Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > prjsprel | Structured version Visualization version GIF version |
Description: Utility theorem regarding the relation used in ℙ𝕣𝕠𝕛. (Contributed by Steven Nguyen, 29-Apr-2023.) |
Ref | Expression |
---|---|
prjsprel.1 | ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦))} |
Ref | Expression |
---|---|
prjsprel | ⊢ (𝑋 ∼ 𝑌 ↔ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ∃𝑚 ∈ 𝐾 𝑋 = (𝑚 · 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 764 | . . . 4 ⊢ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) ∧ 𝑙 = 𝑚) → 𝑥 = 𝑋) | |
2 | simpr 485 | . . . . 5 ⊢ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) ∧ 𝑙 = 𝑚) → 𝑙 = 𝑚) | |
3 | simplr 766 | . . . . 5 ⊢ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) ∧ 𝑙 = 𝑚) → 𝑦 = 𝑌) | |
4 | 2, 3 | oveq12d 7293 | . . . 4 ⊢ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) ∧ 𝑙 = 𝑚) → (𝑙 · 𝑦) = (𝑚 · 𝑌)) |
5 | 1, 4 | eqeq12d 2754 | . . 3 ⊢ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) ∧ 𝑙 = 𝑚) → (𝑥 = (𝑙 · 𝑦) ↔ 𝑋 = (𝑚 · 𝑌))) |
6 | 5 | cbvrexdva 3395 | . 2 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦) ↔ ∃𝑚 ∈ 𝐾 𝑋 = (𝑚 · 𝑌))) |
7 | prjsprel.1 | . 2 ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦))} | |
8 | 6, 7 | brab2a 5680 | 1 ⊢ (𝑋 ∼ 𝑌 ↔ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ∃𝑚 ∈ 𝐾 𝑋 = (𝑚 · 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∃wrex 3065 class class class wbr 5074 {copab 5136 (class class class)co 7275 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-xp 5595 df-iota 6391 df-fv 6441 df-ov 7278 |
This theorem is referenced by: prjspertr 40444 prjsperref 40445 prjspersym 40446 prjspreln0 40448 prjspvs 40449 prjspner1 40463 0prjspnrel 40464 |
Copyright terms: Public domain | W3C validator |