| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clatlem | Structured version Visualization version GIF version | ||
| Description: Lemma for properties of a complete lattice. (Contributed by NM, 14-Sep-2011.) |
| Ref | Expression |
|---|---|
| clatlem.b | ⊢ 𝐵 = (Base‘𝐾) |
| clatlem.u | ⊢ 𝑈 = (lub‘𝐾) |
| clatlem.g | ⊢ 𝐺 = (glb‘𝐾) |
| Ref | Expression |
|---|---|
| clatlem | ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → ((𝑈‘𝑆) ∈ 𝐵 ∧ (𝐺‘𝑆) ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clatlem.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | clatlem.u | . . 3 ⊢ 𝑈 = (lub‘𝐾) | |
| 3 | simpl 482 | . . 3 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → 𝐾 ∈ CLat) | |
| 4 | 1 | fvexi 6840 | . . . . . . 7 ⊢ 𝐵 ∈ V |
| 5 | 4 | elpw2 5276 | . . . . . 6 ⊢ (𝑆 ∈ 𝒫 𝐵 ↔ 𝑆 ⊆ 𝐵) |
| 6 | 5 | biimpri 228 | . . . . 5 ⊢ (𝑆 ⊆ 𝐵 → 𝑆 ∈ 𝒫 𝐵) |
| 7 | 6 | adantl 481 | . . . 4 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → 𝑆 ∈ 𝒫 𝐵) |
| 8 | clatlem.g | . . . . . . . 8 ⊢ 𝐺 = (glb‘𝐾) | |
| 9 | 1, 2, 8 | isclat 18424 | . . . . . . 7 ⊢ (𝐾 ∈ CLat ↔ (𝐾 ∈ Poset ∧ (dom 𝑈 = 𝒫 𝐵 ∧ dom 𝐺 = 𝒫 𝐵))) |
| 10 | 9 | biimpi 216 | . . . . . 6 ⊢ (𝐾 ∈ CLat → (𝐾 ∈ Poset ∧ (dom 𝑈 = 𝒫 𝐵 ∧ dom 𝐺 = 𝒫 𝐵))) |
| 11 | 10 | adantr 480 | . . . . 5 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → (𝐾 ∈ Poset ∧ (dom 𝑈 = 𝒫 𝐵 ∧ dom 𝐺 = 𝒫 𝐵))) |
| 12 | 11 | simprld 771 | . . . 4 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → dom 𝑈 = 𝒫 𝐵) |
| 13 | 7, 12 | eleqtrrd 2831 | . . 3 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → 𝑆 ∈ dom 𝑈) |
| 14 | 1, 2, 3, 13 | lubcl 18279 | . 2 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → (𝑈‘𝑆) ∈ 𝐵) |
| 15 | 11 | simprrd 773 | . . . 4 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → dom 𝐺 = 𝒫 𝐵) |
| 16 | 7, 15 | eleqtrrd 2831 | . . 3 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → 𝑆 ∈ dom 𝐺) |
| 17 | 1, 8, 3, 16 | glbcl 18292 | . 2 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → (𝐺‘𝑆) ∈ 𝐵) |
| 18 | 14, 17 | jca 511 | 1 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → ((𝑈‘𝑆) ∈ 𝐵 ∧ (𝐺‘𝑆) ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3905 𝒫 cpw 4553 dom cdm 5623 ‘cfv 6486 Basecbs 17138 Posetcpo 18231 lubclub 18233 glbcglb 18234 CLatccla 18422 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-lub 18268 df-glb 18269 df-clat 18423 |
| This theorem is referenced by: clatlubcl 18427 clatglbcl 18429 |
| Copyright terms: Public domain | W3C validator |