Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme3d Structured version   Visualization version   GIF version

Theorem cdleme3d 37546
 Description: Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme3fa 37551 and cdleme3 37552. (Contributed by NM, 6-Jun-2012.)
Hypotheses
Ref Expression
cdleme1.l = (le‘𝐾)
cdleme1.j = (join‘𝐾)
cdleme1.m = (meet‘𝐾)
cdleme1.a 𝐴 = (Atoms‘𝐾)
cdleme1.h 𝐻 = (LHyp‘𝐾)
cdleme1.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme1.f 𝐹 = ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊)))
cdleme3.3 𝑉 = ((𝑃 𝑅) 𝑊)
Assertion
Ref Expression
cdleme3d 𝐹 = ((𝑅 𝑈) (𝑄 𝑉))

Proof of Theorem cdleme3d
StepHypRef Expression
1 cdleme1.f . 2 𝐹 = ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊)))
2 cdleme3.3 . . . 4 𝑉 = ((𝑃 𝑅) 𝑊)
32oveq2i 7147 . . 3 (𝑄 𝑉) = (𝑄 ((𝑃 𝑅) 𝑊))
43oveq2i 7147 . 2 ((𝑅 𝑈) (𝑄 𝑉)) = ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊)))
51, 4eqtr4i 2824 1 𝐹 = ((𝑅 𝑈) (𝑄 𝑉))
 Colors of variables: wff setvar class Syntax hints:   = wceq 1538  ‘cfv 6325  (class class class)co 7136  lecple 16567  joincjn 17549  meetcmee 17550  Atomscatm 36578  LHypclh 37299 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-ext 2770 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-ex 1782  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-v 3443  df-un 3886  df-in 3888  df-ss 3898  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-br 5032  df-iota 6284  df-fv 6333  df-ov 7139 This theorem is referenced by:  cdleme3g  37549  cdleme3h  37550  cdleme9  37568
 Copyright terms: Public domain W3C validator