MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clatlem Structured version   Visualization version   GIF version

Theorem clatlem 18461
Description: Lemma for properties of a complete lattice. (Contributed by NM, 14-Sep-2011.)
Hypotheses
Ref Expression
clatlem.b 𝐵 = (Base‘𝐾)
clatlem.u 𝑈 = (lub‘𝐾)
clatlem.g 𝐺 = (glb‘𝐾)
Assertion
Ref Expression
clatlem ((𝐾 ∈ CLat ∧ 𝑆𝐵) → ((𝑈𝑆) ∈ 𝐵 ∧ (𝐺𝑆) ∈ 𝐵))

Proof of Theorem clatlem
StepHypRef Expression
1 clatlem.b . . 3 𝐵 = (Base‘𝐾)
2 clatlem.u . . 3 𝑈 = (lub‘𝐾)
3 simpl 482 . . 3 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → 𝐾 ∈ CLat)
41fvexi 6872 . . . . . . 7 𝐵 ∈ V
54elpw2 5289 . . . . . 6 (𝑆 ∈ 𝒫 𝐵𝑆𝐵)
65biimpri 228 . . . . 5 (𝑆𝐵𝑆 ∈ 𝒫 𝐵)
76adantl 481 . . . 4 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → 𝑆 ∈ 𝒫 𝐵)
8 clatlem.g . . . . . . . 8 𝐺 = (glb‘𝐾)
91, 2, 8isclat 18459 . . . . . . 7 (𝐾 ∈ CLat ↔ (𝐾 ∈ Poset ∧ (dom 𝑈 = 𝒫 𝐵 ∧ dom 𝐺 = 𝒫 𝐵)))
109biimpi 216 . . . . . 6 (𝐾 ∈ CLat → (𝐾 ∈ Poset ∧ (dom 𝑈 = 𝒫 𝐵 ∧ dom 𝐺 = 𝒫 𝐵)))
1110adantr 480 . . . . 5 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → (𝐾 ∈ Poset ∧ (dom 𝑈 = 𝒫 𝐵 ∧ dom 𝐺 = 𝒫 𝐵)))
1211simprld 771 . . . 4 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → dom 𝑈 = 𝒫 𝐵)
137, 12eleqtrrd 2831 . . 3 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → 𝑆 ∈ dom 𝑈)
141, 2, 3, 13lubcl 18316 . 2 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → (𝑈𝑆) ∈ 𝐵)
1511simprrd 773 . . . 4 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → dom 𝐺 = 𝒫 𝐵)
167, 15eleqtrrd 2831 . . 3 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → 𝑆 ∈ dom 𝐺)
171, 8, 3, 16glbcl 18329 . 2 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → (𝐺𝑆) ∈ 𝐵)
1814, 17jca 511 1 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → ((𝑈𝑆) ∈ 𝐵 ∧ (𝐺𝑆) ∈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wss 3914  𝒫 cpw 4563  dom cdm 5638  cfv 6511  Basecbs 17179  Posetcpo 18268  lubclub 18270  glbcglb 18271  CLatccla 18457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-lub 18305  df-glb 18306  df-clat 18458
This theorem is referenced by:  clatlubcl  18462  clatglbcl  18464
  Copyright terms: Public domain W3C validator