![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > prjsprel | Structured version Visualization version GIF version |
Description: Utility theorem regarding the relation used in ℙ𝕣𝕠𝕛. (Contributed by Steven Nguyen, 29-Apr-2023.) |
Ref | Expression |
---|---|
prjsprel.1 | ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦))} |
Ref | Expression |
---|---|
prjsprel | ⊢ (𝑋 ∼ 𝑌 ↔ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ∃𝑚 ∈ 𝐾 𝑋 = (𝑚 · 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 764 | . . . 4 ⊢ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) ∧ 𝑙 = 𝑚) → 𝑥 = 𝑋) | |
2 | simpr 485 | . . . . 5 ⊢ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) ∧ 𝑙 = 𝑚) → 𝑙 = 𝑚) | |
3 | simplr 766 | . . . . 5 ⊢ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) ∧ 𝑙 = 𝑚) → 𝑦 = 𝑌) | |
4 | 2, 3 | oveq12d 7347 | . . . 4 ⊢ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) ∧ 𝑙 = 𝑚) → (𝑙 · 𝑦) = (𝑚 · 𝑌)) |
5 | 1, 4 | eqeq12d 2752 | . . 3 ⊢ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) ∧ 𝑙 = 𝑚) → (𝑥 = (𝑙 · 𝑦) ↔ 𝑋 = (𝑚 · 𝑌))) |
6 | 5 | cbvrexdva 3323 | . 2 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦) ↔ ∃𝑚 ∈ 𝐾 𝑋 = (𝑚 · 𝑌))) |
7 | prjsprel.1 | . 2 ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦))} | |
8 | 6, 7 | brab2a 5705 | 1 ⊢ (𝑋 ∼ 𝑌 ↔ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ∃𝑚 ∈ 𝐾 𝑋 = (𝑚 · 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∃wrex 3070 class class class wbr 5089 {copab 5151 (class class class)co 7329 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pr 5369 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-br 5090 df-opab 5152 df-xp 5620 df-iota 6425 df-fv 6481 df-ov 7332 |
This theorem is referenced by: prjspertr 40694 prjsperref 40695 prjspersym 40696 prjspreln0 40698 prjspvs 40699 prjspner1 40713 0prjspnrel 40714 |
Copyright terms: Public domain | W3C validator |