MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clatlem Structured version   Visualization version   GIF version

Theorem clatlem 18265
Description: Lemma for properties of a complete lattice. (Contributed by NM, 14-Sep-2011.)
Hypotheses
Ref Expression
clatlem.b 𝐵 = (Base‘𝐾)
clatlem.u 𝑈 = (lub‘𝐾)
clatlem.g 𝐺 = (glb‘𝐾)
Assertion
Ref Expression
clatlem ((𝐾 ∈ CLat ∧ 𝑆𝐵) → ((𝑈𝑆) ∈ 𝐵 ∧ (𝐺𝑆) ∈ 𝐵))

Proof of Theorem clatlem
StepHypRef Expression
1 clatlem.b . . 3 𝐵 = (Base‘𝐾)
2 clatlem.u . . 3 𝑈 = (lub‘𝐾)
3 simpl 484 . . 3 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → 𝐾 ∈ CLat)
41fvexi 6818 . . . . . . 7 𝐵 ∈ V
54elpw2 5278 . . . . . 6 (𝑆 ∈ 𝒫 𝐵𝑆𝐵)
65biimpri 227 . . . . 5 (𝑆𝐵𝑆 ∈ 𝒫 𝐵)
76adantl 483 . . . 4 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → 𝑆 ∈ 𝒫 𝐵)
8 clatlem.g . . . . . . . 8 𝐺 = (glb‘𝐾)
91, 2, 8isclat 18263 . . . . . . 7 (𝐾 ∈ CLat ↔ (𝐾 ∈ Poset ∧ (dom 𝑈 = 𝒫 𝐵 ∧ dom 𝐺 = 𝒫 𝐵)))
109biimpi 215 . . . . . 6 (𝐾 ∈ CLat → (𝐾 ∈ Poset ∧ (dom 𝑈 = 𝒫 𝐵 ∧ dom 𝐺 = 𝒫 𝐵)))
1110adantr 482 . . . . 5 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → (𝐾 ∈ Poset ∧ (dom 𝑈 = 𝒫 𝐵 ∧ dom 𝐺 = 𝒫 𝐵)))
1211simprld 770 . . . 4 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → dom 𝑈 = 𝒫 𝐵)
137, 12eleqtrrd 2840 . . 3 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → 𝑆 ∈ dom 𝑈)
141, 2, 3, 13lubcl 18120 . 2 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → (𝑈𝑆) ∈ 𝐵)
1511simprrd 772 . . . 4 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → dom 𝐺 = 𝒫 𝐵)
167, 15eleqtrrd 2840 . . 3 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → 𝑆 ∈ dom 𝐺)
171, 8, 3, 16glbcl 18133 . 2 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → (𝐺𝑆) ∈ 𝐵)
1814, 17jca 513 1 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → ((𝑈𝑆) ∈ 𝐵 ∧ (𝐺𝑆) ∈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1539  wcel 2104  wss 3892  𝒫 cpw 4539  dom cdm 5600  cfv 6458  Basecbs 16957  Posetcpo 18070  lubclub 18072  glbcglb 18073  CLatccla 18261
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7264  df-lub 18109  df-glb 18110  df-clat 18262
This theorem is referenced by:  clatlubcl  18266  clatglbcl  18268
  Copyright terms: Public domain W3C validator