Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dispcmp Structured version   Visualization version   GIF version

Theorem dispcmp 33849
Description: Every discrete space is paracompact. (Contributed by Thierry Arnoux, 7-Jan-2020.)
Assertion
Ref Expression
dispcmp (𝑋𝑉 → 𝒫 𝑋 ∈ Paracomp)

Proof of Theorem dispcmp
Dummy variables 𝑣 𝑦 𝑧 𝑢 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 distop 22882 . . 3 (𝑋𝑉 → 𝒫 𝑋 ∈ Top)
2 simpr 484 . . . . . . . . . . . 12 ((𝑥𝑋𝑢 = {𝑥}) → 𝑢 = {𝑥})
3 snelpwi 5403 . . . . . . . . . . . . 13 (𝑥𝑋 → {𝑥} ∈ 𝒫 𝑋)
43adantr 480 . . . . . . . . . . . 12 ((𝑥𝑋𝑢 = {𝑥}) → {𝑥} ∈ 𝒫 𝑋)
52, 4eqeltrd 2828 . . . . . . . . . . 11 ((𝑥𝑋𝑢 = {𝑥}) → 𝑢 ∈ 𝒫 𝑋)
65rexlimiva 3126 . . . . . . . . . 10 (∃𝑥𝑋 𝑢 = {𝑥} → 𝑢 ∈ 𝒫 𝑋)
76abssi 4033 . . . . . . . . 9 {𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}} ⊆ 𝒫 𝑋
8 simpl 482 . . . . . . . . . . . . . 14 ((𝑢 = 𝑣𝑥 = 𝑧) → 𝑢 = 𝑣)
9 simpr 484 . . . . . . . . . . . . . . 15 ((𝑢 = 𝑣𝑥 = 𝑧) → 𝑥 = 𝑧)
109sneqd 4601 . . . . . . . . . . . . . 14 ((𝑢 = 𝑣𝑥 = 𝑧) → {𝑥} = {𝑧})
118, 10eqeq12d 2745 . . . . . . . . . . . . 13 ((𝑢 = 𝑣𝑥 = 𝑧) → (𝑢 = {𝑥} ↔ 𝑣 = {𝑧}))
1211cbvrexdva 3218 . . . . . . . . . . . 12 (𝑢 = 𝑣 → (∃𝑥𝑋 𝑢 = {𝑥} ↔ ∃𝑧𝑋 𝑣 = {𝑧}))
1312cbvabv 2799 . . . . . . . . . . 11 {𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}} = {𝑣 ∣ ∃𝑧𝑋 𝑣 = {𝑧}}
1413dissnlocfin 23416 . . . . . . . . . 10 (𝑋𝑉 → {𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}} ∈ (LocFin‘𝒫 𝑋))
15 elpwg 4566 . . . . . . . . . 10 ({𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}} ∈ (LocFin‘𝒫 𝑋) → ({𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}} ∈ 𝒫 𝒫 𝑋 ↔ {𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}} ⊆ 𝒫 𝑋))
1614, 15syl 17 . . . . . . . . 9 (𝑋𝑉 → ({𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}} ∈ 𝒫 𝒫 𝑋 ↔ {𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}} ⊆ 𝒫 𝑋))
177, 16mpbiri 258 . . . . . . . 8 (𝑋𝑉 → {𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}} ∈ 𝒫 𝒫 𝑋)
1817ad2antrr 726 . . . . . . 7 (((𝑋𝑉𝑦 ∈ 𝒫 𝒫 𝑋) ∧ 𝑋 = 𝑦) → {𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}} ∈ 𝒫 𝒫 𝑋)
1914ad2antrr 726 . . . . . . 7 (((𝑋𝑉𝑦 ∈ 𝒫 𝒫 𝑋) ∧ 𝑋 = 𝑦) → {𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}} ∈ (LocFin‘𝒫 𝑋))
2018, 19elind 4163 . . . . . 6 (((𝑋𝑉𝑦 ∈ 𝒫 𝒫 𝑋) ∧ 𝑋 = 𝑦) → {𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}} ∈ (𝒫 𝒫 𝑋 ∩ (LocFin‘𝒫 𝑋)))
21 simpll 766 . . . . . . 7 (((𝑋𝑉𝑦 ∈ 𝒫 𝒫 𝑋) ∧ 𝑋 = 𝑦) → 𝑋𝑉)
22 simpr 484 . . . . . . . 8 (((𝑋𝑉𝑦 ∈ 𝒫 𝒫 𝑋) ∧ 𝑋 = 𝑦) → 𝑋 = 𝑦)
2322eqcomd 2735 . . . . . . 7 (((𝑋𝑉𝑦 ∈ 𝒫 𝒫 𝑋) ∧ 𝑋 = 𝑦) → 𝑦 = 𝑋)
2413dissnref 23415 . . . . . . 7 ((𝑋𝑉 𝑦 = 𝑋) → {𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}}Ref𝑦)
2521, 23, 24syl2anc 584 . . . . . 6 (((𝑋𝑉𝑦 ∈ 𝒫 𝒫 𝑋) ∧ 𝑋 = 𝑦) → {𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}}Ref𝑦)
26 breq1 5110 . . . . . . 7 (𝑧 = {𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}} → (𝑧Ref𝑦 ↔ {𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}}Ref𝑦))
2726rspcev 3588 . . . . . 6 (({𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}} ∈ (𝒫 𝒫 𝑋 ∩ (LocFin‘𝒫 𝑋)) ∧ {𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}}Ref𝑦) → ∃𝑧 ∈ (𝒫 𝒫 𝑋 ∩ (LocFin‘𝒫 𝑋))𝑧Ref𝑦)
2820, 25, 27syl2anc 584 . . . . 5 (((𝑋𝑉𝑦 ∈ 𝒫 𝒫 𝑋) ∧ 𝑋 = 𝑦) → ∃𝑧 ∈ (𝒫 𝒫 𝑋 ∩ (LocFin‘𝒫 𝑋))𝑧Ref𝑦)
2928ex 412 . . . 4 ((𝑋𝑉𝑦 ∈ 𝒫 𝒫 𝑋) → (𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝒫 𝑋 ∩ (LocFin‘𝒫 𝑋))𝑧Ref𝑦))
3029ralrimiva 3125 . . 3 (𝑋𝑉 → ∀𝑦 ∈ 𝒫 𝒫 𝑋(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝒫 𝑋 ∩ (LocFin‘𝒫 𝑋))𝑧Ref𝑦))
31 unipw 5410 . . . . 5 𝒫 𝑋 = 𝑋
3231eqcomi 2738 . . . 4 𝑋 = 𝒫 𝑋
3332iscref 33834 . . 3 (𝒫 𝑋 ∈ CovHasRef(LocFin‘𝒫 𝑋) ↔ (𝒫 𝑋 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝒫 𝑋(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝒫 𝑋 ∩ (LocFin‘𝒫 𝑋))𝑧Ref𝑦)))
341, 30, 33sylanbrc 583 . 2 (𝑋𝑉 → 𝒫 𝑋 ∈ CovHasRef(LocFin‘𝒫 𝑋))
35 ispcmp 33847 . 2 (𝒫 𝑋 ∈ Paracomp ↔ 𝒫 𝑋 ∈ CovHasRef(LocFin‘𝒫 𝑋))
3634, 35sylibr 234 1 (𝑋𝑉 → 𝒫 𝑋 ∈ Paracomp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2707  wral 3044  wrex 3053  cin 3913  wss 3914  𝒫 cpw 4563  {csn 4589   cuni 4871   class class class wbr 5107  cfv 6511  Topctop 22780  Refcref 23389  LocFinclocfin 23391  CovHasRefccref 33832  Paracompcpcmp 33845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-om 7843  df-1o 8434  df-en 8919  df-fin 8922  df-top 22781  df-ref 23392  df-locfin 23394  df-cref 33833  df-pcmp 33846
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator