![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleme3d | Structured version Visualization version GIF version |
Description: Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme3fa 40219 and cdleme3 40220. (Contributed by NM, 6-Jun-2012.) |
Ref | Expression |
---|---|
cdleme1.l | ⊢ ≤ = (le‘𝐾) |
cdleme1.j | ⊢ ∨ = (join‘𝐾) |
cdleme1.m | ⊢ ∧ = (meet‘𝐾) |
cdleme1.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdleme1.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdleme1.u | ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
cdleme1.f | ⊢ 𝐹 = ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊))) |
cdleme3.3 | ⊢ 𝑉 = ((𝑃 ∨ 𝑅) ∧ 𝑊) |
Ref | Expression |
---|---|
cdleme3d | ⊢ 𝐹 = ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ 𝑉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdleme1.f | . 2 ⊢ 𝐹 = ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊))) | |
2 | cdleme3.3 | . . . 4 ⊢ 𝑉 = ((𝑃 ∨ 𝑅) ∧ 𝑊) | |
3 | 2 | oveq2i 7442 | . . 3 ⊢ (𝑄 ∨ 𝑉) = (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊)) |
4 | 3 | oveq2i 7442 | . 2 ⊢ ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ 𝑉)) = ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊))) |
5 | 1, 4 | eqtr4i 2766 | 1 ⊢ 𝐹 = ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ 𝑉)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ‘cfv 6563 (class class class)co 7431 lecple 17305 joincjn 18369 meetcmee 18370 Atomscatm 39245 LHypclh 39967 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-iota 6516 df-fv 6571 df-ov 7434 |
This theorem is referenced by: cdleme3g 40217 cdleme3h 40218 cdleme9 40236 |
Copyright terms: Public domain | W3C validator |