| Step | Hyp | Ref
| Expression |
| 1 | | distop 22938 |
. . 3
⊢ (𝑋 ∈ 𝑉 → 𝒫 𝑋 ∈ Top) |
| 2 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ 𝑋 ∧ 𝑢 = {𝑥}) → 𝑢 = {𝑥}) |
| 3 | | snelpwi 5423 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ 𝑋 → {𝑥} ∈ 𝒫 𝑋) |
| 4 | 3 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ 𝑋 ∧ 𝑢 = {𝑥}) → {𝑥} ∈ 𝒫 𝑋) |
| 5 | 2, 4 | eqeltrd 2835 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝑋 ∧ 𝑢 = {𝑥}) → 𝑢 ∈ 𝒫 𝑋) |
| 6 | 5 | rexlimiva 3134 |
. . . . . . . . . 10
⊢
(∃𝑥 ∈
𝑋 𝑢 = {𝑥} → 𝑢 ∈ 𝒫 𝑋) |
| 7 | 6 | abssi 4050 |
. . . . . . . . 9
⊢ {𝑢 ∣ ∃𝑥 ∈ 𝑋 𝑢 = {𝑥}} ⊆ 𝒫 𝑋 |
| 8 | | simpl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝑢 = 𝑣 ∧ 𝑥 = 𝑧) → 𝑢 = 𝑣) |
| 9 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ ((𝑢 = 𝑣 ∧ 𝑥 = 𝑧) → 𝑥 = 𝑧) |
| 10 | 9 | sneqd 4618 |
. . . . . . . . . . . . . 14
⊢ ((𝑢 = 𝑣 ∧ 𝑥 = 𝑧) → {𝑥} = {𝑧}) |
| 11 | 8, 10 | eqeq12d 2752 |
. . . . . . . . . . . . 13
⊢ ((𝑢 = 𝑣 ∧ 𝑥 = 𝑧) → (𝑢 = {𝑥} ↔ 𝑣 = {𝑧})) |
| 12 | 11 | cbvrexdva 3227 |
. . . . . . . . . . . 12
⊢ (𝑢 = 𝑣 → (∃𝑥 ∈ 𝑋 𝑢 = {𝑥} ↔ ∃𝑧 ∈ 𝑋 𝑣 = {𝑧})) |
| 13 | 12 | cbvabv 2806 |
. . . . . . . . . . 11
⊢ {𝑢 ∣ ∃𝑥 ∈ 𝑋 𝑢 = {𝑥}} = {𝑣 ∣ ∃𝑧 ∈ 𝑋 𝑣 = {𝑧}} |
| 14 | 13 | dissnlocfin 23472 |
. . . . . . . . . 10
⊢ (𝑋 ∈ 𝑉 → {𝑢 ∣ ∃𝑥 ∈ 𝑋 𝑢 = {𝑥}} ∈ (LocFin‘𝒫 𝑋)) |
| 15 | | elpwg 4583 |
. . . . . . . . . 10
⊢ ({𝑢 ∣ ∃𝑥 ∈ 𝑋 𝑢 = {𝑥}} ∈ (LocFin‘𝒫 𝑋) → ({𝑢 ∣ ∃𝑥 ∈ 𝑋 𝑢 = {𝑥}} ∈ 𝒫 𝒫 𝑋 ↔ {𝑢 ∣ ∃𝑥 ∈ 𝑋 𝑢 = {𝑥}} ⊆ 𝒫 𝑋)) |
| 16 | 14, 15 | syl 17 |
. . . . . . . . 9
⊢ (𝑋 ∈ 𝑉 → ({𝑢 ∣ ∃𝑥 ∈ 𝑋 𝑢 = {𝑥}} ∈ 𝒫 𝒫 𝑋 ↔ {𝑢 ∣ ∃𝑥 ∈ 𝑋 𝑢 = {𝑥}} ⊆ 𝒫 𝑋)) |
| 17 | 7, 16 | mpbiri 258 |
. . . . . . . 8
⊢ (𝑋 ∈ 𝑉 → {𝑢 ∣ ∃𝑥 ∈ 𝑋 𝑢 = {𝑥}} ∈ 𝒫 𝒫 𝑋) |
| 18 | 17 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝒫 𝑋) ∧ 𝑋 = ∪ 𝑦) → {𝑢 ∣ ∃𝑥 ∈ 𝑋 𝑢 = {𝑥}} ∈ 𝒫 𝒫 𝑋) |
| 19 | 14 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝒫 𝑋) ∧ 𝑋 = ∪ 𝑦) → {𝑢 ∣ ∃𝑥 ∈ 𝑋 𝑢 = {𝑥}} ∈ (LocFin‘𝒫 𝑋)) |
| 20 | 18, 19 | elind 4180 |
. . . . . 6
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝒫 𝑋) ∧ 𝑋 = ∪ 𝑦) → {𝑢 ∣ ∃𝑥 ∈ 𝑋 𝑢 = {𝑥}} ∈ (𝒫 𝒫 𝑋 ∩ (LocFin‘𝒫
𝑋))) |
| 21 | | simpll 766 |
. . . . . . 7
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝒫 𝑋) ∧ 𝑋 = ∪ 𝑦) → 𝑋 ∈ 𝑉) |
| 22 | | simpr 484 |
. . . . . . . 8
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝒫 𝑋) ∧ 𝑋 = ∪ 𝑦) → 𝑋 = ∪ 𝑦) |
| 23 | 22 | eqcomd 2742 |
. . . . . . 7
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝒫 𝑋) ∧ 𝑋 = ∪ 𝑦) → ∪ 𝑦 =
𝑋) |
| 24 | 13 | dissnref 23471 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝑉 ∧ ∪ 𝑦 = 𝑋) → {𝑢 ∣ ∃𝑥 ∈ 𝑋 𝑢 = {𝑥}}Ref𝑦) |
| 25 | 21, 23, 24 | syl2anc 584 |
. . . . . 6
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝒫 𝑋) ∧ 𝑋 = ∪ 𝑦) → {𝑢 ∣ ∃𝑥 ∈ 𝑋 𝑢 = {𝑥}}Ref𝑦) |
| 26 | | breq1 5127 |
. . . . . . 7
⊢ (𝑧 = {𝑢 ∣ ∃𝑥 ∈ 𝑋 𝑢 = {𝑥}} → (𝑧Ref𝑦 ↔ {𝑢 ∣ ∃𝑥 ∈ 𝑋 𝑢 = {𝑥}}Ref𝑦)) |
| 27 | 26 | rspcev 3606 |
. . . . . 6
⊢ (({𝑢 ∣ ∃𝑥 ∈ 𝑋 𝑢 = {𝑥}} ∈ (𝒫 𝒫 𝑋 ∩ (LocFin‘𝒫
𝑋)) ∧ {𝑢 ∣ ∃𝑥 ∈ 𝑋 𝑢 = {𝑥}}Ref𝑦) → ∃𝑧 ∈ (𝒫 𝒫 𝑋 ∩ (LocFin‘𝒫
𝑋))𝑧Ref𝑦) |
| 28 | 20, 25, 27 | syl2anc 584 |
. . . . 5
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝒫 𝑋) ∧ 𝑋 = ∪ 𝑦) → ∃𝑧 ∈ (𝒫 𝒫
𝑋 ∩
(LocFin‘𝒫 𝑋))𝑧Ref𝑦) |
| 29 | 28 | ex 412 |
. . . 4
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝒫 𝑋) → (𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝒫
𝑋 ∩
(LocFin‘𝒫 𝑋))𝑧Ref𝑦)) |
| 30 | 29 | ralrimiva 3133 |
. . 3
⊢ (𝑋 ∈ 𝑉 → ∀𝑦 ∈ 𝒫 𝒫 𝑋(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝒫
𝑋 ∩
(LocFin‘𝒫 𝑋))𝑧Ref𝑦)) |
| 31 | | unipw 5430 |
. . . . 5
⊢ ∪ 𝒫 𝑋 = 𝑋 |
| 32 | 31 | eqcomi 2745 |
. . . 4
⊢ 𝑋 = ∪
𝒫 𝑋 |
| 33 | 32 | iscref 33880 |
. . 3
⊢
(𝒫 𝑋 ∈
CovHasRef(LocFin‘𝒫 𝑋) ↔ (𝒫 𝑋 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝒫 𝑋(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝒫
𝑋 ∩
(LocFin‘𝒫 𝑋))𝑧Ref𝑦))) |
| 34 | 1, 30, 33 | sylanbrc 583 |
. 2
⊢ (𝑋 ∈ 𝑉 → 𝒫 𝑋 ∈ CovHasRef(LocFin‘𝒫
𝑋)) |
| 35 | | ispcmp 33893 |
. 2
⊢
(𝒫 𝑋 ∈
Paracomp ↔ 𝒫 𝑋
∈ CovHasRef(LocFin‘𝒫 𝑋)) |
| 36 | 34, 35 | sylibr 234 |
1
⊢ (𝑋 ∈ 𝑉 → 𝒫 𝑋 ∈ Paracomp) |