7 (𝜑𝐶𝑃)
17 tgasa.3 . . . . . . 7 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
18 tgasa.1 . . . . . . 7 (𝜑 → ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
192, 3, 13, 5, 14, 15, 16, 9, 11, 7, 17, 4, 18cgrancol 26615 . . . . . 6 (𝜑 → ¬ (𝐹 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸))
2019ad2antrr 724 . . . . 5 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → ¬ (𝐹 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸))
21 eqid 2821 . . . . . 6 (hlG‘𝐺) = (hlG‘𝐺)
22 simplr 767 . . . . . 6 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝑓𝑃)
2316ad2antrr 724 . . . . . . 7 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝐶𝑃)
2414ad2antrr 724 . . . . . . 7 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝐴𝑃)
2515ad2antrr 724 . . . . . . 7 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝐵𝑃)
2618ad2antrr 724 . . . . . . 7 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
275ad3antrrr 728 . . . . . . . . 9 ((((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) ∧ (𝐸 ∈ (𝐷𝐿𝐹) ∨ 𝐷 = 𝐹)) → 𝐺 ∈ TarskiG)
289ad3antrrr 728 . . . . . . . . 9 ((((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) ∧ (𝐸 ∈ (𝐷𝐿𝐹) ∨ 𝐷 = 𝐹)) → 𝐷𝑃)
2911ad3antrrr 728 . . . . . . . . 9 ((((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) ∧ (𝐸 ∈ (𝐷𝐿𝐹) ∨ 𝐷 = 𝐹)) → 𝐸𝑃)
307ad3antrrr 728 . . . . . . . . 9 ((((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) ∧ (𝐸 ∈ (𝐷𝐿𝐹) ∨ 𝐷 = 𝐹)) → 𝐹𝑃)
3114ad3antrrr 728 . . . . . . . . 9 ((((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) ∧ (𝐸 ∈ (𝐷𝐿𝐹) ∨ 𝐷 = 𝐹)) → 𝐴𝑃)
3215ad3antrrr 728 . . . . . . . . 9 ((((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) ∧ (𝐸 ∈ (𝐷𝐿𝐹) ∨ 𝐷 = 𝐹)) → 𝐵𝑃)
3316ad3antrrr 728 . . . . . . . . 9 ((((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) ∧ (𝐸 ∈ (𝐷𝐿𝐹) ∨ 𝐷 = 𝐹)) → 𝐶𝑃)
342, 3, 5, 21, 14, 15, 16, 9, 11, 7, 17cgracom 26608 . . . . . . . . . 10 (𝜑 → ⟨“𝐷𝐸𝐹”⟩(cgrA‘𝐺)⟨“𝐴𝐵𝐶”⟩)
3534ad3antrrr 728 . . . . . . . . 9 ((((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) ∧ (𝐸 ∈ (𝐷𝐿𝐹) ∨ 𝐷 = 𝐹)) → ⟨“𝐷𝐸𝐹”⟩(cgrA‘𝐺)⟨“𝐴𝐵𝐶”⟩)
36 simpr 487 . . . . . . . . . . 11 ((((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) ∧ (𝐸 ∈ (𝐷𝐿𝐹) ∨ 𝐷 = 𝐹)) → (𝐸 ∈ (𝐷𝐿𝐹) ∨ 𝐷 = 𝐹))
372, 4, 3, 27, 28, 30, 29, 36colcom 26344 . . . . . . . . . 10 ((((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) ∧ (𝐸 ∈ (𝐷𝐿𝐹) ∨ 𝐷 = 𝐹)) → (𝐸 ∈ (𝐹𝐿𝐷) ∨ 𝐹 = 𝐷))
382, 4, 3, 27, 30, 28, 29, 37colrot1 26345 . . . . . . . . 9 ((((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) ∧ (𝐸 ∈ (𝐷𝐿𝐹) ∨ 𝐷 = 𝐹)) → (𝐹 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸))
392, 3, 13, 27, 28, 29, 30, 31, 32, 33, 35, 4, 38cgracol 26614 . . . . . . . 8 ((((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) ∧ (𝐸 ∈ (𝐷𝐿𝐹) ∨ 𝐷 = 𝐹)) → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
4018ad3antrrr 728 . . . . . . . 8 ((((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) ∧ (𝐸 ∈ (𝐷𝐿𝐹) ∨ 𝐷 = 𝐹)) → ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
4139, 40pm2.65da 815 . . . . . . 7 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → ¬ (𝐸 ∈ (𝐷𝐿𝐹) ∨ 𝐷 = 𝐹))
42 eqid 2821 . . . . . . . . . 10 (cgrG‘𝐺) = (cgrG‘𝐺)
4317ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
44 simprl 769 . . . . . . . . . . . . 13 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝑓((hlG‘𝐺)‘𝐸)𝐹)
452, 3, 21, 6, 24, 25, 23, 10, 12, 8, 43, 22, 44cgrahl2 26603 . . . . . . . . . . . 12 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝑓”⟩)
462, 3, 21, 5, 14, 15, 16, 9, 11, 7, 17cgrane1 26598 . . . . . . . . . . . . . 14 (𝜑𝐴𝐵)
472, 3, 21, 14, 14, 15, 5, 46hlid 26395 . . . . . . . . . . . . 13 (𝜑𝐴((hlG‘𝐺)‘𝐵)𝐴)
4847ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝐴((hlG‘𝐺)‘𝐵)𝐴)
492, 3, 21, 5, 14, 15, 16, 9, 11, 7, 17cgrane2 26599 . . . . . . . . . . . . . . 15 (𝜑𝐵𝐶)
5049necomd 3071 . . . . . . . . . . . . . 14 (𝜑𝐶𝐵)
512, 3, 21, 16, 14, 15, 5, 50hlid 26395 . . . . . . . . . . . . 13 (𝜑𝐶((hlG‘𝐺)‘𝐵)𝐶)
5251ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝐶((hlG‘𝐺)‘𝐵)𝐶)
53 tgasa.2 . . . . . . . . . . . . . 14 (𝜑 → (𝐴 𝐵) = (𝐷 𝐸))
542, 13, 3, 5, 14, 15, 9, 11, 53tgcgrcomlr 26266 . . . . . . . . . . . . 13 (𝜑 → (𝐵 𝐴) = (𝐸 𝐷))
5554ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → (𝐵 𝐴) = (𝐸 𝐷))
561eqcomd 2827 . . . . . . . . . . . 12 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → (𝐵 𝐶) = (𝐸 𝑓))
572, 3, 21, 6, 24, 25, 23, 10, 12, 22, 45, 24, 13, 23, 48, 52, 55, 56cgracgr 26604 . . . . . . . . . . 11 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → (𝐴 𝐶) = (𝐷 𝑓))
582, 13, 3, 6, 24, 23, 10, 22, 57tgcgrcomlr 26266 . . . . . . . . . 10 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → (𝐶 𝐴) = (𝑓 𝐷))
5953ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → (𝐴 𝐵) = (𝐷 𝐸))
602, 13, 42, 6, 23, 24, 25, 22, 10, 12, 58, 59, 56trgcgr 26302 . . . . . . . . 9 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → ⟨“𝐶𝐴𝐵”⟩(cgrG‘𝐺)⟨“𝑓𝐷𝐸”⟩)
612, 3, 4, 5, 16, 14, 15, 18ncolne1 26411 . . . . . . . . . . . 12 (𝜑𝐶𝐴)
6261ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝐶𝐴)
632, 13, 3, 6, 23, 24, 22, 10, 58, 62tgcgrneq 26269 . . . . . . . . . 10 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝑓𝐷)
642, 3, 21, 22, 8, 10, 6, 63hlid 26395 . . . . . . . . 9 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝑓((hlG‘𝐺)‘𝐷)𝑓)
65 tgasa.4 . . . . . . . . . . . . 13 (𝜑 → ⟨“𝐶𝐴𝐵”⟩(cgrA‘𝐺)⟨“𝐹𝐷𝐸”⟩)
662, 3, 21, 5, 16, 14, 15, 7, 9, 11, 65cgrane4 26601 . . . . . . . . . . . 12 (𝜑𝐷𝐸)
6766necomd 3071 . . . . . . . . . . 11 (𝜑𝐸𝐷)
682, 3, 21, 11, 14, 9, 5, 67hlid 26395 . . . . . . . . . 10 (𝜑𝐸((hlG‘𝐺)‘𝐷)𝐸)
6968ad2antrr 724 . . . . . . . . 9 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝐸((hlG‘𝐺)‘𝐷)𝐸)
702, 3, 21, 6, 23, 24, 25, 22, 10, 12, 22, 12, 60, 64, 69iscgrad 26597 . . . . . . . 8 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → ⟨“𝐶𝐴𝐵”⟩(cgrA‘𝐺)⟨“𝑓𝐷𝐸”⟩)
7166ad2antrr 724 . . . . . . . . 9 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝐷𝐸)
722, 3, 6, 21, 22, 10, 12, 63, 71cgraswap 26606 . . . . . . . 8 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → ⟨“𝑓𝐷𝐸”⟩(cgrA‘𝐺)⟨“𝐸𝐷𝑓”⟩)
732, 3, 6, 21, 23, 24, 25, 22, 10, 12, 70, 12, 10, 22, 72cgratr 26609 . . . . . . 7 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → ⟨“𝐶𝐴𝐵”⟩(cgrA‘𝐺)⟨“𝐸𝐷𝑓”⟩)
742, 3, 21, 5, 16, 14, 15, 7, 9, 11, 65cgrane3 26600 . . . . . . . . . . 11 (𝜑𝐷𝐹)
7574necomd 3071 . . . . . . . . . 10 (𝜑𝐹𝐷)
762, 3, 5, 21, 7, 9, 11, 75, 66cgraswap 26606 . . . . . . . . 9 (𝜑 → ⟨“𝐹𝐷𝐸”⟩(cgrA‘𝐺)⟨“𝐸𝐷𝐹”⟩)
772, 3, 5, 21, 16, 14, 15, 7, 9, 11, 65, 11, 9, 7, 76cgratr 26609 . . . . . . . 8 (𝜑 → ⟨“𝐶𝐴𝐵”⟩(cgrA‘𝐺)⟨“𝐸𝐷𝐹”⟩)
7877ad2antrr 724 . . . . . . 7 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → ⟨“𝐶𝐴𝐵”⟩(cgrA‘𝐺)⟨“𝐸𝐷𝐹”⟩)
792, 3, 4, 5, 11, 9, 67tgelrnln 26416 . . . . . . . . 9 (𝜑 → (𝐸𝐿𝐷) ∈ ran 𝐿)
8079ad2antrr 724 . . . . . . . 8 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → (𝐸𝐿𝐷) ∈ ran 𝐿)
81 simpl 485 . . . . . . . . . . . 12 ((𝑎 = 𝑢𝑏 = 𝑣) → 𝑎 = 𝑢)
8281eleq1d 2897 . . . . . . . . . . 11 ((𝑎 = 𝑢𝑏 = 𝑣) → (𝑎 ∈ (𝑃 ∖ (𝐸𝐿𝐷)) ↔ 𝑢 ∈ (𝑃 ∖ (𝐸𝐿𝐷))))
83 simpr 487 . . . . . . . . . . . 12 ((𝑎 = 𝑢𝑏 = 𝑣) → 𝑏 = 𝑣)
8483eleq1d 2897 . . . . . . . . . . 11 ((𝑎 = 𝑢𝑏 = 𝑣) → (𝑏 ∈ (𝑃 ∖ (𝐸𝐿𝐷)) ↔ 𝑣 ∈ (𝑃 ∖ (𝐸𝐿𝐷))))
8582, 84anbi12d 632 . . . . . . . . . 10 ((𝑎 = 𝑢𝑏 = 𝑣) → ((𝑎 ∈ (𝑃 ∖ (𝐸𝐿𝐷)) ∧ 𝑏 ∈ (𝑃 ∖ (𝐸𝐿𝐷))) ↔ (𝑢 ∈ (𝑃 ∖ (𝐸𝐿𝐷)) ∧ 𝑣 ∈ (𝑃 ∖ (𝐸𝐿𝐷)))))
86 simpr 487 . . . . . . . . . . . 12 (((𝑎 = 𝑢𝑏 = 𝑣) ∧ 𝑡 = 𝑤) → 𝑡 = 𝑤)
87 simpll 765 . . . . . . . . . . . . 13 (((𝑎 = 𝑢𝑏 = 𝑣) ∧ 𝑡 = 𝑤) → 𝑎 = 𝑢)
88 simplr 767 . . . . . . . . . . . . 13 (((𝑎 = 𝑢𝑏 = 𝑣) ∧ 𝑡 = 𝑤) → 𝑏 = 𝑣)
8987, 88oveq12d 7174 . . . . . . . . . . . 12 (((𝑎 = 𝑢𝑏 = 𝑣) ∧ 𝑡 = 𝑤) → (𝑎𝐼𝑏) = (𝑢𝐼𝑣))
9086, 89eleq12d 2907 . . . . . . . . . . 11 (((𝑎 = 𝑢𝑏 = 𝑣) ∧ 𝑡 = 𝑤) → (𝑡 ∈ (𝑎𝐼𝑏) ↔ 𝑤 ∈ (𝑢𝐼𝑣)))
9190cbvrexdva 3460 . . . . . . . . . 10 ((𝑎 = 𝑢𝑏 = 𝑣) → (∃𝑡 ∈ (𝐸𝐿𝐷)𝑡 ∈ (𝑎𝐼𝑏) ↔ ∃𝑤 ∈ (𝐸𝐿𝐷)𝑤 ∈ (𝑢𝐼𝑣)))
9285, 91anbi12d 632 . . . . . . . . 9 ((𝑎 = 𝑢𝑏 = 𝑣) → (((𝑎 ∈ (𝑃 ∖ (𝐸𝐿𝐷)) ∧ 𝑏 ∈ (𝑃 ∖ (𝐸𝐿𝐷))) ∧ ∃𝑡 ∈ (𝐸𝐿𝐷)𝑡 ∈ (𝑎𝐼𝑏)) ↔ ((𝑢 ∈ (𝑃 ∖ (𝐸𝐿𝐷)) ∧ 𝑣 ∈ (𝑃 ∖ (𝐸𝐿𝐷))) ∧ ∃𝑤 ∈ (𝐸𝐿𝐷)𝑤 ∈ (𝑢𝐼𝑣))))
9392cbvopabv 5138 . . . . . . . 8 {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃 ∖ (𝐸𝐿𝐷)) ∧ 𝑏 ∈ (𝑃 ∖ (𝐸𝐿𝐷))) ∧ ∃𝑡 ∈ (𝐸𝐿𝐷)𝑡 ∈ (𝑎𝐼𝑏))} = {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ (𝑃 ∖ (𝐸𝐿𝐷)) ∧ 𝑣 ∈ (𝑃 ∖ (𝐸𝐿𝐷))) ∧ ∃𝑤 ∈ (𝐸𝐿𝐷)𝑤 ∈ (𝑢𝐼𝑣))}
942, 3, 4, 5, 11, 9, 67tglinerflx1 26419 . . . . . . . . . 10 (𝜑𝐸 ∈ (𝐸𝐿𝐷))
9594ad2antrr 724 . . . . . . . . 9 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝐸 ∈ (𝐸𝐿𝐷))
962, 4, 3, 5, 9, 11, 7, 19ncolcom 26347 . . . . . . . . . . 11 (𝜑 → ¬ (𝐹 ∈ (𝐸𝐿𝐷) ∨ 𝐸 = 𝐷))
97 pm2.45 878 . . . . . . . . . . 11 (¬ (𝐹 ∈ (𝐸𝐿𝐷) ∨ 𝐸 = 𝐷) → ¬ 𝐹 ∈ (𝐸𝐿𝐷))
9896, 97syl 17 . . . . . . . . . 10 (𝜑 → ¬ 𝐹 ∈ (𝐸𝐿𝐷))
9998ad2antrr 724 . . . . . . . . 9 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → ¬ 𝐹 ∈ (𝐸𝐿𝐷))
1002, 3, 21, 22, 8, 12, 6, 44hlcomd 26390 . . . . . . . . 9 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝐹((hlG‘𝐺)‘𝐸)𝑓)
1012, 3, 4, 6, 80, 12, 93, 21, 95, 8, 22, 99, 100hphl 26557 . . . . . . . 8 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝐹((hpG‘𝐺)‘(𝐸𝐿𝐷))𝑓)
1022, 3, 4, 6, 80, 8, 93, 22, 101hpgcom 26553 . . . . . . 7 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝑓((hpG‘𝐺)‘(𝐸𝐿𝐷))𝐹)
1032, 3, 4, 5, 79, 7, 93, 98hpgid 26552 . . . . . . . 8 (𝜑𝐹((hpG‘𝐺)‘(𝐸𝐿𝐷))𝐹)
104103ad2antrr 724 . . . . . . 7 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝐹((hpG‘𝐺)‘(𝐸𝐿𝐷))𝐹)
1052, 3, 13, 6, 23, 24, 25, 12, 10, 8, 4, 26, 41, 22, 8, 21, 73, 78, 102, 104acopyeu 26620 . . . . . 6 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝑓((hlG‘𝐺)‘𝐷)𝐹)
1062, 3, 21, 22, 8, 10, 6, 4, 105hlln 26393 . . . . 5 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝑓 ∈ (𝐹𝐿𝐷))
1072, 3, 4, 5, 7, 9, 75tglinerflx1 26419 . . . . . 6 (𝜑𝐹 ∈ (𝐹𝐿𝐷))
108107ad2antrr 724 . . . . 5 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝐹 ∈ (𝐹𝐿𝐷))
1092, 3, 21, 5, 14, 15, 16, 9, 11, 7, 17cgrane4 26601 . . . . . . 7 (𝜑𝐸𝐹)
110109ad2antrr 724 . . . . . 6 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝐸𝐹)
1112, 3, 21, 22, 8, 12, 6, 4, 44hlln 26393 . . . . . 6 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝑓 ∈ (𝐹𝐿𝐸))
1122, 3, 4, 6, 12, 8, 22, 110, 111lncom 26408 . . . . 5 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝑓 ∈ (𝐸𝐿𝐹))
1132, 3, 4, 6, 12, 8, 110tglinerflx2 26420 . . . . 5 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝐹 ∈ (𝐸𝐿𝐹))
1142, 3, 4, 6, 8, 10, 12, 8, 20, 106, 108, 112, 113tglineinteq 26431 . . . 4 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝑓 = 𝐹)
115114oveq2d 7172 . . 3 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → (𝐸 𝑓) = (𝐸 𝐹))
1161, 115eqtr3d 2858 . 2 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → (𝐵 𝐶) = (𝐸 𝐹))
117109necomd 3071 . . 3 (𝜑𝐹𝐸)
1182, 3, 21, 11, 15, 16, 5, 7, 13, 117, 49hlcgrex 26402 . 2 (𝜑 → ∃𝑓𝑃 (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶)))
119116, 118r19.29a 3289 1 (𝜑 → (𝐵 𝐶) = (𝐸 𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  wo 843   = wceq 1537  wcel 2114  wne 3016  wrex 3139  cdif 3933   class class class wbr 5066  {copab 5128  ran crn 5556  cfv 6355  (class class class)co 7156  ⟨“cs3 14204  Basecbs 16483  distcds 16574  TarskiGcstrkg 26216  Itvcitv 26222  LineGclng 26223  cgrGccgrg 26296  hlGchlg 26386  hpGchpg 26543  cgrAccgra 26593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-dju 9330  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-xnn0 11969  df-z 11983  df-uz 12245  df-fz 12894  df-fzo 13035  df-hash 13692  df-word 13863  df-concat 13923  df-s1 13950  df-s2 14210  df-s3 14211  df-trkgc 26234  df-trkgb 26235  df-trkgcb 26236  df-trkgld 26238  df-trkg 26239  df-cgrg 26297  df-leg 26369  df-hlg 26387  df-mir 26439  df-rag 26480  df-perpg 26482  df-hpg 26544  df-mid 26560  df-lmi 26561  df-cgra 26594
This theorem is referenced by:  tgasa  26645
  Copyright terms: Public domain W3C validator