![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clatpos | Structured version Visualization version GIF version |
Description: A complete lattice is a poset. (Contributed by NM, 8-Sep-2018.) |
Ref | Expression |
---|---|
clatpos | ⊢ (𝐾 ∈ CLat → 𝐾 ∈ Poset) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
2 | eqid 2737 | . . 3 ⊢ (lub‘𝐾) = (lub‘𝐾) | |
3 | eqid 2737 | . . 3 ⊢ (glb‘𝐾) = (glb‘𝐾) | |
4 | 1, 2, 3 | isclat 18567 | . 2 ⊢ (𝐾 ∈ CLat ↔ (𝐾 ∈ Poset ∧ (dom (lub‘𝐾) = 𝒫 (Base‘𝐾) ∧ dom (glb‘𝐾) = 𝒫 (Base‘𝐾)))) |
5 | 4 | simplbi 497 | 1 ⊢ (𝐾 ∈ CLat → 𝐾 ∈ Poset) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 𝒫 cpw 4608 dom cdm 5693 ‘cfv 6569 Basecbs 17254 Posetcpo 18374 lubclub 18376 glbcglb 18377 CLatccla 18565 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-dm 5703 df-iota 6522 df-fv 6577 df-clat 18566 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |