![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleme3d | Structured version Visualization version GIF version |
Description: Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme3fa 39619 and cdleme3 39620. (Contributed by NM, 6-Jun-2012.) |
Ref | Expression |
---|---|
cdleme1.l | β’ β€ = (leβπΎ) |
cdleme1.j | β’ β¨ = (joinβπΎ) |
cdleme1.m | β’ β§ = (meetβπΎ) |
cdleme1.a | β’ π΄ = (AtomsβπΎ) |
cdleme1.h | β’ π» = (LHypβπΎ) |
cdleme1.u | β’ π = ((π β¨ π) β§ π) |
cdleme1.f | β’ πΉ = ((π β¨ π) β§ (π β¨ ((π β¨ π ) β§ π))) |
cdleme3.3 | β’ π = ((π β¨ π ) β§ π) |
Ref | Expression |
---|---|
cdleme3d | β’ πΉ = ((π β¨ π) β§ (π β¨ π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdleme1.f | . 2 β’ πΉ = ((π β¨ π) β§ (π β¨ ((π β¨ π ) β§ π))) | |
2 | cdleme3.3 | . . . 4 β’ π = ((π β¨ π ) β§ π) | |
3 | 2 | oveq2i 7415 | . . 3 β’ (π β¨ π) = (π β¨ ((π β¨ π ) β§ π)) |
4 | 3 | oveq2i 7415 | . 2 β’ ((π β¨ π) β§ (π β¨ π)) = ((π β¨ π) β§ (π β¨ ((π β¨ π ) β§ π))) |
5 | 1, 4 | eqtr4i 2757 | 1 β’ πΉ = ((π β¨ π) β§ (π β¨ π)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 βcfv 6536 (class class class)co 7404 lecple 17210 joincjn 18273 meetcmee 18274 Atomscatm 38645 LHypclh 39367 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-iota 6488 df-fv 6544 df-ov 7407 |
This theorem is referenced by: cdleme3g 39617 cdleme3h 39618 cdleme9 39636 |
Copyright terms: Public domain | W3C validator |