![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clatpos | Structured version Visualization version GIF version |
Description: A complete lattice is a poset. (Contributed by NM, 8-Sep-2018.) |
Ref | Expression |
---|---|
clatpos | ⊢ (𝐾 ∈ CLat → 𝐾 ∈ Poset) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
2 | eqid 2740 | . . 3 ⊢ (lub‘𝐾) = (lub‘𝐾) | |
3 | eqid 2740 | . . 3 ⊢ (glb‘𝐾) = (glb‘𝐾) | |
4 | 1, 2, 3 | isclat 18572 | . 2 ⊢ (𝐾 ∈ CLat ↔ (𝐾 ∈ Poset ∧ (dom (lub‘𝐾) = 𝒫 (Base‘𝐾) ∧ dom (glb‘𝐾) = 𝒫 (Base‘𝐾)))) |
5 | 4 | simplbi 497 | 1 ⊢ (𝐾 ∈ CLat → 𝐾 ∈ Poset) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 𝒫 cpw 4622 dom cdm 5700 ‘cfv 6575 Basecbs 17260 Posetcpo 18379 lubclub 18381 glbcglb 18382 CLatccla 18570 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-dm 5710 df-iota 6527 df-fv 6583 df-clat 18571 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |