Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prjsprel Structured version   Visualization version   GIF version

Theorem prjsprel 42577
Description: Utility theorem regarding the relation used in ℙ𝕣𝕠𝕛. (Contributed by Steven Nguyen, 29-Apr-2023.)
Hypothesis
Ref Expression
prjsprel.1 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
Assertion
Ref Expression
prjsprel (𝑋 𝑌 ↔ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝐾 𝑋 = (𝑚 · 𝑌)))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑋,𝑦,𝑙,𝑚   𝑥,𝑌,𝑦,𝑙,𝑚   𝑥,𝐾,𝑦,𝑙,𝑚   𝑥, · ,𝑦,𝑙,𝑚
Allowed substitution hints:   𝐵(𝑚,𝑙)   (𝑥,𝑦,𝑚,𝑙)

Proof of Theorem prjsprel
StepHypRef Expression
1 simpll 766 . . . 4 (((𝑥 = 𝑋𝑦 = 𝑌) ∧ 𝑙 = 𝑚) → 𝑥 = 𝑋)
2 simpr 484 . . . . 5 (((𝑥 = 𝑋𝑦 = 𝑌) ∧ 𝑙 = 𝑚) → 𝑙 = 𝑚)
3 simplr 768 . . . . 5 (((𝑥 = 𝑋𝑦 = 𝑌) ∧ 𝑙 = 𝑚) → 𝑦 = 𝑌)
42, 3oveq12d 7431 . . . 4 (((𝑥 = 𝑋𝑦 = 𝑌) ∧ 𝑙 = 𝑚) → (𝑙 · 𝑦) = (𝑚 · 𝑌))
51, 4eqeq12d 2750 . . 3 (((𝑥 = 𝑋𝑦 = 𝑌) ∧ 𝑙 = 𝑚) → (𝑥 = (𝑙 · 𝑦) ↔ 𝑋 = (𝑚 · 𝑌)))
65cbvrexdva 3226 . 2 ((𝑥 = 𝑋𝑦 = 𝑌) → (∃𝑙𝐾 𝑥 = (𝑙 · 𝑦) ↔ ∃𝑚𝐾 𝑋 = (𝑚 · 𝑌)))
7 prjsprel.1 . 2 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
86, 7brab2a 5759 1 (𝑋 𝑌 ↔ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝐾 𝑋 = (𝑚 · 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1539  wcel 2107  wrex 3059   class class class wbr 5123  {copab 5185  (class class class)co 7413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-xp 5671  df-iota 6494  df-fv 6549  df-ov 7416
This theorem is referenced by:  prjspertr  42578  prjsperref  42579  prjspersym  42580  prjspreln0  42582  prjspvs  42583  prjspner1  42599  0prjspnrel  42600
  Copyright terms: Public domain W3C validator