Proof of Theorem cdleme9
Step | Hyp | Ref
| Expression |
1 | | cdleme9.l |
. . . 4
⊢ ≤ =
(le‘𝐾) |
2 | | cdleme9.j |
. . . 4
⊢ ∨ =
(join‘𝐾) |
3 | | cdleme9.m |
. . . 4
⊢ ∧ =
(meet‘𝐾) |
4 | | cdleme9.a |
. . . 4
⊢ 𝐴 = (Atoms‘𝐾) |
5 | | cdleme9.h |
. . . 4
⊢ 𝐻 = (LHyp‘𝐾) |
6 | | cdleme9.u |
. . . 4
⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
7 | | cdleme9.f |
. . . 4
⊢ 𝐹 = ((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) |
8 | | cdleme9.c |
. . . 4
⊢ 𝐶 = ((𝑃 ∨ 𝑆) ∧ 𝑊) |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | cdleme3d 37982 |
. . 3
⊢ 𝐹 = ((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ 𝐶)) |
10 | 9 | oveq1i 7223 |
. 2
⊢ (𝐹 ∨ 𝐶) = (((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ 𝐶)) ∨ 𝐶) |
11 | | simp1l 1199 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → 𝐾 ∈ HL) |
12 | | simp1 1138 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
13 | | simp21 1208 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
14 | | simp23l 1296 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → 𝑆 ∈ 𝐴) |
15 | 11 | hllatd 37115 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → 𝐾 ∈ Lat) |
16 | | eqid 2737 |
. . . . . . . 8
⊢
(Base‘𝐾) =
(Base‘𝐾) |
17 | 16, 4 | atbase 37040 |
. . . . . . 7
⊢ (𝑆 ∈ 𝐴 → 𝑆 ∈ (Base‘𝐾)) |
18 | 14, 17 | syl 17 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → 𝑆 ∈ (Base‘𝐾)) |
19 | | simp21l 1292 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → 𝑃 ∈ 𝐴) |
20 | 16, 4 | atbase 37040 |
. . . . . . 7
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
21 | 19, 20 | syl 17 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → 𝑃 ∈ (Base‘𝐾)) |
22 | | simp22 1209 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → 𝑄 ∈ 𝐴) |
23 | 16, 4 | atbase 37040 |
. . . . . . 7
⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) |
24 | 22, 23 | syl 17 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → 𝑄 ∈ (Base‘𝐾)) |
25 | | simp3 1140 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) |
26 | 16, 1, 2 | latnlej1l 17963 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → 𝑆 ≠ 𝑃) |
27 | 26 | necomd 2996 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → 𝑃 ≠ 𝑆) |
28 | 15, 18, 21, 24, 25, 27 | syl131anc 1385 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → 𝑃 ≠ 𝑆) |
29 | 1, 2, 3, 4, 5, 8 | cdleme9a 38002 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ 𝑃 ≠ 𝑆)) → 𝐶 ∈ 𝐴) |
30 | 12, 13, 14, 28, 29 | syl112anc 1376 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → 𝐶 ∈ 𝐴) |
31 | 1, 2, 3, 4, 5, 6, 16 | cdleme0aa 37961 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑈 ∈ (Base‘𝐾)) |
32 | 12, 19, 22, 31 | syl3anc 1373 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → 𝑈 ∈ (Base‘𝐾)) |
33 | 16, 2 | latjcl 17945 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝑆 ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾)) → (𝑆 ∨ 𝑈) ∈ (Base‘𝐾)) |
34 | 15, 18, 32, 33 | syl3anc 1373 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → (𝑆 ∨ 𝑈) ∈ (Base‘𝐾)) |
35 | 16, 2, 4 | hlatjcl 37118 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → (𝑄 ∨ 𝐶) ∈ (Base‘𝐾)) |
36 | 11, 22, 30, 35 | syl3anc 1373 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → (𝑄 ∨ 𝐶) ∈ (Base‘𝐾)) |
37 | 1, 2, 4 | hlatlej2 37127 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → 𝐶 ≤ (𝑄 ∨ 𝐶)) |
38 | 11, 22, 30, 37 | syl3anc 1373 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → 𝐶 ≤ (𝑄 ∨ 𝐶)) |
39 | 16, 1, 2, 3, 4 | atmod4i1 37617 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝐶 ∈ 𝐴 ∧ (𝑆 ∨ 𝑈) ∈ (Base‘𝐾) ∧ (𝑄 ∨ 𝐶) ∈ (Base‘𝐾)) ∧ 𝐶 ≤ (𝑄 ∨ 𝐶)) → (((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ 𝐶)) ∨ 𝐶) = (((𝑆 ∨ 𝑈) ∨ 𝐶) ∧ (𝑄 ∨ 𝐶))) |
40 | 11, 30, 34, 36, 38, 39 | syl131anc 1385 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → (((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ 𝐶)) ∨ 𝐶) = (((𝑆 ∨ 𝑈) ∨ 𝐶) ∧ (𝑄 ∨ 𝐶))) |
41 | 8 | oveq2i 7224 |
. . . . . . 7
⊢ (𝑆 ∨ 𝐶) = (𝑆 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊)) |
42 | 16, 2, 4 | hlatjcl 37118 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) → (𝑃 ∨ 𝑆) ∈ (Base‘𝐾)) |
43 | 11, 19, 14, 42 | syl3anc 1373 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → (𝑃 ∨ 𝑆) ∈ (Base‘𝐾)) |
44 | | simp1r 1200 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → 𝑊 ∈ 𝐻) |
45 | 16, 5 | lhpbase 37749 |
. . . . . . . . . 10
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
46 | 44, 45 | syl 17 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → 𝑊 ∈ (Base‘𝐾)) |
47 | 1, 2, 4 | hlatlej2 37127 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) → 𝑆 ≤ (𝑃 ∨ 𝑆)) |
48 | 11, 19, 14, 47 | syl3anc 1373 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → 𝑆 ≤ (𝑃 ∨ 𝑆)) |
49 | 16, 1, 2, 3, 4 | atmod3i1 37615 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ (𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑆) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ 𝑆 ≤ (𝑃 ∨ 𝑆)) → (𝑆 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊)) = ((𝑃 ∨ 𝑆) ∧ (𝑆 ∨ 𝑊))) |
50 | 11, 14, 43, 46, 48, 49 | syl131anc 1385 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → (𝑆 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊)) = ((𝑃 ∨ 𝑆) ∧ (𝑆 ∨ 𝑊))) |
51 | | simp23r 1297 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → ¬ 𝑆 ≤ 𝑊) |
52 | | eqid 2737 |
. . . . . . . . . . 11
⊢
(1.‘𝐾) =
(1.‘𝐾) |
53 | 1, 2, 52, 4, 5 | lhpjat2 37772 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) → (𝑆 ∨ 𝑊) = (1.‘𝐾)) |
54 | 12, 14, 51, 53 | syl12anc 837 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → (𝑆 ∨ 𝑊) = (1.‘𝐾)) |
55 | 54 | oveq2d 7229 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → ((𝑃 ∨ 𝑆) ∧ (𝑆 ∨ 𝑊)) = ((𝑃 ∨ 𝑆) ∧ (1.‘𝐾))) |
56 | | hlol 37112 |
. . . . . . . . . 10
⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) |
57 | 11, 56 | syl 17 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → 𝐾 ∈ OL) |
58 | 16, 3, 52 | olm11 36978 |
. . . . . . . . 9
⊢ ((𝐾 ∈ OL ∧ (𝑃 ∨ 𝑆) ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑆) ∧ (1.‘𝐾)) = (𝑃 ∨ 𝑆)) |
59 | 57, 43, 58 | syl2anc 587 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → ((𝑃 ∨ 𝑆) ∧ (1.‘𝐾)) = (𝑃 ∨ 𝑆)) |
60 | 50, 55, 59 | 3eqtrrd 2782 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → (𝑃 ∨ 𝑆) = (𝑆 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) |
61 | 41, 60 | eqtr4id 2797 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → (𝑆 ∨ 𝐶) = (𝑃 ∨ 𝑆)) |
62 | 61 | oveq1d 7228 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → ((𝑆 ∨ 𝐶) ∨ 𝑈) = ((𝑃 ∨ 𝑆) ∨ 𝑈)) |
63 | 16, 4 | atbase 37040 |
. . . . . . 7
⊢ (𝐶 ∈ 𝐴 → 𝐶 ∈ (Base‘𝐾)) |
64 | 30, 63 | syl 17 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → 𝐶 ∈ (Base‘𝐾)) |
65 | 16, 2 | latj32 17991 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾) ∧ 𝐶 ∈ (Base‘𝐾))) → ((𝑆 ∨ 𝑈) ∨ 𝐶) = ((𝑆 ∨ 𝐶) ∨ 𝑈)) |
66 | 15, 18, 32, 64, 65 | syl13anc 1374 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → ((𝑆 ∨ 𝑈) ∨ 𝐶) = ((𝑆 ∨ 𝐶) ∨ 𝑈)) |
67 | 2, 4 | hlatj32 37123 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((𝑃 ∨ 𝑆) ∨ 𝑄) = ((𝑃 ∨ 𝑄) ∨ 𝑆)) |
68 | 11, 19, 14, 22, 67 | syl13anc 1374 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → ((𝑃 ∨ 𝑆) ∨ 𝑄) = ((𝑃 ∨ 𝑄) ∨ 𝑆)) |
69 | 16, 2 | latjcom 17953 |
. . . . . . . 8
⊢ ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑆) ∈ (Base‘𝐾)) → (𝑄 ∨ (𝑃 ∨ 𝑆)) = ((𝑃 ∨ 𝑆) ∨ 𝑄)) |
70 | 15, 24, 43, 69 | syl3anc 1373 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → (𝑄 ∨ (𝑃 ∨ 𝑆)) = ((𝑃 ∨ 𝑆) ∨ 𝑄)) |
71 | 6 | oveq2i 7224 |
. . . . . . . . 9
⊢ (𝑃 ∨ 𝑈) = (𝑃 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊)) |
72 | 16, 2, 4 | hlatjcl 37118 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
73 | 11, 19, 22, 72 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
74 | 1, 2, 4 | hlatlej1 37126 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑃 ≤ (𝑃 ∨ 𝑄)) |
75 | 11, 19, 22, 74 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → 𝑃 ≤ (𝑃 ∨ 𝑄)) |
76 | 16, 1, 2, 3, 4 | atmod3i1 37615 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ 𝑃 ≤ (𝑃 ∨ 𝑄)) → (𝑃 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊)) = ((𝑃 ∨ 𝑄) ∧ (𝑃 ∨ 𝑊))) |
77 | 11, 19, 73, 46, 75, 76 | syl131anc 1385 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → (𝑃 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊)) = ((𝑃 ∨ 𝑄) ∧ (𝑃 ∨ 𝑊))) |
78 | 1, 2, 52, 4, 5 | lhpjat2 37772 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑃 ∨ 𝑊) = (1.‘𝐾)) |
79 | 12, 13, 78 | syl2anc 587 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → (𝑃 ∨ 𝑊) = (1.‘𝐾)) |
80 | 79 | oveq2d 7229 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → ((𝑃 ∨ 𝑄) ∧ (𝑃 ∨ 𝑊)) = ((𝑃 ∨ 𝑄) ∧ (1.‘𝐾))) |
81 | 16, 3, 52 | olm11 36978 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ OL ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑄) ∧ (1.‘𝐾)) = (𝑃 ∨ 𝑄)) |
82 | 57, 73, 81 | syl2anc 587 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → ((𝑃 ∨ 𝑄) ∧ (1.‘𝐾)) = (𝑃 ∨ 𝑄)) |
83 | 77, 80, 82 | 3eqtrd 2781 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → (𝑃 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊)) = (𝑃 ∨ 𝑄)) |
84 | 71, 83 | syl5eq 2790 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → (𝑃 ∨ 𝑈) = (𝑃 ∨ 𝑄)) |
85 | 84 | oveq1d 7228 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → ((𝑃 ∨ 𝑈) ∨ 𝑆) = ((𝑃 ∨ 𝑄) ∨ 𝑆)) |
86 | 68, 70, 85 | 3eqtr4d 2787 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → (𝑄 ∨ (𝑃 ∨ 𝑆)) = ((𝑃 ∨ 𝑈) ∨ 𝑆)) |
87 | 16, 2 | latj32 17991 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾))) → ((𝑃 ∨ 𝑈) ∨ 𝑆) = ((𝑃 ∨ 𝑆) ∨ 𝑈)) |
88 | 15, 21, 32, 18, 87 | syl13anc 1374 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → ((𝑃 ∨ 𝑈) ∨ 𝑆) = ((𝑃 ∨ 𝑆) ∨ 𝑈)) |
89 | 86, 88 | eqtrd 2777 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → (𝑄 ∨ (𝑃 ∨ 𝑆)) = ((𝑃 ∨ 𝑆) ∨ 𝑈)) |
90 | 62, 66, 89 | 3eqtr4d 2787 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → ((𝑆 ∨ 𝑈) ∨ 𝐶) = (𝑄 ∨ (𝑃 ∨ 𝑆))) |
91 | 90 | oveq1d 7228 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → (((𝑆 ∨ 𝑈) ∨ 𝐶) ∧ (𝑄 ∨ 𝐶)) = ((𝑄 ∨ (𝑃 ∨ 𝑆)) ∧ (𝑄 ∨ 𝐶))) |
92 | 16, 1, 3 | latmle1 17970 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑆) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑆) ∧ 𝑊) ≤ (𝑃 ∨ 𝑆)) |
93 | 15, 43, 46, 92 | syl3anc 1373 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → ((𝑃 ∨ 𝑆) ∧ 𝑊) ≤ (𝑃 ∨ 𝑆)) |
94 | 8, 93 | eqbrtrid 5088 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → 𝐶 ≤ (𝑃 ∨ 𝑆)) |
95 | 16, 1, 2 | latjlej2 17960 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝐶 ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑆) ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾))) → (𝐶 ≤ (𝑃 ∨ 𝑆) → (𝑄 ∨ 𝐶) ≤ (𝑄 ∨ (𝑃 ∨ 𝑆)))) |
96 | 15, 64, 43, 24, 95 | syl13anc 1374 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → (𝐶 ≤ (𝑃 ∨ 𝑆) → (𝑄 ∨ 𝐶) ≤ (𝑄 ∨ (𝑃 ∨ 𝑆)))) |
97 | 94, 96 | mpd 15 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → (𝑄 ∨ 𝐶) ≤ (𝑄 ∨ (𝑃 ∨ 𝑆))) |
98 | 16, 2 | latjcl 17945 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑆) ∈ (Base‘𝐾)) → (𝑄 ∨ (𝑃 ∨ 𝑆)) ∈ (Base‘𝐾)) |
99 | 15, 24, 43, 98 | syl3anc 1373 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → (𝑄 ∨ (𝑃 ∨ 𝑆)) ∈ (Base‘𝐾)) |
100 | 16, 1, 3 | latleeqm2 17974 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ (𝑄 ∨ 𝐶) ∈ (Base‘𝐾) ∧ (𝑄 ∨ (𝑃 ∨ 𝑆)) ∈ (Base‘𝐾)) → ((𝑄 ∨ 𝐶) ≤ (𝑄 ∨ (𝑃 ∨ 𝑆)) ↔ ((𝑄 ∨ (𝑃 ∨ 𝑆)) ∧ (𝑄 ∨ 𝐶)) = (𝑄 ∨ 𝐶))) |
101 | 15, 36, 99, 100 | syl3anc 1373 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → ((𝑄 ∨ 𝐶) ≤ (𝑄 ∨ (𝑃 ∨ 𝑆)) ↔ ((𝑄 ∨ (𝑃 ∨ 𝑆)) ∧ (𝑄 ∨ 𝐶)) = (𝑄 ∨ 𝐶))) |
102 | 97, 101 | mpbid 235 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → ((𝑄 ∨ (𝑃 ∨ 𝑆)) ∧ (𝑄 ∨ 𝐶)) = (𝑄 ∨ 𝐶)) |
103 | 40, 91, 102 | 3eqtrd 2781 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → (((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ 𝐶)) ∨ 𝐶) = (𝑄 ∨ 𝐶)) |
104 | 10, 103 | syl5eq 2790 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → (𝐹 ∨ 𝐶) = (𝑄 ∨ 𝐶)) |