| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleme3d | Structured version Visualization version GIF version | ||
| Description: Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme3fa 40408 and cdleme3 40409. (Contributed by NM, 6-Jun-2012.) |
| Ref | Expression |
|---|---|
| cdleme1.l | ⊢ ≤ = (le‘𝐾) |
| cdleme1.j | ⊢ ∨ = (join‘𝐾) |
| cdleme1.m | ⊢ ∧ = (meet‘𝐾) |
| cdleme1.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| cdleme1.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| cdleme1.u | ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
| cdleme1.f | ⊢ 𝐹 = ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊))) |
| cdleme3.3 | ⊢ 𝑉 = ((𝑃 ∨ 𝑅) ∧ 𝑊) |
| Ref | Expression |
|---|---|
| cdleme3d | ⊢ 𝐹 = ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ 𝑉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cdleme1.f | . 2 ⊢ 𝐹 = ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊))) | |
| 2 | cdleme3.3 | . . . 4 ⊢ 𝑉 = ((𝑃 ∨ 𝑅) ∧ 𝑊) | |
| 3 | 2 | oveq2i 7366 | . . 3 ⊢ (𝑄 ∨ 𝑉) = (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊)) |
| 4 | 3 | oveq2i 7366 | . 2 ⊢ ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ 𝑉)) = ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊))) |
| 5 | 1, 4 | eqtr4i 2759 | 1 ⊢ 𝐹 = ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ 𝑉)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ‘cfv 6489 (class class class)co 7355 lecple 17175 joincjn 18225 meetcmee 18226 Atomscatm 39435 LHypclh 40156 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-iota 6445 df-fv 6497 df-ov 7358 |
| This theorem is referenced by: cdleme3g 40406 cdleme3h 40407 cdleme9 40425 |
| Copyright terms: Public domain | W3C validator |