| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clatpos | Structured version Visualization version GIF version | ||
| Description: A complete lattice is a poset. (Contributed by NM, 8-Sep-2018.) |
| Ref | Expression |
|---|---|
| clatpos | ⊢ (𝐾 ∈ CLat → 𝐾 ∈ Poset) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 2 | eqid 2731 | . . 3 ⊢ (lub‘𝐾) = (lub‘𝐾) | |
| 3 | eqid 2731 | . . 3 ⊢ (glb‘𝐾) = (glb‘𝐾) | |
| 4 | 1, 2, 3 | isclat 18401 | . 2 ⊢ (𝐾 ∈ CLat ↔ (𝐾 ∈ Poset ∧ (dom (lub‘𝐾) = 𝒫 (Base‘𝐾) ∧ dom (glb‘𝐾) = 𝒫 (Base‘𝐾)))) |
| 5 | 4 | simplbi 497 | 1 ⊢ (𝐾 ∈ CLat → 𝐾 ∈ Poset) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 𝒫 cpw 4545 dom cdm 5611 ‘cfv 6476 Basecbs 17115 Posetcpo 18208 lubclub 18210 glbcglb 18211 CLatccla 18399 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-dm 5621 df-iota 6432 df-fv 6484 df-clat 18400 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |