MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgasa1 Structured version   Visualization version   GIF version

Theorem tgasa1 28838
Description: Second congruence theorem: ASA. (Angle-Side-Angle): If two pairs of angles of two triangles are equal in measurement, and the included sides are equal in length, then the triangles are congruent. Theorem 11.50 of [Schwabhauser] p. 108. (Contributed by Thierry Arnoux, 15-Aug-2020.)
Hypotheses
Ref Expression
tgsas.p 𝑃 = (Base‘𝐺)
tgsas.m = (dist‘𝐺)
tgsas.i 𝐼 = (Itv‘𝐺)
tgsas.g (𝜑𝐺 ∈ TarskiG)
tgsas.a (𝜑𝐴𝑃)
tgsas.b (𝜑𝐵𝑃)
tgsas.c (𝜑𝐶𝑃)
tgsas.d (𝜑𝐷𝑃)
tgsas.e (𝜑𝐸𝑃)
tgsas.f (𝜑𝐹𝑃)
tgasa.l 𝐿 = (LineG‘𝐺)
tgasa.1 (𝜑 → ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
tgasa.2 (𝜑 → (𝐴 𝐵) = (𝐷 𝐸))
tgasa.3 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
tgasa.4 (𝜑 → ⟨“𝐶𝐴𝐵”⟩(cgrA‘𝐺)⟨“𝐹𝐷𝐸”⟩)
Assertion
Ref Expression
tgasa1 (𝜑 → (𝐵 𝐶) = (𝐸 𝐹))

Proof of Theorem tgasa1
Dummy variables 𝑎 𝑏 𝑓 𝑤 𝑡 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprr 772 . . 3 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → (𝐸 𝑓) = (𝐵 𝐶))
2 tgsas.p . . . . 5 𝑃 = (Base‘𝐺)
3 tgsas.i . . . . 5 𝐼 = (Itv‘𝐺)
4 tgasa.l . . . . 5 𝐿 = (LineG‘𝐺)
5 tgsas.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
65ad2antrr 726 . . . . 5 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝐺 ∈ TarskiG)
7 tgsas.f . . . . . 6 (𝜑𝐹𝑃)
87ad2antrr 726 . . . . 5 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝐹𝑃)
9 tgsas.d . . . . . 6 (𝜑𝐷𝑃)
109ad2antrr 726 . . . . 5 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝐷𝑃)
11 tgsas.e . . . . . 6 (𝜑𝐸𝑃)
1211ad2antrr 726 . . . . 5 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝐸𝑃)
13 tgsas.m . . . . . . 7 = (dist‘𝐺)
14 tgsas.a . . . . . . 7 (𝜑𝐴𝑃)
15 tgsas.b . . . . . . 7 (𝜑𝐵𝑃)
16 tgsas.c . . . . . . 7 (𝜑𝐶𝑃)
17 tgasa.3 . . . . . . 7 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
18 tgasa.1 . . . . . . 7 (𝜑 → ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
192, 3, 13, 5, 14, 15, 16, 9, 11, 7, 17, 4, 18cgrancol 28809 . . . . . 6 (𝜑 → ¬ (𝐹 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸))
2019ad2antrr 726 . . . . 5 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → ¬ (𝐹 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸))
21 eqid 2729 . . . . . 6 (hlG‘𝐺) = (hlG‘𝐺)
22 simplr 768 . . . . . 6 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝑓𝑃)
2316ad2antrr 726 . . . . . . 7 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝐶𝑃)
2414ad2antrr 726 . . . . . . 7 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝐴𝑃)
2515ad2antrr 726 . . . . . . 7 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝐵𝑃)
2618ad2antrr 726 . . . . . . 7 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
275ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) ∧ (𝐸 ∈ (𝐷𝐿𝐹) ∨ 𝐷 = 𝐹)) → 𝐺 ∈ TarskiG)
289ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) ∧ (𝐸 ∈ (𝐷𝐿𝐹) ∨ 𝐷 = 𝐹)) → 𝐷𝑃)
2911ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) ∧ (𝐸 ∈ (𝐷𝐿𝐹) ∨ 𝐷 = 𝐹)) → 𝐸𝑃)
307ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) ∧ (𝐸 ∈ (𝐷𝐿𝐹) ∨ 𝐷 = 𝐹)) → 𝐹𝑃)
3114ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) ∧ (𝐸 ∈ (𝐷𝐿𝐹) ∨ 𝐷 = 𝐹)) → 𝐴𝑃)
3215ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) ∧ (𝐸 ∈ (𝐷𝐿𝐹) ∨ 𝐷 = 𝐹)) → 𝐵𝑃)
3316ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) ∧ (𝐸 ∈ (𝐷𝐿𝐹) ∨ 𝐷 = 𝐹)) → 𝐶𝑃)
342, 3, 5, 21, 14, 15, 16, 9, 11, 7, 17cgracom 28802 . . . . . . . . . 10 (𝜑 → ⟨“𝐷𝐸𝐹”⟩(cgrA‘𝐺)⟨“𝐴𝐵𝐶”⟩)
3534ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) ∧ (𝐸 ∈ (𝐷𝐿𝐹) ∨ 𝐷 = 𝐹)) → ⟨“𝐷𝐸𝐹”⟩(cgrA‘𝐺)⟨“𝐴𝐵𝐶”⟩)
36 simpr 484 . . . . . . . . . . 11 ((((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) ∧ (𝐸 ∈ (𝐷𝐿𝐹) ∨ 𝐷 = 𝐹)) → (𝐸 ∈ (𝐷𝐿𝐹) ∨ 𝐷 = 𝐹))
372, 4, 3, 27, 28, 30, 29, 36colcom 28538 . . . . . . . . . 10 ((((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) ∧ (𝐸 ∈ (𝐷𝐿𝐹) ∨ 𝐷 = 𝐹)) → (𝐸 ∈ (𝐹𝐿𝐷) ∨ 𝐹 = 𝐷))
382, 4, 3, 27, 30, 28, 29, 37colrot1 28539 . . . . . . . . 9 ((((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) ∧ (𝐸 ∈ (𝐷𝐿𝐹) ∨ 𝐷 = 𝐹)) → (𝐹 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸))
392, 3, 13, 27, 28, 29, 30, 31, 32, 33, 35, 4, 38cgracol 28808 . . . . . . . 8 ((((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) ∧ (𝐸 ∈ (𝐷𝐿𝐹) ∨ 𝐷 = 𝐹)) → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
4018ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) ∧ (𝐸 ∈ (𝐷𝐿𝐹) ∨ 𝐷 = 𝐹)) → ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
4139, 40pm2.65da 816 . . . . . . 7 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → ¬ (𝐸 ∈ (𝐷𝐿𝐹) ∨ 𝐷 = 𝐹))
42 eqid 2729 . . . . . . . . . 10 (cgrG‘𝐺) = (cgrG‘𝐺)
4317ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
44 simprl 770 . . . . . . . . . . . . 13 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝑓((hlG‘𝐺)‘𝐸)𝐹)
452, 3, 21, 6, 24, 25, 23, 10, 12, 8, 43, 22, 44cgrahl2 28797 . . . . . . . . . . . 12 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝑓”⟩)
462, 3, 21, 5, 14, 15, 16, 9, 11, 7, 17cgrane1 28792 . . . . . . . . . . . . . 14 (𝜑𝐴𝐵)
472, 3, 21, 14, 14, 15, 5, 46hlid 28589 . . . . . . . . . . . . 13 (𝜑𝐴((hlG‘𝐺)‘𝐵)𝐴)
4847ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝐴((hlG‘𝐺)‘𝐵)𝐴)
492, 3, 21, 5, 14, 15, 16, 9, 11, 7, 17cgrane2 28793 . . . . . . . . . . . . . . 15 (𝜑𝐵𝐶)
5049necomd 2980 . . . . . . . . . . . . . 14 (𝜑𝐶𝐵)
512, 3, 21, 16, 14, 15, 5, 50hlid 28589 . . . . . . . . . . . . 13 (𝜑𝐶((hlG‘𝐺)‘𝐵)𝐶)
5251ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝐶((hlG‘𝐺)‘𝐵)𝐶)
53 tgasa.2 . . . . . . . . . . . . . 14 (𝜑 → (𝐴 𝐵) = (𝐷 𝐸))
542, 13, 3, 5, 14, 15, 9, 11, 53tgcgrcomlr 28460 . . . . . . . . . . . . 13 (𝜑 → (𝐵 𝐴) = (𝐸 𝐷))
5554ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → (𝐵 𝐴) = (𝐸 𝐷))
561eqcomd 2735 . . . . . . . . . . . 12 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → (𝐵 𝐶) = (𝐸 𝑓))
572, 3, 21, 6, 24, 25, 23, 10, 12, 22, 45, 24, 13, 23, 48, 52, 55, 56cgracgr 28798 . . . . . . . . . . 11 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → (𝐴 𝐶) = (𝐷 𝑓))
582, 13, 3, 6, 24, 23, 10, 22, 57tgcgrcomlr 28460 . . . . . . . . . 10 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → (𝐶 𝐴) = (𝑓 𝐷))
5953ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → (𝐴 𝐵) = (𝐷 𝐸))
602, 13, 42, 6, 23, 24, 25, 22, 10, 12, 58, 59, 56trgcgr 28496 . . . . . . . . 9 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → ⟨“𝐶𝐴𝐵”⟩(cgrG‘𝐺)⟨“𝑓𝐷𝐸”⟩)
612, 3, 4, 5, 16, 14, 15, 18ncolne1 28605 . . . . . . . . . . . 12 (𝜑𝐶𝐴)
6261ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝐶𝐴)
632, 13, 3, 6, 23, 24, 22, 10, 58, 62tgcgrneq 28463 . . . . . . . . . 10 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝑓𝐷)
642, 3, 21, 22, 8, 10, 6, 63hlid 28589 . . . . . . . . 9 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝑓((hlG‘𝐺)‘𝐷)𝑓)
65 tgasa.4 . . . . . . . . . . . . 13 (𝜑 → ⟨“𝐶𝐴𝐵”⟩(cgrA‘𝐺)⟨“𝐹𝐷𝐸”⟩)
662, 3, 21, 5, 16, 14, 15, 7, 9, 11, 65cgrane4 28795 . . . . . . . . . . . 12 (𝜑𝐷𝐸)
6766necomd 2980 . . . . . . . . . . 11 (𝜑𝐸𝐷)
682, 3, 21, 11, 14, 9, 5, 67hlid 28589 . . . . . . . . . 10 (𝜑𝐸((hlG‘𝐺)‘𝐷)𝐸)
6968ad2antrr 726 . . . . . . . . 9 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝐸((hlG‘𝐺)‘𝐷)𝐸)
702, 3, 21, 6, 23, 24, 25, 22, 10, 12, 22, 12, 60, 64, 69iscgrad 28791 . . . . . . . 8 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → ⟨“𝐶𝐴𝐵”⟩(cgrA‘𝐺)⟨“𝑓𝐷𝐸”⟩)
7166ad2antrr 726 . . . . . . . . 9 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝐷𝐸)
722, 3, 6, 21, 22, 10, 12, 63, 71cgraswap 28800 . . . . . . . 8 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → ⟨“𝑓𝐷𝐸”⟩(cgrA‘𝐺)⟨“𝐸𝐷𝑓”⟩)
732, 3, 6, 21, 23, 24, 25, 22, 10, 12, 70, 12, 10, 22, 72cgratr 28803 . . . . . . 7 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → ⟨“𝐶𝐴𝐵”⟩(cgrA‘𝐺)⟨“𝐸𝐷𝑓”⟩)
742, 3, 21, 5, 16, 14, 15, 7, 9, 11, 65cgrane3 28794 . . . . . . . . . . 11 (𝜑𝐷𝐹)
7574necomd 2980 . . . . . . . . . 10 (𝜑𝐹𝐷)
762, 3, 5, 21, 7, 9, 11, 75, 66cgraswap 28800 . . . . . . . . 9 (𝜑 → ⟨“𝐹𝐷𝐸”⟩(cgrA‘𝐺)⟨“𝐸𝐷𝐹”⟩)
772, 3, 5, 21, 16, 14, 15, 7, 9, 11, 65, 11, 9, 7, 76cgratr 28803 . . . . . . . 8 (𝜑 → ⟨“𝐶𝐴𝐵”⟩(cgrA‘𝐺)⟨“𝐸𝐷𝐹”⟩)
7877ad2antrr 726 . . . . . . 7 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → ⟨“𝐶𝐴𝐵”⟩(cgrA‘𝐺)⟨“𝐸𝐷𝐹”⟩)
792, 3, 4, 5, 11, 9, 67tgelrnln 28610 . . . . . . . . 9 (𝜑 → (𝐸𝐿𝐷) ∈ ran 𝐿)
8079ad2antrr 726 . . . . . . . 8 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → (𝐸𝐿𝐷) ∈ ran 𝐿)
81 simpl 482 . . . . . . . . . . . 12 ((𝑎 = 𝑢𝑏 = 𝑣) → 𝑎 = 𝑢)
8281eleq1d 2813 . . . . . . . . . . 11 ((𝑎 = 𝑢𝑏 = 𝑣) → (𝑎 ∈ (𝑃 ∖ (𝐸𝐿𝐷)) ↔ 𝑢 ∈ (𝑃 ∖ (𝐸𝐿𝐷))))
83 simpr 484 . . . . . . . . . . . 12 ((𝑎 = 𝑢𝑏 = 𝑣) → 𝑏 = 𝑣)
8483eleq1d 2813 . . . . . . . . . . 11 ((𝑎 = 𝑢𝑏 = 𝑣) → (𝑏 ∈ (𝑃 ∖ (𝐸𝐿𝐷)) ↔ 𝑣 ∈ (𝑃 ∖ (𝐸𝐿𝐷))))
8582, 84anbi12d 632 . . . . . . . . . 10 ((𝑎 = 𝑢𝑏 = 𝑣) → ((𝑎 ∈ (𝑃 ∖ (𝐸𝐿𝐷)) ∧ 𝑏 ∈ (𝑃 ∖ (𝐸𝐿𝐷))) ↔ (𝑢 ∈ (𝑃 ∖ (𝐸𝐿𝐷)) ∧ 𝑣 ∈ (𝑃 ∖ (𝐸𝐿𝐷)))))
86 simpr 484 . . . . . . . . . . . 12 (((𝑎 = 𝑢𝑏 = 𝑣) ∧ 𝑡 = 𝑤) → 𝑡 = 𝑤)
87 simpll 766 . . . . . . . . . . . . 13 (((𝑎 = 𝑢𝑏 = 𝑣) ∧ 𝑡 = 𝑤) → 𝑎 = 𝑢)
88 simplr 768 . . . . . . . . . . . . 13 (((𝑎 = 𝑢𝑏 = 𝑣) ∧ 𝑡 = 𝑤) → 𝑏 = 𝑣)
8987, 88oveq12d 7387 . . . . . . . . . . . 12 (((𝑎 = 𝑢𝑏 = 𝑣) ∧ 𝑡 = 𝑤) → (𝑎𝐼𝑏) = (𝑢𝐼𝑣))
9086, 89eleq12d 2822 . . . . . . . . . . 11 (((𝑎 = 𝑢𝑏 = 𝑣) ∧ 𝑡 = 𝑤) → (𝑡 ∈ (𝑎𝐼𝑏) ↔ 𝑤 ∈ (𝑢𝐼𝑣)))
9190cbvrexdva 3216 . . . . . . . . . 10 ((𝑎 = 𝑢𝑏 = 𝑣) → (∃𝑡 ∈ (𝐸𝐿𝐷)𝑡 ∈ (𝑎𝐼𝑏) ↔ ∃𝑤 ∈ (𝐸𝐿𝐷)𝑤 ∈ (𝑢𝐼𝑣)))
9285, 91anbi12d 632 . . . . . . . . 9 ((𝑎 = 𝑢𝑏 = 𝑣) → (((𝑎 ∈ (𝑃 ∖ (𝐸𝐿𝐷)) ∧ 𝑏 ∈ (𝑃 ∖ (𝐸𝐿𝐷))) ∧ ∃𝑡 ∈ (𝐸𝐿𝐷)𝑡 ∈ (𝑎𝐼𝑏)) ↔ ((𝑢 ∈ (𝑃 ∖ (𝐸𝐿𝐷)) ∧ 𝑣 ∈ (𝑃 ∖ (𝐸𝐿𝐷))) ∧ ∃𝑤 ∈ (𝐸𝐿𝐷)𝑤 ∈ (𝑢𝐼𝑣))))
9392cbvopabv 5175 . . . . . . . 8 {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃 ∖ (𝐸𝐿𝐷)) ∧ 𝑏 ∈ (𝑃 ∖ (𝐸𝐿𝐷))) ∧ ∃𝑡 ∈ (𝐸𝐿𝐷)𝑡 ∈ (𝑎𝐼𝑏))} = {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ (𝑃 ∖ (𝐸𝐿𝐷)) ∧ 𝑣 ∈ (𝑃 ∖ (𝐸𝐿𝐷))) ∧ ∃𝑤 ∈ (𝐸𝐿𝐷)𝑤 ∈ (𝑢𝐼𝑣))}
942, 3, 4, 5, 11, 9, 67tglinerflx1 28613 . . . . . . . . . 10 (𝜑𝐸 ∈ (𝐸𝐿𝐷))
9594ad2antrr 726 . . . . . . . . 9 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝐸 ∈ (𝐸𝐿𝐷))
962, 4, 3, 5, 9, 11, 7, 19ncolcom 28541 . . . . . . . . . . 11 (𝜑 → ¬ (𝐹 ∈ (𝐸𝐿𝐷) ∨ 𝐸 = 𝐷))
97 pm2.45 881 . . . . . . . . . . 11 (¬ (𝐹 ∈ (𝐸𝐿𝐷) ∨ 𝐸 = 𝐷) → ¬ 𝐹 ∈ (𝐸𝐿𝐷))
9896, 97syl 17 . . . . . . . . . 10 (𝜑 → ¬ 𝐹 ∈ (𝐸𝐿𝐷))
9998ad2antrr 726 . . . . . . . . 9 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → ¬ 𝐹 ∈ (𝐸𝐿𝐷))
1002, 3, 21, 22, 8, 12, 6, 44hlcomd 28584 . . . . . . . . 9 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝐹((hlG‘𝐺)‘𝐸)𝑓)
1012, 3, 4, 6, 80, 12, 93, 21, 95, 8, 22, 99, 100hphl 28751 . . . . . . . 8 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝐹((hpG‘𝐺)‘(𝐸𝐿𝐷))𝑓)
1022, 3, 4, 6, 80, 8, 93, 22, 101hpgcom 28747 . . . . . . 7 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝑓((hpG‘𝐺)‘(𝐸𝐿𝐷))𝐹)
1032, 3, 4, 5, 79, 7, 93, 98hpgid 28746 . . . . . . . 8 (𝜑𝐹((hpG‘𝐺)‘(𝐸𝐿𝐷))𝐹)
104103ad2antrr 726 . . . . . . 7 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝐹((hpG‘𝐺)‘(𝐸𝐿𝐷))𝐹)
1052, 3, 13, 6, 23, 24, 25, 12, 10, 8, 4, 26, 41, 22, 8, 21, 73, 78, 102, 104acopyeu 28814 . . . . . 6 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝑓((hlG‘𝐺)‘𝐷)𝐹)
1062, 3, 21, 22, 8, 10, 6, 4, 105hlln 28587 . . . . 5 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝑓 ∈ (𝐹𝐿𝐷))
1072, 3, 4, 5, 7, 9, 75tglinerflx1 28613 . . . . . 6 (𝜑𝐹 ∈ (𝐹𝐿𝐷))
108107ad2antrr 726 . . . . 5 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝐹 ∈ (𝐹𝐿𝐷))
1092, 3, 21, 5, 14, 15, 16, 9, 11, 7, 17cgrane4 28795 . . . . . . 7 (𝜑𝐸𝐹)
110109ad2antrr 726 . . . . . 6 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝐸𝐹)
1112, 3, 21, 22, 8, 12, 6, 4, 44hlln 28587 . . . . . 6 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝑓 ∈ (𝐹𝐿𝐸))
1122, 3, 4, 6, 12, 8, 22, 110, 111lncom 28602 . . . . 5 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝑓 ∈ (𝐸𝐿𝐹))
1132, 3, 4, 6, 12, 8, 110tglinerflx2 28614 . . . . 5 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝐹 ∈ (𝐸𝐿𝐹))
1142, 3, 4, 6, 8, 10, 12, 8, 20, 106, 108, 112, 113tglineinteq 28625 . . . 4 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → 𝑓 = 𝐹)
115114oveq2d 7385 . . 3 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → (𝐸 𝑓) = (𝐸 𝐹))
1161, 115eqtr3d 2766 . 2 (((𝜑𝑓𝑃) ∧ (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶))) → (𝐵 𝐶) = (𝐸 𝐹))
117109necomd 2980 . . 3 (𝜑𝐹𝐸)
1182, 3, 21, 11, 15, 16, 5, 7, 13, 117, 49hlcgrex 28596 . 2 (𝜑 → ∃𝑓𝑃 (𝑓((hlG‘𝐺)‘𝐸)𝐹 ∧ (𝐸 𝑓) = (𝐵 𝐶)))
119116, 118r19.29a 3141 1 (𝜑 → (𝐵 𝐶) = (𝐸 𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  wrex 3053  cdif 3908   class class class wbr 5102  {copab 5164  ran crn 5632  cfv 6499  (class class class)co 7369  ⟨“cs3 14784  Basecbs 17155  distcds 17205  TarskiGcstrkg 28407  Itvcitv 28413  LineGclng 28414  cgrGccgrg 28490  hlGchlg 28580  hpGchpg 28737  cgrAccgra 28787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-oadd 8415  df-er 8648  df-map 8778  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-xnn0 12492  df-z 12506  df-uz 12770  df-fz 13445  df-fzo 13592  df-hash 14272  df-word 14455  df-concat 14512  df-s1 14537  df-s2 14790  df-s3 14791  df-trkgc 28428  df-trkgb 28429  df-trkgcb 28430  df-trkgld 28432  df-trkg 28433  df-cgrg 28491  df-leg 28563  df-hlg 28581  df-mir 28633  df-rag 28674  df-perpg 28676  df-hpg 28738  df-mid 28754  df-lmi 28755  df-cgra 28788
This theorem is referenced by:  tgasa  28839
  Copyright terms: Public domain W3C validator