Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleme3d | Structured version Visualization version GIF version |
Description: Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme3fa 38177 and cdleme3 38178. (Contributed by NM, 6-Jun-2012.) |
Ref | Expression |
---|---|
cdleme1.l | ⊢ ≤ = (le‘𝐾) |
cdleme1.j | ⊢ ∨ = (join‘𝐾) |
cdleme1.m | ⊢ ∧ = (meet‘𝐾) |
cdleme1.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdleme1.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdleme1.u | ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
cdleme1.f | ⊢ 𝐹 = ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊))) |
cdleme3.3 | ⊢ 𝑉 = ((𝑃 ∨ 𝑅) ∧ 𝑊) |
Ref | Expression |
---|---|
cdleme3d | ⊢ 𝐹 = ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ 𝑉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdleme1.f | . 2 ⊢ 𝐹 = ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊))) | |
2 | cdleme3.3 | . . . 4 ⊢ 𝑉 = ((𝑃 ∨ 𝑅) ∧ 𝑊) | |
3 | 2 | oveq2i 7266 | . . 3 ⊢ (𝑄 ∨ 𝑉) = (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊)) |
4 | 3 | oveq2i 7266 | . 2 ⊢ ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ 𝑉)) = ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊))) |
5 | 1, 4 | eqtr4i 2769 | 1 ⊢ 𝐹 = ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ 𝑉)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ‘cfv 6418 (class class class)co 7255 lecple 16895 joincjn 17944 meetcmee 17945 Atomscatm 37204 LHypclh 37925 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 |
This theorem is referenced by: cdleme3g 38175 cdleme3h 38176 cdleme9 38194 |
Copyright terms: Public domain | W3C validator |