Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prjsprel Structured version   Visualization version   GIF version

Theorem prjsprel 40443
Description: Utility theorem regarding the relation used in ℙ𝕣𝕠𝕛. (Contributed by Steven Nguyen, 29-Apr-2023.)
Hypothesis
Ref Expression
prjsprel.1 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
Assertion
Ref Expression
prjsprel (𝑋 𝑌 ↔ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝐾 𝑋 = (𝑚 · 𝑌)))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑋,𝑦,𝑙,𝑚   𝑥,𝑌,𝑦,𝑙,𝑚   𝑥,𝐾,𝑦,𝑙,𝑚   𝑥, · ,𝑦,𝑙,𝑚
Allowed substitution hints:   𝐵(𝑚,𝑙)   (𝑥,𝑦,𝑚,𝑙)

Proof of Theorem prjsprel
StepHypRef Expression
1 simpll 764 . . . 4 (((𝑥 = 𝑋𝑦 = 𝑌) ∧ 𝑙 = 𝑚) → 𝑥 = 𝑋)
2 simpr 485 . . . . 5 (((𝑥 = 𝑋𝑦 = 𝑌) ∧ 𝑙 = 𝑚) → 𝑙 = 𝑚)
3 simplr 766 . . . . 5 (((𝑥 = 𝑋𝑦 = 𝑌) ∧ 𝑙 = 𝑚) → 𝑦 = 𝑌)
42, 3oveq12d 7293 . . . 4 (((𝑥 = 𝑋𝑦 = 𝑌) ∧ 𝑙 = 𝑚) → (𝑙 · 𝑦) = (𝑚 · 𝑌))
51, 4eqeq12d 2754 . . 3 (((𝑥 = 𝑋𝑦 = 𝑌) ∧ 𝑙 = 𝑚) → (𝑥 = (𝑙 · 𝑦) ↔ 𝑋 = (𝑚 · 𝑌)))
65cbvrexdva 3395 . 2 ((𝑥 = 𝑋𝑦 = 𝑌) → (∃𝑙𝐾 𝑥 = (𝑙 · 𝑦) ↔ ∃𝑚𝐾 𝑋 = (𝑚 · 𝑌)))
7 prjsprel.1 . 2 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
86, 7brab2a 5680 1 (𝑋 𝑌 ↔ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝐾 𝑋 = (𝑚 · 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1539  wcel 2106  wrex 3065   class class class wbr 5074  {copab 5136  (class class class)co 7275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-xp 5595  df-iota 6391  df-fv 6441  df-ov 7278
This theorem is referenced by:  prjspertr  40444  prjsperref  40445  prjspersym  40446  prjspreln0  40448  prjspvs  40449  prjspner1  40463  0prjspnrel  40464
  Copyright terms: Public domain W3C validator