Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dispcmp Structured version   Visualization version   GIF version

Theorem dispcmp 32839
Description: Every discrete space is paracompact. (Contributed by Thierry Arnoux, 7-Jan-2020.)
Assertion
Ref Expression
dispcmp (𝑋 ∈ 𝑉 β†’ 𝒫 𝑋 ∈ Paracomp)

Proof of Theorem dispcmp
Dummy variables 𝑣 𝑦 𝑧 𝑒 π‘₯ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 distop 22498 . . 3 (𝑋 ∈ 𝑉 β†’ 𝒫 𝑋 ∈ Top)
2 simpr 486 . . . . . . . . . . . 12 ((π‘₯ ∈ 𝑋 ∧ 𝑒 = {π‘₯}) β†’ 𝑒 = {π‘₯})
3 snelpwi 5444 . . . . . . . . . . . . 13 (π‘₯ ∈ 𝑋 β†’ {π‘₯} ∈ 𝒫 𝑋)
43adantr 482 . . . . . . . . . . . 12 ((π‘₯ ∈ 𝑋 ∧ 𝑒 = {π‘₯}) β†’ {π‘₯} ∈ 𝒫 𝑋)
52, 4eqeltrd 2834 . . . . . . . . . . 11 ((π‘₯ ∈ 𝑋 ∧ 𝑒 = {π‘₯}) β†’ 𝑒 ∈ 𝒫 𝑋)
65rexlimiva 3148 . . . . . . . . . 10 (βˆƒπ‘₯ ∈ 𝑋 𝑒 = {π‘₯} β†’ 𝑒 ∈ 𝒫 𝑋)
76abssi 4068 . . . . . . . . 9 {𝑒 ∣ βˆƒπ‘₯ ∈ 𝑋 𝑒 = {π‘₯}} βŠ† 𝒫 𝑋
8 simpl 484 . . . . . . . . . . . . . 14 ((𝑒 = 𝑣 ∧ π‘₯ = 𝑧) β†’ 𝑒 = 𝑣)
9 simpr 486 . . . . . . . . . . . . . . 15 ((𝑒 = 𝑣 ∧ π‘₯ = 𝑧) β†’ π‘₯ = 𝑧)
109sneqd 4641 . . . . . . . . . . . . . 14 ((𝑒 = 𝑣 ∧ π‘₯ = 𝑧) β†’ {π‘₯} = {𝑧})
118, 10eqeq12d 2749 . . . . . . . . . . . . 13 ((𝑒 = 𝑣 ∧ π‘₯ = 𝑧) β†’ (𝑒 = {π‘₯} ↔ 𝑣 = {𝑧}))
1211cbvrexdva 3238 . . . . . . . . . . . 12 (𝑒 = 𝑣 β†’ (βˆƒπ‘₯ ∈ 𝑋 𝑒 = {π‘₯} ↔ βˆƒπ‘§ ∈ 𝑋 𝑣 = {𝑧}))
1312cbvabv 2806 . . . . . . . . . . 11 {𝑒 ∣ βˆƒπ‘₯ ∈ 𝑋 𝑒 = {π‘₯}} = {𝑣 ∣ βˆƒπ‘§ ∈ 𝑋 𝑣 = {𝑧}}
1413dissnlocfin 23033 . . . . . . . . . 10 (𝑋 ∈ 𝑉 β†’ {𝑒 ∣ βˆƒπ‘₯ ∈ 𝑋 𝑒 = {π‘₯}} ∈ (LocFinβ€˜π’« 𝑋))
15 elpwg 4606 . . . . . . . . . 10 ({𝑒 ∣ βˆƒπ‘₯ ∈ 𝑋 𝑒 = {π‘₯}} ∈ (LocFinβ€˜π’« 𝑋) β†’ ({𝑒 ∣ βˆƒπ‘₯ ∈ 𝑋 𝑒 = {π‘₯}} ∈ 𝒫 𝒫 𝑋 ↔ {𝑒 ∣ βˆƒπ‘₯ ∈ 𝑋 𝑒 = {π‘₯}} βŠ† 𝒫 𝑋))
1614, 15syl 17 . . . . . . . . 9 (𝑋 ∈ 𝑉 β†’ ({𝑒 ∣ βˆƒπ‘₯ ∈ 𝑋 𝑒 = {π‘₯}} ∈ 𝒫 𝒫 𝑋 ↔ {𝑒 ∣ βˆƒπ‘₯ ∈ 𝑋 𝑒 = {π‘₯}} βŠ† 𝒫 𝑋))
177, 16mpbiri 258 . . . . . . . 8 (𝑋 ∈ 𝑉 β†’ {𝑒 ∣ βˆƒπ‘₯ ∈ 𝑋 𝑒 = {π‘₯}} ∈ 𝒫 𝒫 𝑋)
1817ad2antrr 725 . . . . . . 7 (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝒫 𝑋) ∧ 𝑋 = βˆͺ 𝑦) β†’ {𝑒 ∣ βˆƒπ‘₯ ∈ 𝑋 𝑒 = {π‘₯}} ∈ 𝒫 𝒫 𝑋)
1914ad2antrr 725 . . . . . . 7 (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝒫 𝑋) ∧ 𝑋 = βˆͺ 𝑦) β†’ {𝑒 ∣ βˆƒπ‘₯ ∈ 𝑋 𝑒 = {π‘₯}} ∈ (LocFinβ€˜π’« 𝑋))
2018, 19elind 4195 . . . . . 6 (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝒫 𝑋) ∧ 𝑋 = βˆͺ 𝑦) β†’ {𝑒 ∣ βˆƒπ‘₯ ∈ 𝑋 𝑒 = {π‘₯}} ∈ (𝒫 𝒫 𝑋 ∩ (LocFinβ€˜π’« 𝑋)))
21 simpll 766 . . . . . . 7 (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝒫 𝑋) ∧ 𝑋 = βˆͺ 𝑦) β†’ 𝑋 ∈ 𝑉)
22 simpr 486 . . . . . . . 8 (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝒫 𝑋) ∧ 𝑋 = βˆͺ 𝑦) β†’ 𝑋 = βˆͺ 𝑦)
2322eqcomd 2739 . . . . . . 7 (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝒫 𝑋) ∧ 𝑋 = βˆͺ 𝑦) β†’ βˆͺ 𝑦 = 𝑋)
2413dissnref 23032 . . . . . . 7 ((𝑋 ∈ 𝑉 ∧ βˆͺ 𝑦 = 𝑋) β†’ {𝑒 ∣ βˆƒπ‘₯ ∈ 𝑋 𝑒 = {π‘₯}}Ref𝑦)
2521, 23, 24syl2anc 585 . . . . . 6 (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝒫 𝑋) ∧ 𝑋 = βˆͺ 𝑦) β†’ {𝑒 ∣ βˆƒπ‘₯ ∈ 𝑋 𝑒 = {π‘₯}}Ref𝑦)
26 breq1 5152 . . . . . . 7 (𝑧 = {𝑒 ∣ βˆƒπ‘₯ ∈ 𝑋 𝑒 = {π‘₯}} β†’ (𝑧Ref𝑦 ↔ {𝑒 ∣ βˆƒπ‘₯ ∈ 𝑋 𝑒 = {π‘₯}}Ref𝑦))
2726rspcev 3613 . . . . . 6 (({𝑒 ∣ βˆƒπ‘₯ ∈ 𝑋 𝑒 = {π‘₯}} ∈ (𝒫 𝒫 𝑋 ∩ (LocFinβ€˜π’« 𝑋)) ∧ {𝑒 ∣ βˆƒπ‘₯ ∈ 𝑋 𝑒 = {π‘₯}}Ref𝑦) β†’ βˆƒπ‘§ ∈ (𝒫 𝒫 𝑋 ∩ (LocFinβ€˜π’« 𝑋))𝑧Ref𝑦)
2820, 25, 27syl2anc 585 . . . . 5 (((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝒫 𝑋) ∧ 𝑋 = βˆͺ 𝑦) β†’ βˆƒπ‘§ ∈ (𝒫 𝒫 𝑋 ∩ (LocFinβ€˜π’« 𝑋))𝑧Ref𝑦)
2928ex 414 . . . 4 ((𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝒫 𝑋) β†’ (𝑋 = βˆͺ 𝑦 β†’ βˆƒπ‘§ ∈ (𝒫 𝒫 𝑋 ∩ (LocFinβ€˜π’« 𝑋))𝑧Ref𝑦))
3029ralrimiva 3147 . . 3 (𝑋 ∈ 𝑉 β†’ βˆ€π‘¦ ∈ 𝒫 𝒫 𝑋(𝑋 = βˆͺ 𝑦 β†’ βˆƒπ‘§ ∈ (𝒫 𝒫 𝑋 ∩ (LocFinβ€˜π’« 𝑋))𝑧Ref𝑦))
31 unipw 5451 . . . . 5 βˆͺ 𝒫 𝑋 = 𝑋
3231eqcomi 2742 . . . 4 𝑋 = βˆͺ 𝒫 𝑋
3332iscref 32824 . . 3 (𝒫 𝑋 ∈ CovHasRef(LocFinβ€˜π’« 𝑋) ↔ (𝒫 𝑋 ∈ Top ∧ βˆ€π‘¦ ∈ 𝒫 𝒫 𝑋(𝑋 = βˆͺ 𝑦 β†’ βˆƒπ‘§ ∈ (𝒫 𝒫 𝑋 ∩ (LocFinβ€˜π’« 𝑋))𝑧Ref𝑦)))
341, 30, 33sylanbrc 584 . 2 (𝑋 ∈ 𝑉 β†’ 𝒫 𝑋 ∈ CovHasRef(LocFinβ€˜π’« 𝑋))
35 ispcmp 32837 . 2 (𝒫 𝑋 ∈ Paracomp ↔ 𝒫 𝑋 ∈ CovHasRef(LocFinβ€˜π’« 𝑋))
3634, 35sylibr 233 1 (𝑋 ∈ 𝑉 β†’ 𝒫 𝑋 ∈ Paracomp)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   = wceq 1542   ∈ wcel 2107  {cab 2710  βˆ€wral 3062  βˆƒwrex 3071   ∩ cin 3948   βŠ† wss 3949  π’« cpw 4603  {csn 4629  βˆͺ cuni 4909   class class class wbr 5149  β€˜cfv 6544  Topctop 22395  Refcref 23006  LocFinclocfin 23008  CovHasRefccref 32822  Paracompcpcmp 32835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-om 7856  df-1o 8466  df-en 8940  df-fin 8943  df-top 22396  df-ref 23009  df-locfin 23011  df-cref 32823  df-pcmp 32836
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator