MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clatpos Structured version   Visualization version   GIF version

Theorem clatpos 18568
Description: A complete lattice is a poset. (Contributed by NM, 8-Sep-2018.)
Assertion
Ref Expression
clatpos (𝐾 ∈ CLat → 𝐾 ∈ Poset)

Proof of Theorem clatpos
StepHypRef Expression
1 eqid 2737 . . 3 (Base‘𝐾) = (Base‘𝐾)
2 eqid 2737 . . 3 (lub‘𝐾) = (lub‘𝐾)
3 eqid 2737 . . 3 (glb‘𝐾) = (glb‘𝐾)
41, 2, 3isclat 18567 . 2 (𝐾 ∈ CLat ↔ (𝐾 ∈ Poset ∧ (dom (lub‘𝐾) = 𝒫 (Base‘𝐾) ∧ dom (glb‘𝐾) = 𝒫 (Base‘𝐾))))
54simplbi 497 1 (𝐾 ∈ CLat → 𝐾 ∈ Poset)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  𝒫 cpw 4608  dom cdm 5693  cfv 6569  Basecbs 17254  Posetcpo 18374  lubclub 18376  glbcglb 18377  CLatccla 18565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-ss 3983  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-br 5152  df-dm 5703  df-iota 6522  df-fv 6577  df-clat 18566
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator