MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clatlem Structured version   Visualization version   GIF version

Theorem clatlem 18405
Description: Lemma for properties of a complete lattice. (Contributed by NM, 14-Sep-2011.)
Hypotheses
Ref Expression
clatlem.b 𝐵 = (Base‘𝐾)
clatlem.u 𝑈 = (lub‘𝐾)
clatlem.g 𝐺 = (glb‘𝐾)
Assertion
Ref Expression
clatlem ((𝐾 ∈ CLat ∧ 𝑆𝐵) → ((𝑈𝑆) ∈ 𝐵 ∧ (𝐺𝑆) ∈ 𝐵))

Proof of Theorem clatlem
StepHypRef Expression
1 clatlem.b . . 3 𝐵 = (Base‘𝐾)
2 clatlem.u . . 3 𝑈 = (lub‘𝐾)
3 simpl 482 . . 3 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → 𝐾 ∈ CLat)
41fvexi 6836 . . . . . . 7 𝐵 ∈ V
54elpw2 5272 . . . . . 6 (𝑆 ∈ 𝒫 𝐵𝑆𝐵)
65biimpri 228 . . . . 5 (𝑆𝐵𝑆 ∈ 𝒫 𝐵)
76adantl 481 . . . 4 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → 𝑆 ∈ 𝒫 𝐵)
8 clatlem.g . . . . . . . 8 𝐺 = (glb‘𝐾)
91, 2, 8isclat 18403 . . . . . . 7 (𝐾 ∈ CLat ↔ (𝐾 ∈ Poset ∧ (dom 𝑈 = 𝒫 𝐵 ∧ dom 𝐺 = 𝒫 𝐵)))
109biimpi 216 . . . . . 6 (𝐾 ∈ CLat → (𝐾 ∈ Poset ∧ (dom 𝑈 = 𝒫 𝐵 ∧ dom 𝐺 = 𝒫 𝐵)))
1110adantr 480 . . . . 5 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → (𝐾 ∈ Poset ∧ (dom 𝑈 = 𝒫 𝐵 ∧ dom 𝐺 = 𝒫 𝐵)))
1211simprld 771 . . . 4 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → dom 𝑈 = 𝒫 𝐵)
137, 12eleqtrrd 2834 . . 3 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → 𝑆 ∈ dom 𝑈)
141, 2, 3, 13lubcl 18258 . 2 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → (𝑈𝑆) ∈ 𝐵)
1511simprrd 773 . . . 4 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → dom 𝐺 = 𝒫 𝐵)
167, 15eleqtrrd 2834 . . 3 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → 𝑆 ∈ dom 𝐺)
171, 8, 3, 16glbcl 18271 . 2 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → (𝐺𝑆) ∈ 𝐵)
1814, 17jca 511 1 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → ((𝑈𝑆) ∈ 𝐵 ∧ (𝐺𝑆) ∈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wss 3902  𝒫 cpw 4550  dom cdm 5616  cfv 6481  Basecbs 17117  Posetcpo 18210  lubclub 18212  glbcglb 18213  CLatccla 18401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-lub 18247  df-glb 18248  df-clat 18402
This theorem is referenced by:  clatlubcl  18406  clatglbcl  18408
  Copyright terms: Public domain W3C validator