![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > prjsprel | Structured version Visualization version GIF version |
Description: Utility theorem regarding the relation used in ℙ𝕣𝕠𝕛. (Contributed by Steven Nguyen, 29-Apr-2023.) |
Ref | Expression |
---|---|
prjsprel.1 | ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦))} |
Ref | Expression |
---|---|
prjsprel | ⊢ (𝑋 ∼ 𝑌 ↔ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ∃𝑚 ∈ 𝐾 𝑋 = (𝑚 · 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 766 | . . . 4 ⊢ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) ∧ 𝑙 = 𝑚) → 𝑥 = 𝑋) | |
2 | simpr 484 | . . . . 5 ⊢ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) ∧ 𝑙 = 𝑚) → 𝑙 = 𝑚) | |
3 | simplr 768 | . . . . 5 ⊢ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) ∧ 𝑙 = 𝑚) → 𝑦 = 𝑌) | |
4 | 2, 3 | oveq12d 7463 | . . . 4 ⊢ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) ∧ 𝑙 = 𝑚) → (𝑙 · 𝑦) = (𝑚 · 𝑌)) |
5 | 1, 4 | eqeq12d 2750 | . . 3 ⊢ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) ∧ 𝑙 = 𝑚) → (𝑥 = (𝑙 · 𝑦) ↔ 𝑋 = (𝑚 · 𝑌))) |
6 | 5 | cbvrexdva 3241 | . 2 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦) ↔ ∃𝑚 ∈ 𝐾 𝑋 = (𝑚 · 𝑌))) |
7 | prjsprel.1 | . 2 ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦))} | |
8 | 6, 7 | brab2a 5792 | 1 ⊢ (𝑋 ∼ 𝑌 ↔ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ∃𝑚 ∈ 𝐾 𝑋 = (𝑚 · 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2103 ∃wrex 3072 class class class wbr 5169 {copab 5231 (class class class)co 7445 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2105 ax-9 2113 ax-ext 2705 ax-sep 5320 ax-nul 5327 ax-pr 5450 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2712 df-cleq 2726 df-clel 2813 df-ral 3064 df-rex 3073 df-rab 3439 df-v 3484 df-dif 3973 df-un 3975 df-ss 3987 df-nul 4348 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5170 df-opab 5232 df-xp 5705 df-iota 6524 df-fv 6580 df-ov 7448 |
This theorem is referenced by: prjspertr 42494 prjsperref 42495 prjspersym 42496 prjspreln0 42498 prjspvs 42499 prjspner1 42515 0prjspnrel 42516 |
Copyright terms: Public domain | W3C validator |