Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme3 Structured version   Visualization version   GIF version

Theorem cdleme3 37478
Description: Part of proof of Lemma E in [Crawley] p. 113. 𝐹 represents f(r). 𝑊 is the fiducial co-atom (hyperplane) w. Here and in cdleme3fa 37477 above, we show that f(r) W (4th line from bottom on p. 113), meaning it is an atom and not under w, which in our notation is expressed as 𝐹𝐴 ∧ ¬ 𝐹 𝑊. Their proof provides no details of our lemmas cdleme3b 37470 through cdleme3 37478, so there may be a simpler proof that we have overlooked. (Contributed by NM, 7-Jun-2012.)
Hypotheses
Ref Expression
cdleme1.l = (le‘𝐾)
cdleme1.j = (join‘𝐾)
cdleme1.m = (meet‘𝐾)
cdleme1.a 𝐴 = (Atoms‘𝐾)
cdleme1.h 𝐻 = (LHyp‘𝐾)
cdleme1.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme1.f 𝐹 = ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊)))
Assertion
Ref Expression
cdleme3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → ¬ 𝐹 𝑊)

Proof of Theorem cdleme3
StepHypRef Expression
1 cdleme1.l . . 3 = (le‘𝐾)
2 cdleme1.j . . 3 = (join‘𝐾)
3 cdleme1.m . . 3 = (meet‘𝐾)
4 cdleme1.a . . 3 𝐴 = (Atoms‘𝐾)
5 cdleme1.h . . 3 𝐻 = (LHyp‘𝐾)
6 cdleme1.u . . 3 𝑈 = ((𝑃 𝑄) 𝑊)
7 cdleme1.f . . 3 𝐹 = ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊)))
8 eqid 2824 . . 3 ((𝑃 𝑅) 𝑊) = ((𝑃 𝑅) 𝑊)
91, 2, 3, 4, 5, 6, 7, 8cdleme3g 37475 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → 𝐹𝑈)
10 simp1l 1194 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → 𝐾 ∈ HL)
1110hllatd 36605 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → 𝐾 ∈ Lat)
12 simp23l 1291 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → 𝑅𝐴)
13 eqid 2824 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
1413, 4atbase 36530 . . . . . . 7 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
1512, 14syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → 𝑅 ∈ (Base‘𝐾))
161, 2, 3, 4, 5, 6, 7cdleme3fa 37477 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → 𝐹𝐴)
1713, 4atbase 36530 . . . . . . 7 (𝐹𝐴𝐹 ∈ (Base‘𝐾))
1816, 17syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → 𝐹 ∈ (Base‘𝐾))
1913, 1, 2latlej2 17671 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑅 ∈ (Base‘𝐾) ∧ 𝐹 ∈ (Base‘𝐾)) → 𝐹 (𝑅 𝐹))
2011, 15, 18, 19syl3anc 1368 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → 𝐹 (𝑅 𝐹))
2120biantrurd 536 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → (𝐹 𝑊 ↔ (𝐹 (𝑅 𝐹) ∧ 𝐹 𝑊)))
2213, 2, 4hlatjcl 36608 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑅𝐴𝐹𝐴) → (𝑅 𝐹) ∈ (Base‘𝐾))
2310, 12, 16, 22syl3anc 1368 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → (𝑅 𝐹) ∈ (Base‘𝐾))
24 simp1r 1195 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → 𝑊𝐻)
2513, 5lhpbase 37239 . . . . . . 7 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
2624, 25syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → 𝑊 ∈ (Base‘𝐾))
2713, 1, 3latlem12 17688 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝐹 ∈ (Base‘𝐾) ∧ (𝑅 𝐹) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝐹 (𝑅 𝐹) ∧ 𝐹 𝑊) ↔ 𝐹 ((𝑅 𝐹) 𝑊)))
2811, 18, 23, 26, 27syl13anc 1369 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → ((𝐹 (𝑅 𝐹) ∧ 𝐹 𝑊) ↔ 𝐹 ((𝑅 𝐹) 𝑊)))
29 simp1 1133 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
30 simp21l 1287 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → 𝑃𝐴)
31 simp22l 1289 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → 𝑄𝐴)
32 simp23 1205 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → (𝑅𝐴 ∧ ¬ 𝑅 𝑊))
331, 2, 3, 4, 5, 6, 7cdleme2 37469 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊))) → ((𝑅 𝐹) 𝑊) = 𝑈)
3429, 30, 31, 32, 33syl13anc 1369 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → ((𝑅 𝐹) 𝑊) = 𝑈)
3534breq2d 5064 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → (𝐹 ((𝑅 𝐹) 𝑊) ↔ 𝐹 𝑈))
3628, 35bitrd 282 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → ((𝐹 (𝑅 𝐹) ∧ 𝐹 𝑊) ↔ 𝐹 𝑈))
37 hlatl 36601 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
3810, 37syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → 𝐾 ∈ AtLat)
39 simp21 1203 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
40 simp3l 1198 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → 𝑃𝑄)
411, 2, 3, 4, 5, 6lhpat2 37286 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) → 𝑈𝐴)
4229, 39, 31, 40, 41syl112anc 1371 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → 𝑈𝐴)
431, 4atcmp 36552 . . . . 5 ((𝐾 ∈ AtLat ∧ 𝐹𝐴𝑈𝐴) → (𝐹 𝑈𝐹 = 𝑈))
4438, 16, 42, 43syl3anc 1368 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → (𝐹 𝑈𝐹 = 𝑈))
4521, 36, 443bitrd 308 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → (𝐹 𝑊𝐹 = 𝑈))
4645necon3bbid 3051 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → (¬ 𝐹 𝑊𝐹𝑈))
479, 46mpbird 260 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → ¬ 𝐹 𝑊)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2115  wne 3014   class class class wbr 5052  cfv 6343  (class class class)co 7149  Basecbs 16483  lecple 16572  joincjn 17554  meetcmee 17555  Latclat 17655  Atomscatm 36504  AtLatcal 36505  HLchlt 36591  LHypclh 37225
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-iun 4907  df-iin 4908  df-br 5053  df-opab 5115  df-mpt 5133  df-id 5447  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-1st 7684  df-2nd 7685  df-proset 17538  df-poset 17556  df-plt 17568  df-lub 17584  df-glb 17585  df-join 17586  df-meet 17587  df-p0 17649  df-p1 17650  df-lat 17656  df-clat 17718  df-oposet 36417  df-ol 36419  df-oml 36420  df-covers 36507  df-ats 36508  df-atl 36539  df-cvlat 36563  df-hlat 36592  df-lines 36742  df-psubsp 36744  df-pmap 36745  df-padd 37037  df-lhyp 37229
This theorem is referenced by:  cdleme7d  37487  cdleme7ga  37489  cdleme11fN  37505  cdleme16f  37524  cdleme19c  37546  cdleme22g  37589  cdlemefr32sn2aw  37645  cdleme36m  37702  cdleme43bN  37731
  Copyright terms: Public domain W3C validator