Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme3d Structured version   Visualization version   GIF version

Theorem cdleme3d 40232
Description: Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme3fa 40237 and cdleme3 40238. (Contributed by NM, 6-Jun-2012.)
Hypotheses
Ref Expression
cdleme1.l = (le‘𝐾)
cdleme1.j = (join‘𝐾)
cdleme1.m = (meet‘𝐾)
cdleme1.a 𝐴 = (Atoms‘𝐾)
cdleme1.h 𝐻 = (LHyp‘𝐾)
cdleme1.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme1.f 𝐹 = ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊)))
cdleme3.3 𝑉 = ((𝑃 𝑅) 𝑊)
Assertion
Ref Expression
cdleme3d 𝐹 = ((𝑅 𝑈) (𝑄 𝑉))

Proof of Theorem cdleme3d
StepHypRef Expression
1 cdleme1.f . 2 𝐹 = ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊)))
2 cdleme3.3 . . . 4 𝑉 = ((𝑃 𝑅) 𝑊)
32oveq2i 7401 . . 3 (𝑄 𝑉) = (𝑄 ((𝑃 𝑅) 𝑊))
43oveq2i 7401 . 2 ((𝑅 𝑈) (𝑄 𝑉)) = ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊)))
51, 4eqtr4i 2756 1 𝐹 = ((𝑅 𝑈) (𝑄 𝑉))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cfv 6514  (class class class)co 7390  lecple 17234  joincjn 18279  meetcmee 18280  Atomscatm 39263  LHypclh 39985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-iota 6467  df-fv 6522  df-ov 7393
This theorem is referenced by:  cdleme3g  40235  cdleme3h  40236  cdleme9  40254
  Copyright terms: Public domain W3C validator