Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > clatlem | Structured version Visualization version GIF version |
Description: Lemma for properties of a complete lattice. (Contributed by NM, 14-Sep-2011.) |
Ref | Expression |
---|---|
clatlem.b | ⊢ 𝐵 = (Base‘𝐾) |
clatlem.u | ⊢ 𝑈 = (lub‘𝐾) |
clatlem.g | ⊢ 𝐺 = (glb‘𝐾) |
Ref | Expression |
---|---|
clatlem | ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → ((𝑈‘𝑆) ∈ 𝐵 ∧ (𝐺‘𝑆) ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clatlem.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | clatlem.u | . . 3 ⊢ 𝑈 = (lub‘𝐾) | |
3 | simpl 484 | . . 3 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → 𝐾 ∈ CLat) | |
4 | 1 | fvexi 6818 | . . . . . . 7 ⊢ 𝐵 ∈ V |
5 | 4 | elpw2 5278 | . . . . . 6 ⊢ (𝑆 ∈ 𝒫 𝐵 ↔ 𝑆 ⊆ 𝐵) |
6 | 5 | biimpri 227 | . . . . 5 ⊢ (𝑆 ⊆ 𝐵 → 𝑆 ∈ 𝒫 𝐵) |
7 | 6 | adantl 483 | . . . 4 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → 𝑆 ∈ 𝒫 𝐵) |
8 | clatlem.g | . . . . . . . 8 ⊢ 𝐺 = (glb‘𝐾) | |
9 | 1, 2, 8 | isclat 18263 | . . . . . . 7 ⊢ (𝐾 ∈ CLat ↔ (𝐾 ∈ Poset ∧ (dom 𝑈 = 𝒫 𝐵 ∧ dom 𝐺 = 𝒫 𝐵))) |
10 | 9 | biimpi 215 | . . . . . 6 ⊢ (𝐾 ∈ CLat → (𝐾 ∈ Poset ∧ (dom 𝑈 = 𝒫 𝐵 ∧ dom 𝐺 = 𝒫 𝐵))) |
11 | 10 | adantr 482 | . . . . 5 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → (𝐾 ∈ Poset ∧ (dom 𝑈 = 𝒫 𝐵 ∧ dom 𝐺 = 𝒫 𝐵))) |
12 | 11 | simprld 770 | . . . 4 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → dom 𝑈 = 𝒫 𝐵) |
13 | 7, 12 | eleqtrrd 2840 | . . 3 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → 𝑆 ∈ dom 𝑈) |
14 | 1, 2, 3, 13 | lubcl 18120 | . 2 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → (𝑈‘𝑆) ∈ 𝐵) |
15 | 11 | simprrd 772 | . . . 4 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → dom 𝐺 = 𝒫 𝐵) |
16 | 7, 15 | eleqtrrd 2840 | . . 3 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → 𝑆 ∈ dom 𝐺) |
17 | 1, 8, 3, 16 | glbcl 18133 | . 2 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → (𝐺‘𝑆) ∈ 𝐵) |
18 | 14, 17 | jca 513 | 1 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → ((𝑈‘𝑆) ∈ 𝐵 ∧ (𝐺‘𝑆) ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 ∈ wcel 2104 ⊆ wss 3892 𝒫 cpw 4539 dom cdm 5600 ‘cfv 6458 Basecbs 16957 Posetcpo 18070 lubclub 18072 glbcglb 18073 CLatccla 18261 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-lub 18109 df-glb 18110 df-clat 18262 |
This theorem is referenced by: clatlubcl 18266 clatglbcl 18268 |
Copyright terms: Public domain | W3C validator |