| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleme3fa | Structured version Visualization version GIF version | ||
| Description: Part of proof of Lemma E in [Crawley] p. 113. See cdleme3 40225. (Contributed by NM, 6-Oct-2012.) |
| Ref | Expression |
|---|---|
| cdleme1.l | ⊢ ≤ = (le‘𝐾) |
| cdleme1.j | ⊢ ∨ = (join‘𝐾) |
| cdleme1.m | ⊢ ∧ = (meet‘𝐾) |
| cdleme1.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| cdleme1.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| cdleme1.u | ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
| cdleme1.f | ⊢ 𝐹 = ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊))) |
| Ref | Expression |
|---|---|
| cdleme3fa | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) → 𝐹 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cdleme1.l | . 2 ⊢ ≤ = (le‘𝐾) | |
| 2 | cdleme1.j | . 2 ⊢ ∨ = (join‘𝐾) | |
| 3 | cdleme1.m | . 2 ⊢ ∧ = (meet‘𝐾) | |
| 4 | cdleme1.a | . 2 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 5 | cdleme1.h | . 2 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 6 | cdleme1.u | . 2 ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) | |
| 7 | cdleme1.f | . 2 ⊢ 𝐹 = ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊))) | |
| 8 | eqid 2729 | . 2 ⊢ ((𝑃 ∨ 𝑅) ∧ 𝑊) = ((𝑃 ∨ 𝑅) ∧ 𝑊) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | cdleme3h 40223 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) → 𝐹 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5102 ‘cfv 6499 (class class class)co 7369 lecple 17204 joincjn 18253 meetcmee 18254 Atomscatm 39250 HLchlt 39337 LHypclh 39972 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-proset 18236 df-poset 18255 df-plt 18270 df-lub 18286 df-glb 18287 df-join 18288 df-meet 18289 df-p0 18365 df-p1 18366 df-lat 18374 df-clat 18441 df-oposet 39163 df-ol 39165 df-oml 39166 df-covers 39253 df-ats 39254 df-atl 39285 df-cvlat 39309 df-hlat 39338 df-lines 39489 df-psubsp 39491 df-pmap 39492 df-padd 39784 df-lhyp 39976 |
| This theorem is referenced by: cdleme3 40225 cdleme7d 40234 cdleme7ga 40236 cdleme11j 40255 cdleme11k 40256 cdleme11 40258 cdleme14 40261 cdleme15a 40262 cdleme16b 40267 cdleme16c 40268 cdleme16d 40269 cdleme16e 40270 cdleme16f 40271 cdleme19d 40294 cdleme20f 40302 cdleme20l1 40308 cdleme20l2 40309 cdleme22f2 40335 cdleme22g 40336 cdlemefr32sn2aw 40392 cdleme35a 40436 cdleme36m 40449 cdleme43bN 40478 |
| Copyright terms: Public domain | W3C validator |