| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > prjsprel | Structured version Visualization version GIF version | ||
| Description: Utility theorem regarding the relation used in ℙ𝕣𝕠𝕛. (Contributed by Steven Nguyen, 29-Apr-2023.) |
| Ref | Expression |
|---|---|
| prjsprel.1 | ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦))} |
| Ref | Expression |
|---|---|
| prjsprel | ⊢ (𝑋 ∼ 𝑌 ↔ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ∃𝑚 ∈ 𝐾 𝑋 = (𝑚 · 𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 766 | . . . 4 ⊢ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) ∧ 𝑙 = 𝑚) → 𝑥 = 𝑋) | |
| 2 | simpr 484 | . . . . 5 ⊢ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) ∧ 𝑙 = 𝑚) → 𝑙 = 𝑚) | |
| 3 | simplr 768 | . . . . 5 ⊢ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) ∧ 𝑙 = 𝑚) → 𝑦 = 𝑌) | |
| 4 | 2, 3 | oveq12d 7407 | . . . 4 ⊢ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) ∧ 𝑙 = 𝑚) → (𝑙 · 𝑦) = (𝑚 · 𝑌)) |
| 5 | 1, 4 | eqeq12d 2746 | . . 3 ⊢ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) ∧ 𝑙 = 𝑚) → (𝑥 = (𝑙 · 𝑦) ↔ 𝑋 = (𝑚 · 𝑌))) |
| 6 | 5 | cbvrexdva 3219 | . 2 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦) ↔ ∃𝑚 ∈ 𝐾 𝑋 = (𝑚 · 𝑌))) |
| 7 | prjsprel.1 | . 2 ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦))} | |
| 8 | 6, 7 | brab2a 5734 | 1 ⊢ (𝑋 ∼ 𝑌 ↔ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ∃𝑚 ∈ 𝐾 𝑋 = (𝑚 · 𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3054 class class class wbr 5109 {copab 5171 (class class class)co 7389 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-xp 5646 df-iota 6466 df-fv 6521 df-ov 7392 |
| This theorem is referenced by: prjspertr 42586 prjsperref 42587 prjspersym 42588 prjspreln0 42590 prjspvs 42591 prjspner1 42607 0prjspnrel 42608 |
| Copyright terms: Public domain | W3C validator |