| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clatpos | Structured version Visualization version GIF version | ||
| Description: A complete lattice is a poset. (Contributed by NM, 8-Sep-2018.) |
| Ref | Expression |
|---|---|
| clatpos | ⊢ (𝐾 ∈ CLat → 𝐾 ∈ Poset) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2734 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 2 | eqid 2734 | . . 3 ⊢ (lub‘𝐾) = (lub‘𝐾) | |
| 3 | eqid 2734 | . . 3 ⊢ (glb‘𝐾) = (glb‘𝐾) | |
| 4 | 1, 2, 3 | isclat 18514 | . 2 ⊢ (𝐾 ∈ CLat ↔ (𝐾 ∈ Poset ∧ (dom (lub‘𝐾) = 𝒫 (Base‘𝐾) ∧ dom (glb‘𝐾) = 𝒫 (Base‘𝐾)))) |
| 5 | 4 | simplbi 497 | 1 ⊢ (𝐾 ∈ CLat → 𝐾 ∈ Poset) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 𝒫 cpw 4580 dom cdm 5665 ‘cfv 6541 Basecbs 17229 Posetcpo 18323 lubclub 18325 glbcglb 18326 CLatccla 18512 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-dm 5675 df-iota 6494 df-fv 6549 df-clat 18513 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |