| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clatlem | Structured version Visualization version GIF version | ||
| Description: Lemma for properties of a complete lattice. (Contributed by NM, 14-Sep-2011.) |
| Ref | Expression |
|---|---|
| clatlem.b | ⊢ 𝐵 = (Base‘𝐾) |
| clatlem.u | ⊢ 𝑈 = (lub‘𝐾) |
| clatlem.g | ⊢ 𝐺 = (glb‘𝐾) |
| Ref | Expression |
|---|---|
| clatlem | ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → ((𝑈‘𝑆) ∈ 𝐵 ∧ (𝐺‘𝑆) ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clatlem.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | clatlem.u | . . 3 ⊢ 𝑈 = (lub‘𝐾) | |
| 3 | simpl 482 | . . 3 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → 𝐾 ∈ CLat) | |
| 4 | 1 | fvexi 6895 | . . . . . . 7 ⊢ 𝐵 ∈ V |
| 5 | 4 | elpw2 5309 | . . . . . 6 ⊢ (𝑆 ∈ 𝒫 𝐵 ↔ 𝑆 ⊆ 𝐵) |
| 6 | 5 | biimpri 228 | . . . . 5 ⊢ (𝑆 ⊆ 𝐵 → 𝑆 ∈ 𝒫 𝐵) |
| 7 | 6 | adantl 481 | . . . 4 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → 𝑆 ∈ 𝒫 𝐵) |
| 8 | clatlem.g | . . . . . . . 8 ⊢ 𝐺 = (glb‘𝐾) | |
| 9 | 1, 2, 8 | isclat 18515 | . . . . . . 7 ⊢ (𝐾 ∈ CLat ↔ (𝐾 ∈ Poset ∧ (dom 𝑈 = 𝒫 𝐵 ∧ dom 𝐺 = 𝒫 𝐵))) |
| 10 | 9 | biimpi 216 | . . . . . 6 ⊢ (𝐾 ∈ CLat → (𝐾 ∈ Poset ∧ (dom 𝑈 = 𝒫 𝐵 ∧ dom 𝐺 = 𝒫 𝐵))) |
| 11 | 10 | adantr 480 | . . . . 5 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → (𝐾 ∈ Poset ∧ (dom 𝑈 = 𝒫 𝐵 ∧ dom 𝐺 = 𝒫 𝐵))) |
| 12 | 11 | simprld 771 | . . . 4 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → dom 𝑈 = 𝒫 𝐵) |
| 13 | 7, 12 | eleqtrrd 2838 | . . 3 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → 𝑆 ∈ dom 𝑈) |
| 14 | 1, 2, 3, 13 | lubcl 18372 | . 2 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → (𝑈‘𝑆) ∈ 𝐵) |
| 15 | 11 | simprrd 773 | . . . 4 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → dom 𝐺 = 𝒫 𝐵) |
| 16 | 7, 15 | eleqtrrd 2838 | . . 3 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → 𝑆 ∈ dom 𝐺) |
| 17 | 1, 8, 3, 16 | glbcl 18385 | . 2 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → (𝐺‘𝑆) ∈ 𝐵) |
| 18 | 14, 17 | jca 511 | 1 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → ((𝑈‘𝑆) ∈ 𝐵 ∧ (𝐺‘𝑆) ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3931 𝒫 cpw 4580 dom cdm 5659 ‘cfv 6536 Basecbs 17233 Posetcpo 18324 lubclub 18326 glbcglb 18327 CLatccla 18513 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-lub 18361 df-glb 18362 df-clat 18514 |
| This theorem is referenced by: clatlubcl 18518 clatglbcl 18520 |
| Copyright terms: Public domain | W3C validator |