MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clatlem Structured version   Visualization version   GIF version

Theorem clatlem 18201
Description: Lemma for properties of a complete lattice. (Contributed by NM, 14-Sep-2011.)
Hypotheses
Ref Expression
clatlem.b 𝐵 = (Base‘𝐾)
clatlem.u 𝑈 = (lub‘𝐾)
clatlem.g 𝐺 = (glb‘𝐾)
Assertion
Ref Expression
clatlem ((𝐾 ∈ CLat ∧ 𝑆𝐵) → ((𝑈𝑆) ∈ 𝐵 ∧ (𝐺𝑆) ∈ 𝐵))

Proof of Theorem clatlem
StepHypRef Expression
1 clatlem.b . . 3 𝐵 = (Base‘𝐾)
2 clatlem.u . . 3 𝑈 = (lub‘𝐾)
3 simpl 482 . . 3 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → 𝐾 ∈ CLat)
41fvexi 6782 . . . . . . 7 𝐵 ∈ V
54elpw2 5272 . . . . . 6 (𝑆 ∈ 𝒫 𝐵𝑆𝐵)
65biimpri 227 . . . . 5 (𝑆𝐵𝑆 ∈ 𝒫 𝐵)
76adantl 481 . . . 4 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → 𝑆 ∈ 𝒫 𝐵)
8 clatlem.g . . . . . . . 8 𝐺 = (glb‘𝐾)
91, 2, 8isclat 18199 . . . . . . 7 (𝐾 ∈ CLat ↔ (𝐾 ∈ Poset ∧ (dom 𝑈 = 𝒫 𝐵 ∧ dom 𝐺 = 𝒫 𝐵)))
109biimpi 215 . . . . . 6 (𝐾 ∈ CLat → (𝐾 ∈ Poset ∧ (dom 𝑈 = 𝒫 𝐵 ∧ dom 𝐺 = 𝒫 𝐵)))
1110adantr 480 . . . . 5 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → (𝐾 ∈ Poset ∧ (dom 𝑈 = 𝒫 𝐵 ∧ dom 𝐺 = 𝒫 𝐵)))
1211simprld 768 . . . 4 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → dom 𝑈 = 𝒫 𝐵)
137, 12eleqtrrd 2843 . . 3 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → 𝑆 ∈ dom 𝑈)
141, 2, 3, 13lubcl 18056 . 2 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → (𝑈𝑆) ∈ 𝐵)
1511simprrd 770 . . . 4 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → dom 𝐺 = 𝒫 𝐵)
167, 15eleqtrrd 2843 . . 3 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → 𝑆 ∈ dom 𝐺)
171, 8, 3, 16glbcl 18069 . 2 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → (𝐺𝑆) ∈ 𝐵)
1814, 17jca 511 1 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → ((𝑈𝑆) ∈ 𝐵 ∧ (𝐺𝑆) ∈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2109  wss 3891  𝒫 cpw 4538  dom cdm 5588  cfv 6430  Basecbs 16893  Posetcpo 18006  lubclub 18008  glbcglb 18009  CLatccla 18197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-lub 18045  df-glb 18046  df-clat 18198
This theorem is referenced by:  clatlubcl  18202  clatglbcl  18204
  Copyright terms: Public domain W3C validator