MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trgcopyeu Structured version   Visualization version   GIF version

Theorem trgcopyeu 28815
Description: Triangle construction: a copy of a given triangle can always be constructed in such a way that one side is lying on a half-line, and the third vertex is on a given half-plane: uniqueness part. Second part of Theorem 10.16 of [Schwabhauser] p. 92. (Contributed by Thierry Arnoux, 8-Aug-2020.)
Hypotheses
Ref Expression
trgcopy.p 𝑃 = (Base‘𝐺)
trgcopy.m = (dist‘𝐺)
trgcopy.i 𝐼 = (Itv‘𝐺)
trgcopy.l 𝐿 = (LineG‘𝐺)
trgcopy.k 𝐾 = (hlG‘𝐺)
trgcopy.g (𝜑𝐺 ∈ TarskiG)
trgcopy.a (𝜑𝐴𝑃)
trgcopy.b (𝜑𝐵𝑃)
trgcopy.c (𝜑𝐶𝑃)
trgcopy.d (𝜑𝐷𝑃)
trgcopy.e (𝜑𝐸𝑃)
trgcopy.f (𝜑𝐹𝑃)
trgcopy.1 (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
trgcopy.2 (𝜑 → ¬ (𝐷 ∈ (𝐸𝐿𝐹) ∨ 𝐸 = 𝐹))
trgcopy.3 (𝜑 → (𝐴 𝐵) = (𝐷 𝐸))
Assertion
Ref Expression
trgcopyeu (𝜑 → ∃!𝑓𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹))
Distinct variable groups:   ,𝑓   𝐴,𝑓   𝐵,𝑓   𝐶,𝑓   𝐷,𝑓   𝑓,𝐸   𝑓,𝐹   𝑓,𝐺   𝑓,𝐼   𝑓,𝐿   𝑃,𝑓   𝜑,𝑓   𝑓,𝐾

Proof of Theorem trgcopyeu
Dummy variables 𝑎 𝑏 𝑘 𝑡 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 trgcopy.p . . 3 𝑃 = (Base‘𝐺)
2 trgcopy.m . . 3 = (dist‘𝐺)
3 trgcopy.i . . 3 𝐼 = (Itv‘𝐺)
4 trgcopy.l . . 3 𝐿 = (LineG‘𝐺)
5 trgcopy.k . . 3 𝐾 = (hlG‘𝐺)
6 trgcopy.g . . 3 (𝜑𝐺 ∈ TarskiG)
7 trgcopy.a . . 3 (𝜑𝐴𝑃)
8 trgcopy.b . . 3 (𝜑𝐵𝑃)
9 trgcopy.c . . 3 (𝜑𝐶𝑃)
10 trgcopy.d . . 3 (𝜑𝐷𝑃)
11 trgcopy.e . . 3 (𝜑𝐸𝑃)
12 trgcopy.f . . 3 (𝜑𝐹𝑃)
13 trgcopy.1 . . 3 (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
14 trgcopy.2 . . 3 (𝜑 → ¬ (𝐷 ∈ (𝐸𝐿𝐹) ∨ 𝐸 = 𝐹))
15 trgcopy.3 . . 3 (𝜑 → (𝐴 𝐵) = (𝐷 𝐸))
161, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15trgcopy 28813 . 2 (𝜑 → ∃𝑓𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹))
176ad5antr 734 . . . . . . 7 ((((((𝜑𝑓𝑃) ∧ 𝑘𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑘”⟩) ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) → 𝐺 ∈ TarskiG)
187ad5antr 734 . . . . . . 7 ((((((𝜑𝑓𝑃) ∧ 𝑘𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑘”⟩) ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) → 𝐴𝑃)
198ad5antr 734 . . . . . . 7 ((((((𝜑𝑓𝑃) ∧ 𝑘𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑘”⟩) ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) → 𝐵𝑃)
209ad5antr 734 . . . . . . 7 ((((((𝜑𝑓𝑃) ∧ 𝑘𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑘”⟩) ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) → 𝐶𝑃)
2110ad5antr 734 . . . . . . 7 ((((((𝜑𝑓𝑃) ∧ 𝑘𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑘”⟩) ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) → 𝐷𝑃)
2211ad5antr 734 . . . . . . 7 ((((((𝜑𝑓𝑃) ∧ 𝑘𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑘”⟩) ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) → 𝐸𝑃)
2312ad5antr 734 . . . . . . 7 ((((((𝜑𝑓𝑃) ∧ 𝑘𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑘”⟩) ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) → 𝐹𝑃)
2413ad5antr 734 . . . . . . 7 ((((((𝜑𝑓𝑃) ∧ 𝑘𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑘”⟩) ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
2514ad5antr 734 . . . . . . 7 ((((((𝜑𝑓𝑃) ∧ 𝑘𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑘”⟩) ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) → ¬ (𝐷 ∈ (𝐸𝐿𝐹) ∨ 𝐸 = 𝐹))
2615ad5antr 734 . . . . . . 7 ((((((𝜑𝑓𝑃) ∧ 𝑘𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑘”⟩) ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) → (𝐴 𝐵) = (𝐷 𝐸))
27 simpl 482 . . . . . . . . . . 11 ((𝑥 = 𝑎𝑦 = 𝑏) → 𝑥 = 𝑎)
2827eleq1d 2825 . . . . . . . . . 10 ((𝑥 = 𝑎𝑦 = 𝑏) → (𝑥 ∈ (𝑃 ∖ (𝐷𝐿𝐸)) ↔ 𝑎 ∈ (𝑃 ∖ (𝐷𝐿𝐸))))
29 simpr 484 . . . . . . . . . . 11 ((𝑥 = 𝑎𝑦 = 𝑏) → 𝑦 = 𝑏)
3029eleq1d 2825 . . . . . . . . . 10 ((𝑥 = 𝑎𝑦 = 𝑏) → (𝑦 ∈ (𝑃 ∖ (𝐷𝐿𝐸)) ↔ 𝑏 ∈ (𝑃 ∖ (𝐷𝐿𝐸))))
3128, 30anbi12d 632 . . . . . . . . 9 ((𝑥 = 𝑎𝑦 = 𝑏) → ((𝑥 ∈ (𝑃 ∖ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ (𝑃 ∖ (𝐷𝐿𝐸))) ↔ (𝑎 ∈ (𝑃 ∖ (𝐷𝐿𝐸)) ∧ 𝑏 ∈ (𝑃 ∖ (𝐷𝐿𝐸)))))
32 simpr 484 . . . . . . . . . . 11 (((𝑥 = 𝑎𝑦 = 𝑏) ∧ 𝑧 = 𝑡) → 𝑧 = 𝑡)
33 simpll 766 . . . . . . . . . . . 12 (((𝑥 = 𝑎𝑦 = 𝑏) ∧ 𝑧 = 𝑡) → 𝑥 = 𝑎)
34 simplr 768 . . . . . . . . . . . 12 (((𝑥 = 𝑎𝑦 = 𝑏) ∧ 𝑧 = 𝑡) → 𝑦 = 𝑏)
3533, 34oveq12d 7450 . . . . . . . . . . 11 (((𝑥 = 𝑎𝑦 = 𝑏) ∧ 𝑧 = 𝑡) → (𝑥𝐼𝑦) = (𝑎𝐼𝑏))
3632, 35eleq12d 2834 . . . . . . . . . 10 (((𝑥 = 𝑎𝑦 = 𝑏) ∧ 𝑧 = 𝑡) → (𝑧 ∈ (𝑥𝐼𝑦) ↔ 𝑡 ∈ (𝑎𝐼𝑏)))
3736cbvrexdva 3239 . . . . . . . . 9 ((𝑥 = 𝑎𝑦 = 𝑏) → (∃𝑧 ∈ (𝐷𝐿𝐸)𝑧 ∈ (𝑥𝐼𝑦) ↔ ∃𝑡 ∈ (𝐷𝐿𝐸)𝑡 ∈ (𝑎𝐼𝑏)))
3831, 37anbi12d 632 . . . . . . . 8 ((𝑥 = 𝑎𝑦 = 𝑏) → (((𝑥 ∈ (𝑃 ∖ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ (𝑃 ∖ (𝐷𝐿𝐸))) ∧ ∃𝑧 ∈ (𝐷𝐿𝐸)𝑧 ∈ (𝑥𝐼𝑦)) ↔ ((𝑎 ∈ (𝑃 ∖ (𝐷𝐿𝐸)) ∧ 𝑏 ∈ (𝑃 ∖ (𝐷𝐿𝐸))) ∧ ∃𝑡 ∈ (𝐷𝐿𝐸)𝑡 ∈ (𝑎𝐼𝑏))))
3938cbvopabv 5215 . . . . . . 7 {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝑃 ∖ (𝐷𝐿𝐸)) ∧ 𝑦 ∈ (𝑃 ∖ (𝐷𝐿𝐸))) ∧ ∃𝑧 ∈ (𝐷𝐿𝐸)𝑧 ∈ (𝑥𝐼𝑦))} = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃 ∖ (𝐷𝐿𝐸)) ∧ 𝑏 ∈ (𝑃 ∖ (𝐷𝐿𝐸))) ∧ ∃𝑡 ∈ (𝐷𝐿𝐸)𝑡 ∈ (𝑎𝐼𝑏))}
40 simp-5r 785 . . . . . . 7 ((((((𝜑𝑓𝑃) ∧ 𝑘𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑘”⟩) ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) → 𝑓𝑃)
41 simp-4r 783 . . . . . . 7 ((((((𝜑𝑓𝑃) ∧ 𝑘𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑘”⟩) ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) → 𝑘𝑃)
42 simpllr 775 . . . . . . . 8 ((((((𝜑𝑓𝑃) ∧ 𝑘𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑘”⟩) ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) → (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹))
4342simpld 494 . . . . . . 7 ((((((𝜑𝑓𝑃) ∧ 𝑘𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑘”⟩) ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩)
44 simplr 768 . . . . . . 7 ((((((𝜑𝑓𝑃) ∧ 𝑘𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑘”⟩) ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑘”⟩)
4542simprd 495 . . . . . . 7 ((((((𝜑𝑓𝑃) ∧ 𝑘𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑘”⟩) ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) → 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)
46 simpr 484 . . . . . . 7 ((((((𝜑𝑓𝑃) ∧ 𝑘𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑘”⟩) ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) → 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)
471, 2, 3, 4, 5, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 39, 40, 41, 43, 44, 45, 46trgcopyeulem 28814 . . . . . 6 ((((((𝜑𝑓𝑃) ∧ 𝑘𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑘”⟩) ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) → 𝑓 = 𝑘)
4847anasss 466 . . . . 5 (((((𝜑𝑓𝑃) ∧ 𝑘𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑘”⟩ ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) → 𝑓 = 𝑘)
4948expl 457 . . . 4 (((𝜑𝑓𝑃) ∧ 𝑘𝑃) → (((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑘”⟩ ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) → 𝑓 = 𝑘))
5049anasss 466 . . 3 ((𝜑 ∧ (𝑓𝑃𝑘𝑃)) → (((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑘”⟩ ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) → 𝑓 = 𝑘))
5150ralrimivva 3201 . 2 (𝜑 → ∀𝑓𝑃𝑘𝑃 (((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑘”⟩ ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) → 𝑓 = 𝑘))
52 eqidd 2737 . . . . . 6 (𝑓 = 𝑘𝐷 = 𝐷)
53 eqidd 2737 . . . . . 6 (𝑓 = 𝑘𝐸 = 𝐸)
54 id 22 . . . . . 6 (𝑓 = 𝑘𝑓 = 𝑘)
5552, 53, 54s3eqd 14904 . . . . 5 (𝑓 = 𝑘 → ⟨“𝐷𝐸𝑓”⟩ = ⟨“𝐷𝐸𝑘”⟩)
5655breq2d 5154 . . . 4 (𝑓 = 𝑘 → (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ↔ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑘”⟩))
57 breq1 5145 . . . 4 (𝑓 = 𝑘 → (𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹))
5856, 57anbi12d 632 . . 3 (𝑓 = 𝑘 → ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) ↔ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑘”⟩ ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)))
5958reu4 3736 . 2 (∃!𝑓𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) ↔ (∃𝑓𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) ∧ ∀𝑓𝑃𝑘𝑃 (((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑘”⟩ ∧ 𝑘((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) → 𝑓 = 𝑘)))
6016, 51, 59sylanbrc 583 1 (𝜑 → ∃!𝑓𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1539  wcel 2107  wral 3060  wrex 3069  ∃!wreu 3377  cdif 3947   class class class wbr 5142  {copab 5204  cfv 6560  (class class class)co 7432  ⟨“cs3 14882  Basecbs 17248  distcds 17307  TarskiGcstrkg 28436  Itvcitv 28442  LineGclng 28443  cgrGccgrg 28519  hlGchlg 28609  hpGchpg 28766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-oadd 8511  df-er 8746  df-map 8869  df-pm 8870  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-dju 9942  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-3 12331  df-n0 12529  df-xnn0 12602  df-z 12616  df-uz 12880  df-fz 13549  df-fzo 13696  df-hash 14371  df-word 14554  df-concat 14610  df-s1 14635  df-s2 14888  df-s3 14889  df-trkgc 28457  df-trkgb 28458  df-trkgcb 28459  df-trkgld 28461  df-trkg 28462  df-cgrg 28520  df-ismt 28542  df-leg 28592  df-hlg 28610  df-mir 28662  df-rag 28703  df-perpg 28705  df-hpg 28767  df-mid 28783  df-lmi 28784
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator