| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleme3d | Structured version Visualization version GIF version | ||
| Description: Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme3fa 40237 and cdleme3 40238. (Contributed by NM, 6-Jun-2012.) |
| Ref | Expression |
|---|---|
| cdleme1.l | ⊢ ≤ = (le‘𝐾) |
| cdleme1.j | ⊢ ∨ = (join‘𝐾) |
| cdleme1.m | ⊢ ∧ = (meet‘𝐾) |
| cdleme1.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| cdleme1.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| cdleme1.u | ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
| cdleme1.f | ⊢ 𝐹 = ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊))) |
| cdleme3.3 | ⊢ 𝑉 = ((𝑃 ∨ 𝑅) ∧ 𝑊) |
| Ref | Expression |
|---|---|
| cdleme3d | ⊢ 𝐹 = ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ 𝑉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cdleme1.f | . 2 ⊢ 𝐹 = ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊))) | |
| 2 | cdleme3.3 | . . . 4 ⊢ 𝑉 = ((𝑃 ∨ 𝑅) ∧ 𝑊) | |
| 3 | 2 | oveq2i 7401 | . . 3 ⊢ (𝑄 ∨ 𝑉) = (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊)) |
| 4 | 3 | oveq2i 7401 | . 2 ⊢ ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ 𝑉)) = ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊))) |
| 5 | 1, 4 | eqtr4i 2756 | 1 ⊢ 𝐹 = ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ 𝑉)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ‘cfv 6514 (class class class)co 7390 lecple 17234 joincjn 18279 meetcmee 18280 Atomscatm 39263 LHypclh 39985 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ov 7393 |
| This theorem is referenced by: cdleme3g 40235 cdleme3h 40236 cdleme9 40254 |
| Copyright terms: Public domain | W3C validator |