![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleme3fa | Structured version Visualization version GIF version |
Description: Part of proof of Lemma E in [Crawley] p. 113. See cdleme3 39766. (Contributed by NM, 6-Oct-2012.) |
Ref | Expression |
---|---|
cdleme1.l | β’ β€ = (leβπΎ) |
cdleme1.j | β’ β¨ = (joinβπΎ) |
cdleme1.m | β’ β§ = (meetβπΎ) |
cdleme1.a | β’ π΄ = (AtomsβπΎ) |
cdleme1.h | β’ π» = (LHypβπΎ) |
cdleme1.u | β’ π = ((π β¨ π) β§ π) |
cdleme1.f | β’ πΉ = ((π β¨ π) β§ (π β¨ ((π β¨ π ) β§ π))) |
Ref | Expression |
---|---|
cdleme3fa | β’ (((πΎ β HL β§ π β π») β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ Β¬ π β€ (π β¨ π))) β πΉ β π΄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdleme1.l | . 2 β’ β€ = (leβπΎ) | |
2 | cdleme1.j | . 2 β’ β¨ = (joinβπΎ) | |
3 | cdleme1.m | . 2 β’ β§ = (meetβπΎ) | |
4 | cdleme1.a | . 2 β’ π΄ = (AtomsβπΎ) | |
5 | cdleme1.h | . 2 β’ π» = (LHypβπΎ) | |
6 | cdleme1.u | . 2 β’ π = ((π β¨ π) β§ π) | |
7 | cdleme1.f | . 2 β’ πΉ = ((π β¨ π) β§ (π β¨ ((π β¨ π ) β§ π))) | |
8 | eqid 2725 | . 2 β’ ((π β¨ π ) β§ π) = ((π β¨ π ) β§ π) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | cdleme3h 39764 | 1 β’ (((πΎ β HL β§ π β π») β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ Β¬ π β€ (π β¨ π))) β πΉ β π΄) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 394 β§ w3a 1084 = wceq 1533 β wcel 2098 β wne 2930 class class class wbr 5143 βcfv 6543 (class class class)co 7416 lecple 17239 joincjn 18302 meetcmee 18303 Atomscatm 38791 HLchlt 38878 LHypclh 39513 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7738 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-1st 7991 df-2nd 7992 df-proset 18286 df-poset 18304 df-plt 18321 df-lub 18337 df-glb 18338 df-join 18339 df-meet 18340 df-p0 18416 df-p1 18417 df-lat 18423 df-clat 18490 df-oposet 38704 df-ol 38706 df-oml 38707 df-covers 38794 df-ats 38795 df-atl 38826 df-cvlat 38850 df-hlat 38879 df-lines 39030 df-psubsp 39032 df-pmap 39033 df-padd 39325 df-lhyp 39517 |
This theorem is referenced by: cdleme3 39766 cdleme7d 39775 cdleme7ga 39777 cdleme11j 39796 cdleme11k 39797 cdleme11 39799 cdleme14 39802 cdleme15a 39803 cdleme16b 39808 cdleme16c 39809 cdleme16d 39810 cdleme16e 39811 cdleme16f 39812 cdleme19d 39835 cdleme20f 39843 cdleme20l1 39849 cdleme20l2 39850 cdleme22f2 39876 cdleme22g 39877 cdlemefr32sn2aw 39933 cdleme35a 39977 cdleme36m 39990 cdleme43bN 40019 |
Copyright terms: Public domain | W3C validator |