Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme9 Structured version   Visualization version   GIF version

Theorem cdleme9 39580
Description: Part of proof of Lemma E in [Crawley] p. 113, 2nd paragraph on p. 114. 𝐢 and 𝐹 represent s1 and f(s) respectively. In their notation, we prove f(s) ∨ s1 = q ∨ s1. (Contributed by NM, 10-Jun-2012.)
Hypotheses
Ref Expression
cdleme9.l ≀ = (leβ€˜πΎ)
cdleme9.j ∨ = (joinβ€˜πΎ)
cdleme9.m ∧ = (meetβ€˜πΎ)
cdleme9.a 𝐴 = (Atomsβ€˜πΎ)
cdleme9.h 𝐻 = (LHypβ€˜πΎ)
cdleme9.u π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
cdleme9.f 𝐹 = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))
cdleme9.c 𝐢 = ((𝑃 ∨ 𝑆) ∧ π‘Š)
Assertion
Ref Expression
cdleme9 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) β†’ (𝐹 ∨ 𝐢) = (𝑄 ∨ 𝐢))

Proof of Theorem cdleme9
StepHypRef Expression
1 cdleme9.l . . . 4 ≀ = (leβ€˜πΎ)
2 cdleme9.j . . . 4 ∨ = (joinβ€˜πΎ)
3 cdleme9.m . . . 4 ∧ = (meetβ€˜πΎ)
4 cdleme9.a . . . 4 𝐴 = (Atomsβ€˜πΎ)
5 cdleme9.h . . . 4 𝐻 = (LHypβ€˜πΎ)
6 cdleme9.u . . . 4 π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
7 cdleme9.f . . . 4 𝐹 = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))
8 cdleme9.c . . . 4 𝐢 = ((𝑃 ∨ 𝑆) ∧ π‘Š)
91, 2, 3, 4, 5, 6, 7, 8cdleme3d 39558 . . 3 𝐹 = ((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ 𝐢))
109oveq1i 7411 . 2 (𝐹 ∨ 𝐢) = (((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ 𝐢)) ∨ 𝐢)
11 simp1l 1194 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) β†’ 𝐾 ∈ HL)
12 simp1 1133 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
13 simp21 1203 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) β†’ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))
14 simp23l 1291 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑆 ∈ 𝐴)
1511hllatd 38690 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) β†’ 𝐾 ∈ Lat)
16 eqid 2724 . . . . . . . 8 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
1716, 4atbase 38615 . . . . . . 7 (𝑆 ∈ 𝐴 β†’ 𝑆 ∈ (Baseβ€˜πΎ))
1814, 17syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑆 ∈ (Baseβ€˜πΎ))
19 simp21l 1287 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑃 ∈ 𝐴)
2016, 4atbase 38615 . . . . . . 7 (𝑃 ∈ 𝐴 β†’ 𝑃 ∈ (Baseβ€˜πΎ))
2119, 20syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑃 ∈ (Baseβ€˜πΎ))
22 simp22 1204 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑄 ∈ 𝐴)
2316, 4atbase 38615 . . . . . . 7 (𝑄 ∈ 𝐴 β†’ 𝑄 ∈ (Baseβ€˜πΎ))
2422, 23syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑄 ∈ (Baseβ€˜πΎ))
25 simp3 1135 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) β†’ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))
2616, 1, 2latnlej1l 18409 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Baseβ€˜πΎ) ∧ 𝑃 ∈ (Baseβ€˜πΎ) ∧ 𝑄 ∈ (Baseβ€˜πΎ)) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑆 β‰  𝑃)
2726necomd 2988 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Baseβ€˜πΎ) ∧ 𝑃 ∈ (Baseβ€˜πΎ) ∧ 𝑄 ∈ (Baseβ€˜πΎ)) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑃 β‰  𝑆)
2815, 18, 21, 24, 25, 27syl131anc 1380 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑃 β‰  𝑆)
291, 2, 3, 4, 5, 8cdleme9a 39578 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑆 ∈ 𝐴 ∧ 𝑃 β‰  𝑆)) β†’ 𝐢 ∈ 𝐴)
3012, 13, 14, 28, 29syl112anc 1371 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) β†’ 𝐢 ∈ 𝐴)
311, 2, 3, 4, 5, 6, 16cdleme0aa 39537 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) β†’ π‘ˆ ∈ (Baseβ€˜πΎ))
3212, 19, 22, 31syl3anc 1368 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) β†’ π‘ˆ ∈ (Baseβ€˜πΎ))
3316, 2latjcl 18391 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑆 ∈ (Baseβ€˜πΎ) ∧ π‘ˆ ∈ (Baseβ€˜πΎ)) β†’ (𝑆 ∨ π‘ˆ) ∈ (Baseβ€˜πΎ))
3415, 18, 32, 33syl3anc 1368 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) β†’ (𝑆 ∨ π‘ˆ) ∈ (Baseβ€˜πΎ))
3516, 2, 4hlatjcl 38693 . . . . 5 ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝐢 ∈ 𝐴) β†’ (𝑄 ∨ 𝐢) ∈ (Baseβ€˜πΎ))
3611, 22, 30, 35syl3anc 1368 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) β†’ (𝑄 ∨ 𝐢) ∈ (Baseβ€˜πΎ))
371, 2, 4hlatlej2 38702 . . . . 5 ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝐢 ∈ 𝐴) β†’ 𝐢 ≀ (𝑄 ∨ 𝐢))
3811, 22, 30, 37syl3anc 1368 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) β†’ 𝐢 ≀ (𝑄 ∨ 𝐢))
3916, 1, 2, 3, 4atmod4i1 39193 . . . 4 ((𝐾 ∈ HL ∧ (𝐢 ∈ 𝐴 ∧ (𝑆 ∨ π‘ˆ) ∈ (Baseβ€˜πΎ) ∧ (𝑄 ∨ 𝐢) ∈ (Baseβ€˜πΎ)) ∧ 𝐢 ≀ (𝑄 ∨ 𝐢)) β†’ (((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ 𝐢)) ∨ 𝐢) = (((𝑆 ∨ π‘ˆ) ∨ 𝐢) ∧ (𝑄 ∨ 𝐢)))
4011, 30, 34, 36, 38, 39syl131anc 1380 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) β†’ (((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ 𝐢)) ∨ 𝐢) = (((𝑆 ∨ π‘ˆ) ∨ 𝐢) ∧ (𝑄 ∨ 𝐢)))
418oveq2i 7412 . . . . . . 7 (𝑆 ∨ 𝐢) = (𝑆 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š))
4216, 2, 4hlatjcl 38693 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) β†’ (𝑃 ∨ 𝑆) ∈ (Baseβ€˜πΎ))
4311, 19, 14, 42syl3anc 1368 . . . . . . . . 9 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) β†’ (𝑃 ∨ 𝑆) ∈ (Baseβ€˜πΎ))
44 simp1r 1195 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) β†’ π‘Š ∈ 𝐻)
4516, 5lhpbase 39325 . . . . . . . . . 10 (π‘Š ∈ 𝐻 β†’ π‘Š ∈ (Baseβ€˜πΎ))
4644, 45syl 17 . . . . . . . . 9 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) β†’ π‘Š ∈ (Baseβ€˜πΎ))
471, 2, 4hlatlej2 38702 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) β†’ 𝑆 ≀ (𝑃 ∨ 𝑆))
4811, 19, 14, 47syl3anc 1368 . . . . . . . . 9 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑆 ≀ (𝑃 ∨ 𝑆))
4916, 1, 2, 3, 4atmod3i1 39191 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑆) ∈ (Baseβ€˜πΎ) ∧ π‘Š ∈ (Baseβ€˜πΎ)) ∧ 𝑆 ≀ (𝑃 ∨ 𝑆)) β†’ (𝑆 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)) = ((𝑃 ∨ 𝑆) ∧ (𝑆 ∨ π‘Š)))
5011, 14, 43, 46, 48, 49syl131anc 1380 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) β†’ (𝑆 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)) = ((𝑃 ∨ 𝑆) ∧ (𝑆 ∨ π‘Š)))
51 simp23r 1292 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) β†’ Β¬ 𝑆 ≀ π‘Š)
52 eqid 2724 . . . . . . . . . . 11 (1.β€˜πΎ) = (1.β€˜πΎ)
531, 2, 52, 4, 5lhpjat2 39348 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) β†’ (𝑆 ∨ π‘Š) = (1.β€˜πΎ))
5412, 14, 51, 53syl12anc 834 . . . . . . . . 9 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) β†’ (𝑆 ∨ π‘Š) = (1.β€˜πΎ))
5554oveq2d 7417 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) β†’ ((𝑃 ∨ 𝑆) ∧ (𝑆 ∨ π‘Š)) = ((𝑃 ∨ 𝑆) ∧ (1.β€˜πΎ)))
56 hlol 38687 . . . . . . . . . 10 (𝐾 ∈ HL β†’ 𝐾 ∈ OL)
5711, 56syl 17 . . . . . . . . 9 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) β†’ 𝐾 ∈ OL)
5816, 3, 52olm11 38553 . . . . . . . . 9 ((𝐾 ∈ OL ∧ (𝑃 ∨ 𝑆) ∈ (Baseβ€˜πΎ)) β†’ ((𝑃 ∨ 𝑆) ∧ (1.β€˜πΎ)) = (𝑃 ∨ 𝑆))
5957, 43, 58syl2anc 583 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) β†’ ((𝑃 ∨ 𝑆) ∧ (1.β€˜πΎ)) = (𝑃 ∨ 𝑆))
6050, 55, 593eqtrrd 2769 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) β†’ (𝑃 ∨ 𝑆) = (𝑆 ∨ ((𝑃 ∨ 𝑆) ∧ π‘Š)))
6141, 60eqtr4id 2783 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) β†’ (𝑆 ∨ 𝐢) = (𝑃 ∨ 𝑆))
6261oveq1d 7416 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) β†’ ((𝑆 ∨ 𝐢) ∨ π‘ˆ) = ((𝑃 ∨ 𝑆) ∨ π‘ˆ))
6316, 4atbase 38615 . . . . . . 7 (𝐢 ∈ 𝐴 β†’ 𝐢 ∈ (Baseβ€˜πΎ))
6430, 63syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) β†’ 𝐢 ∈ (Baseβ€˜πΎ))
6516, 2latj32 18437 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Baseβ€˜πΎ) ∧ π‘ˆ ∈ (Baseβ€˜πΎ) ∧ 𝐢 ∈ (Baseβ€˜πΎ))) β†’ ((𝑆 ∨ π‘ˆ) ∨ 𝐢) = ((𝑆 ∨ 𝐢) ∨ π‘ˆ))
6615, 18, 32, 64, 65syl13anc 1369 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) β†’ ((𝑆 ∨ π‘ˆ) ∨ 𝐢) = ((𝑆 ∨ 𝐢) ∨ π‘ˆ))
672, 4hlatj32 38698 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) β†’ ((𝑃 ∨ 𝑆) ∨ 𝑄) = ((𝑃 ∨ 𝑄) ∨ 𝑆))
6811, 19, 14, 22, 67syl13anc 1369 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) β†’ ((𝑃 ∨ 𝑆) ∨ 𝑄) = ((𝑃 ∨ 𝑄) ∨ 𝑆))
6916, 2latjcom 18399 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Baseβ€˜πΎ) ∧ (𝑃 ∨ 𝑆) ∈ (Baseβ€˜πΎ)) β†’ (𝑄 ∨ (𝑃 ∨ 𝑆)) = ((𝑃 ∨ 𝑆) ∨ 𝑄))
7015, 24, 43, 69syl3anc 1368 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) β†’ (𝑄 ∨ (𝑃 ∨ 𝑆)) = ((𝑃 ∨ 𝑆) ∨ 𝑄))
716oveq2i 7412 . . . . . . . . 9 (𝑃 ∨ π‘ˆ) = (𝑃 ∨ ((𝑃 ∨ 𝑄) ∧ π‘Š))
7216, 2, 4hlatjcl 38693 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) β†’ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ))
7311, 19, 22, 72syl3anc 1368 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) β†’ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ))
741, 2, 4hlatlej1 38701 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) β†’ 𝑃 ≀ (𝑃 ∨ 𝑄))
7511, 19, 22, 74syl3anc 1368 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑃 ≀ (𝑃 ∨ 𝑄))
7616, 1, 2, 3, 4atmod3i1 39191 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ) ∧ π‘Š ∈ (Baseβ€˜πΎ)) ∧ 𝑃 ≀ (𝑃 ∨ 𝑄)) β†’ (𝑃 ∨ ((𝑃 ∨ 𝑄) ∧ π‘Š)) = ((𝑃 ∨ 𝑄) ∧ (𝑃 ∨ π‘Š)))
7711, 19, 73, 46, 75, 76syl131anc 1380 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) β†’ (𝑃 ∨ ((𝑃 ∨ 𝑄) ∧ π‘Š)) = ((𝑃 ∨ 𝑄) ∧ (𝑃 ∨ π‘Š)))
781, 2, 52, 4, 5lhpjat2 39348 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ (𝑃 ∨ π‘Š) = (1.β€˜πΎ))
7912, 13, 78syl2anc 583 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) β†’ (𝑃 ∨ π‘Š) = (1.β€˜πΎ))
8079oveq2d 7417 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) β†’ ((𝑃 ∨ 𝑄) ∧ (𝑃 ∨ π‘Š)) = ((𝑃 ∨ 𝑄) ∧ (1.β€˜πΎ)))
8116, 3, 52olm11 38553 . . . . . . . . . . 11 ((𝐾 ∈ OL ∧ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ)) β†’ ((𝑃 ∨ 𝑄) ∧ (1.β€˜πΎ)) = (𝑃 ∨ 𝑄))
8257, 73, 81syl2anc 583 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) β†’ ((𝑃 ∨ 𝑄) ∧ (1.β€˜πΎ)) = (𝑃 ∨ 𝑄))
8377, 80, 823eqtrd 2768 . . . . . . . . 9 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) β†’ (𝑃 ∨ ((𝑃 ∨ 𝑄) ∧ π‘Š)) = (𝑃 ∨ 𝑄))
8471, 83eqtrid 2776 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) β†’ (𝑃 ∨ π‘ˆ) = (𝑃 ∨ 𝑄))
8584oveq1d 7416 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) β†’ ((𝑃 ∨ π‘ˆ) ∨ 𝑆) = ((𝑃 ∨ 𝑄) ∨ 𝑆))
8668, 70, 853eqtr4d 2774 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) β†’ (𝑄 ∨ (𝑃 ∨ 𝑆)) = ((𝑃 ∨ π‘ˆ) ∨ 𝑆))
8716, 2latj32 18437 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Baseβ€˜πΎ) ∧ π‘ˆ ∈ (Baseβ€˜πΎ) ∧ 𝑆 ∈ (Baseβ€˜πΎ))) β†’ ((𝑃 ∨ π‘ˆ) ∨ 𝑆) = ((𝑃 ∨ 𝑆) ∨ π‘ˆ))
8815, 21, 32, 18, 87syl13anc 1369 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) β†’ ((𝑃 ∨ π‘ˆ) ∨ 𝑆) = ((𝑃 ∨ 𝑆) ∨ π‘ˆ))
8986, 88eqtrd 2764 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) β†’ (𝑄 ∨ (𝑃 ∨ 𝑆)) = ((𝑃 ∨ 𝑆) ∨ π‘ˆ))
9062, 66, 893eqtr4d 2774 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) β†’ ((𝑆 ∨ π‘ˆ) ∨ 𝐢) = (𝑄 ∨ (𝑃 ∨ 𝑆)))
9190oveq1d 7416 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) β†’ (((𝑆 ∨ π‘ˆ) ∨ 𝐢) ∧ (𝑄 ∨ 𝐢)) = ((𝑄 ∨ (𝑃 ∨ 𝑆)) ∧ (𝑄 ∨ 𝐢)))
9216, 1, 3latmle1 18416 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑆) ∈ (Baseβ€˜πΎ) ∧ π‘Š ∈ (Baseβ€˜πΎ)) β†’ ((𝑃 ∨ 𝑆) ∧ π‘Š) ≀ (𝑃 ∨ 𝑆))
9315, 43, 46, 92syl3anc 1368 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) β†’ ((𝑃 ∨ 𝑆) ∧ π‘Š) ≀ (𝑃 ∨ 𝑆))
948, 93eqbrtrid 5173 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) β†’ 𝐢 ≀ (𝑃 ∨ 𝑆))
9516, 1, 2latjlej2 18406 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝐢 ∈ (Baseβ€˜πΎ) ∧ (𝑃 ∨ 𝑆) ∈ (Baseβ€˜πΎ) ∧ 𝑄 ∈ (Baseβ€˜πΎ))) β†’ (𝐢 ≀ (𝑃 ∨ 𝑆) β†’ (𝑄 ∨ 𝐢) ≀ (𝑄 ∨ (𝑃 ∨ 𝑆))))
9615, 64, 43, 24, 95syl13anc 1369 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) β†’ (𝐢 ≀ (𝑃 ∨ 𝑆) β†’ (𝑄 ∨ 𝐢) ≀ (𝑄 ∨ (𝑃 ∨ 𝑆))))
9794, 96mpd 15 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) β†’ (𝑄 ∨ 𝐢) ≀ (𝑄 ∨ (𝑃 ∨ 𝑆)))
9816, 2latjcl 18391 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Baseβ€˜πΎ) ∧ (𝑃 ∨ 𝑆) ∈ (Baseβ€˜πΎ)) β†’ (𝑄 ∨ (𝑃 ∨ 𝑆)) ∈ (Baseβ€˜πΎ))
9915, 24, 43, 98syl3anc 1368 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) β†’ (𝑄 ∨ (𝑃 ∨ 𝑆)) ∈ (Baseβ€˜πΎ))
10016, 1, 3latleeqm2 18420 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑄 ∨ 𝐢) ∈ (Baseβ€˜πΎ) ∧ (𝑄 ∨ (𝑃 ∨ 𝑆)) ∈ (Baseβ€˜πΎ)) β†’ ((𝑄 ∨ 𝐢) ≀ (𝑄 ∨ (𝑃 ∨ 𝑆)) ↔ ((𝑄 ∨ (𝑃 ∨ 𝑆)) ∧ (𝑄 ∨ 𝐢)) = (𝑄 ∨ 𝐢)))
10115, 36, 99, 100syl3anc 1368 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) β†’ ((𝑄 ∨ 𝐢) ≀ (𝑄 ∨ (𝑃 ∨ 𝑆)) ↔ ((𝑄 ∨ (𝑃 ∨ 𝑆)) ∧ (𝑄 ∨ 𝐢)) = (𝑄 ∨ 𝐢)))
10297, 101mpbid 231 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) β†’ ((𝑄 ∨ (𝑃 ∨ 𝑆)) ∧ (𝑄 ∨ 𝐢)) = (𝑄 ∨ 𝐢))
10340, 91, 1023eqtrd 2768 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) β†’ (((𝑆 ∨ π‘ˆ) ∧ (𝑄 ∨ 𝐢)) ∨ 𝐢) = (𝑄 ∨ 𝐢))
10410, 103eqtrid 2776 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) β†’ (𝐹 ∨ 𝐢) = (𝑄 ∨ 𝐢))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2932   class class class wbr 5138  β€˜cfv 6533  (class class class)co 7401  Basecbs 17140  lecple 17200  joincjn 18263  meetcmee 18264  1.cp1 18376  Latclat 18383  OLcol 38500  Atomscatm 38589  HLchlt 38676  LHypclh 39311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-iin 4990  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-1st 7968  df-2nd 7969  df-proset 18247  df-poset 18265  df-plt 18282  df-lub 18298  df-glb 18299  df-join 18300  df-meet 18301  df-p0 18377  df-p1 18378  df-lat 18384  df-clat 18451  df-oposet 38502  df-ol 38504  df-oml 38505  df-covers 38592  df-ats 38593  df-atl 38624  df-cvlat 38648  df-hlat 38677  df-psubsp 38830  df-pmap 38831  df-padd 39123  df-lhyp 39315
This theorem is referenced by:  cdleme9tN  39584  cdleme17a  39613
  Copyright terms: Public domain W3C validator