Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dispcmp Structured version   Visualization version   GIF version

Theorem dispcmp 33820
Description: Every discrete space is paracompact. (Contributed by Thierry Arnoux, 7-Jan-2020.)
Assertion
Ref Expression
dispcmp (𝑋𝑉 → 𝒫 𝑋 ∈ Paracomp)

Proof of Theorem dispcmp
Dummy variables 𝑣 𝑦 𝑧 𝑢 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 distop 23018 . . 3 (𝑋𝑉 → 𝒫 𝑋 ∈ Top)
2 simpr 484 . . . . . . . . . . . 12 ((𝑥𝑋𝑢 = {𝑥}) → 𝑢 = {𝑥})
3 snelpwi 5454 . . . . . . . . . . . . 13 (𝑥𝑋 → {𝑥} ∈ 𝒫 𝑋)
43adantr 480 . . . . . . . . . . . 12 ((𝑥𝑋𝑢 = {𝑥}) → {𝑥} ∈ 𝒫 𝑋)
52, 4eqeltrd 2839 . . . . . . . . . . 11 ((𝑥𝑋𝑢 = {𝑥}) → 𝑢 ∈ 𝒫 𝑋)
65rexlimiva 3145 . . . . . . . . . 10 (∃𝑥𝑋 𝑢 = {𝑥} → 𝑢 ∈ 𝒫 𝑋)
76abssi 4080 . . . . . . . . 9 {𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}} ⊆ 𝒫 𝑋
8 simpl 482 . . . . . . . . . . . . . 14 ((𝑢 = 𝑣𝑥 = 𝑧) → 𝑢 = 𝑣)
9 simpr 484 . . . . . . . . . . . . . . 15 ((𝑢 = 𝑣𝑥 = 𝑧) → 𝑥 = 𝑧)
109sneqd 4643 . . . . . . . . . . . . . 14 ((𝑢 = 𝑣𝑥 = 𝑧) → {𝑥} = {𝑧})
118, 10eqeq12d 2751 . . . . . . . . . . . . 13 ((𝑢 = 𝑣𝑥 = 𝑧) → (𝑢 = {𝑥} ↔ 𝑣 = {𝑧}))
1211cbvrexdva 3238 . . . . . . . . . . . 12 (𝑢 = 𝑣 → (∃𝑥𝑋 𝑢 = {𝑥} ↔ ∃𝑧𝑋 𝑣 = {𝑧}))
1312cbvabv 2810 . . . . . . . . . . 11 {𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}} = {𝑣 ∣ ∃𝑧𝑋 𝑣 = {𝑧}}
1413dissnlocfin 23553 . . . . . . . . . 10 (𝑋𝑉 → {𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}} ∈ (LocFin‘𝒫 𝑋))
15 elpwg 4608 . . . . . . . . . 10 ({𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}} ∈ (LocFin‘𝒫 𝑋) → ({𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}} ∈ 𝒫 𝒫 𝑋 ↔ {𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}} ⊆ 𝒫 𝑋))
1614, 15syl 17 . . . . . . . . 9 (𝑋𝑉 → ({𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}} ∈ 𝒫 𝒫 𝑋 ↔ {𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}} ⊆ 𝒫 𝑋))
177, 16mpbiri 258 . . . . . . . 8 (𝑋𝑉 → {𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}} ∈ 𝒫 𝒫 𝑋)
1817ad2antrr 726 . . . . . . 7 (((𝑋𝑉𝑦 ∈ 𝒫 𝒫 𝑋) ∧ 𝑋 = 𝑦) → {𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}} ∈ 𝒫 𝒫 𝑋)
1914ad2antrr 726 . . . . . . 7 (((𝑋𝑉𝑦 ∈ 𝒫 𝒫 𝑋) ∧ 𝑋 = 𝑦) → {𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}} ∈ (LocFin‘𝒫 𝑋))
2018, 19elind 4210 . . . . . 6 (((𝑋𝑉𝑦 ∈ 𝒫 𝒫 𝑋) ∧ 𝑋 = 𝑦) → {𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}} ∈ (𝒫 𝒫 𝑋 ∩ (LocFin‘𝒫 𝑋)))
21 simpll 767 . . . . . . 7 (((𝑋𝑉𝑦 ∈ 𝒫 𝒫 𝑋) ∧ 𝑋 = 𝑦) → 𝑋𝑉)
22 simpr 484 . . . . . . . 8 (((𝑋𝑉𝑦 ∈ 𝒫 𝒫 𝑋) ∧ 𝑋 = 𝑦) → 𝑋 = 𝑦)
2322eqcomd 2741 . . . . . . 7 (((𝑋𝑉𝑦 ∈ 𝒫 𝒫 𝑋) ∧ 𝑋 = 𝑦) → 𝑦 = 𝑋)
2413dissnref 23552 . . . . . . 7 ((𝑋𝑉 𝑦 = 𝑋) → {𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}}Ref𝑦)
2521, 23, 24syl2anc 584 . . . . . 6 (((𝑋𝑉𝑦 ∈ 𝒫 𝒫 𝑋) ∧ 𝑋 = 𝑦) → {𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}}Ref𝑦)
26 breq1 5151 . . . . . . 7 (𝑧 = {𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}} → (𝑧Ref𝑦 ↔ {𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}}Ref𝑦))
2726rspcev 3622 . . . . . 6 (({𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}} ∈ (𝒫 𝒫 𝑋 ∩ (LocFin‘𝒫 𝑋)) ∧ {𝑢 ∣ ∃𝑥𝑋 𝑢 = {𝑥}}Ref𝑦) → ∃𝑧 ∈ (𝒫 𝒫 𝑋 ∩ (LocFin‘𝒫 𝑋))𝑧Ref𝑦)
2820, 25, 27syl2anc 584 . . . . 5 (((𝑋𝑉𝑦 ∈ 𝒫 𝒫 𝑋) ∧ 𝑋 = 𝑦) → ∃𝑧 ∈ (𝒫 𝒫 𝑋 ∩ (LocFin‘𝒫 𝑋))𝑧Ref𝑦)
2928ex 412 . . . 4 ((𝑋𝑉𝑦 ∈ 𝒫 𝒫 𝑋) → (𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝒫 𝑋 ∩ (LocFin‘𝒫 𝑋))𝑧Ref𝑦))
3029ralrimiva 3144 . . 3 (𝑋𝑉 → ∀𝑦 ∈ 𝒫 𝒫 𝑋(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝒫 𝑋 ∩ (LocFin‘𝒫 𝑋))𝑧Ref𝑦))
31 unipw 5461 . . . . 5 𝒫 𝑋 = 𝑋
3231eqcomi 2744 . . . 4 𝑋 = 𝒫 𝑋
3332iscref 33805 . . 3 (𝒫 𝑋 ∈ CovHasRef(LocFin‘𝒫 𝑋) ↔ (𝒫 𝑋 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝒫 𝑋(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝒫 𝑋 ∩ (LocFin‘𝒫 𝑋))𝑧Ref𝑦)))
341, 30, 33sylanbrc 583 . 2 (𝑋𝑉 → 𝒫 𝑋 ∈ CovHasRef(LocFin‘𝒫 𝑋))
35 ispcmp 33818 . 2 (𝒫 𝑋 ∈ Paracomp ↔ 𝒫 𝑋 ∈ CovHasRef(LocFin‘𝒫 𝑋))
3634, 35sylibr 234 1 (𝑋𝑉 → 𝒫 𝑋 ∈ Paracomp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  {cab 2712  wral 3059  wrex 3068  cin 3962  wss 3963  𝒫 cpw 4605  {csn 4631   cuni 4912   class class class wbr 5148  cfv 6563  Topctop 22915  Refcref 23526  LocFinclocfin 23528  CovHasRefccref 33803  Paracompcpcmp 33816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-om 7888  df-1o 8505  df-en 8985  df-fin 8988  df-top 22916  df-ref 23529  df-locfin 23531  df-cref 33804  df-pcmp 33817
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator