| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleme3fa | Structured version Visualization version GIF version | ||
| Description: Part of proof of Lemma E in [Crawley] p. 113. See cdleme3 40342. (Contributed by NM, 6-Oct-2012.) |
| Ref | Expression |
|---|---|
| cdleme1.l | ⊢ ≤ = (le‘𝐾) |
| cdleme1.j | ⊢ ∨ = (join‘𝐾) |
| cdleme1.m | ⊢ ∧ = (meet‘𝐾) |
| cdleme1.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| cdleme1.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| cdleme1.u | ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
| cdleme1.f | ⊢ 𝐹 = ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊))) |
| Ref | Expression |
|---|---|
| cdleme3fa | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) → 𝐹 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cdleme1.l | . 2 ⊢ ≤ = (le‘𝐾) | |
| 2 | cdleme1.j | . 2 ⊢ ∨ = (join‘𝐾) | |
| 3 | cdleme1.m | . 2 ⊢ ∧ = (meet‘𝐾) | |
| 4 | cdleme1.a | . 2 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 5 | cdleme1.h | . 2 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 6 | cdleme1.u | . 2 ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) | |
| 7 | cdleme1.f | . 2 ⊢ 𝐹 = ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊))) | |
| 8 | eqid 2731 | . 2 ⊢ ((𝑃 ∨ 𝑅) ∧ 𝑊) = ((𝑃 ∨ 𝑅) ∧ 𝑊) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | cdleme3h 40340 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) → 𝐹 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 class class class wbr 5093 ‘cfv 6487 (class class class)co 7352 lecple 17174 joincjn 18223 meetcmee 18224 Atomscatm 39368 HLchlt 39455 LHypclh 40089 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-proset 18206 df-poset 18225 df-plt 18240 df-lub 18256 df-glb 18257 df-join 18258 df-meet 18259 df-p0 18335 df-p1 18336 df-lat 18344 df-clat 18411 df-oposet 39281 df-ol 39283 df-oml 39284 df-covers 39371 df-ats 39372 df-atl 39403 df-cvlat 39427 df-hlat 39456 df-lines 39606 df-psubsp 39608 df-pmap 39609 df-padd 39901 df-lhyp 40093 |
| This theorem is referenced by: cdleme3 40342 cdleme7d 40351 cdleme7ga 40353 cdleme11j 40372 cdleme11k 40373 cdleme11 40375 cdleme14 40378 cdleme15a 40379 cdleme16b 40384 cdleme16c 40385 cdleme16d 40386 cdleme16e 40387 cdleme16f 40388 cdleme19d 40411 cdleme20f 40419 cdleme20l1 40425 cdleme20l2 40426 cdleme22f2 40452 cdleme22g 40453 cdlemefr32sn2aw 40509 cdleme35a 40553 cdleme36m 40566 cdleme43bN 40595 |
| Copyright terms: Public domain | W3C validator |