Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prjsprel Structured version   Visualization version   GIF version

Theorem prjsprel 42722
Description: Utility theorem regarding the relation used in ℙ𝕣𝕠𝕛. (Contributed by Steven Nguyen, 29-Apr-2023.)
Hypothesis
Ref Expression
prjsprel.1 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
Assertion
Ref Expression
prjsprel (𝑋 𝑌 ↔ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝐾 𝑋 = (𝑚 · 𝑌)))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑋,𝑦,𝑙,𝑚   𝑥,𝑌,𝑦,𝑙,𝑚   𝑥,𝐾,𝑦,𝑙,𝑚   𝑥, · ,𝑦,𝑙,𝑚
Allowed substitution hints:   𝐵(𝑚,𝑙)   (𝑥,𝑦,𝑚,𝑙)

Proof of Theorem prjsprel
StepHypRef Expression
1 simpll 766 . . . 4 (((𝑥 = 𝑋𝑦 = 𝑌) ∧ 𝑙 = 𝑚) → 𝑥 = 𝑋)
2 simpr 484 . . . . 5 (((𝑥 = 𝑋𝑦 = 𝑌) ∧ 𝑙 = 𝑚) → 𝑙 = 𝑚)
3 simplr 768 . . . . 5 (((𝑥 = 𝑋𝑦 = 𝑌) ∧ 𝑙 = 𝑚) → 𝑦 = 𝑌)
42, 3oveq12d 7370 . . . 4 (((𝑥 = 𝑋𝑦 = 𝑌) ∧ 𝑙 = 𝑚) → (𝑙 · 𝑦) = (𝑚 · 𝑌))
51, 4eqeq12d 2749 . . 3 (((𝑥 = 𝑋𝑦 = 𝑌) ∧ 𝑙 = 𝑚) → (𝑥 = (𝑙 · 𝑦) ↔ 𝑋 = (𝑚 · 𝑌)))
65cbvrexdva 3214 . 2 ((𝑥 = 𝑋𝑦 = 𝑌) → (∃𝑙𝐾 𝑥 = (𝑙 · 𝑦) ↔ ∃𝑚𝐾 𝑋 = (𝑚 · 𝑌)))
7 prjsprel.1 . 2 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
86, 7brab2a 5712 1 (𝑋 𝑌 ↔ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝐾 𝑋 = (𝑚 · 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2113  wrex 3057   class class class wbr 5093  {copab 5155  (class class class)co 7352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-xp 5625  df-iota 6442  df-fv 6494  df-ov 7355
This theorem is referenced by:  prjspertr  42723  prjsperref  42724  prjspersym  42725  prjspreln0  42727  prjspvs  42728  prjspner1  42744  0prjspnrel  42745
  Copyright terms: Public domain W3C validator