![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clatlem | Structured version Visualization version GIF version |
Description: Lemma for properties of a complete lattice. (Contributed by NM, 14-Sep-2011.) |
Ref | Expression |
---|---|
clatlem.b | ⊢ 𝐵 = (Base‘𝐾) |
clatlem.u | ⊢ 𝑈 = (lub‘𝐾) |
clatlem.g | ⊢ 𝐺 = (glb‘𝐾) |
Ref | Expression |
---|---|
clatlem | ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → ((𝑈‘𝑆) ∈ 𝐵 ∧ (𝐺‘𝑆) ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clatlem.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | clatlem.u | . . 3 ⊢ 𝑈 = (lub‘𝐾) | |
3 | simpl 482 | . . 3 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → 𝐾 ∈ CLat) | |
4 | 1 | fvexi 6905 | . . . . . . 7 ⊢ 𝐵 ∈ V |
5 | 4 | elpw2 5345 | . . . . . 6 ⊢ (𝑆 ∈ 𝒫 𝐵 ↔ 𝑆 ⊆ 𝐵) |
6 | 5 | biimpri 227 | . . . . 5 ⊢ (𝑆 ⊆ 𝐵 → 𝑆 ∈ 𝒫 𝐵) |
7 | 6 | adantl 481 | . . . 4 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → 𝑆 ∈ 𝒫 𝐵) |
8 | clatlem.g | . . . . . . . 8 ⊢ 𝐺 = (glb‘𝐾) | |
9 | 1, 2, 8 | isclat 18463 | . . . . . . 7 ⊢ (𝐾 ∈ CLat ↔ (𝐾 ∈ Poset ∧ (dom 𝑈 = 𝒫 𝐵 ∧ dom 𝐺 = 𝒫 𝐵))) |
10 | 9 | biimpi 215 | . . . . . 6 ⊢ (𝐾 ∈ CLat → (𝐾 ∈ Poset ∧ (dom 𝑈 = 𝒫 𝐵 ∧ dom 𝐺 = 𝒫 𝐵))) |
11 | 10 | adantr 480 | . . . . 5 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → (𝐾 ∈ Poset ∧ (dom 𝑈 = 𝒫 𝐵 ∧ dom 𝐺 = 𝒫 𝐵))) |
12 | 11 | simprld 769 | . . . 4 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → dom 𝑈 = 𝒫 𝐵) |
13 | 7, 12 | eleqtrrd 2835 | . . 3 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → 𝑆 ∈ dom 𝑈) |
14 | 1, 2, 3, 13 | lubcl 18320 | . 2 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → (𝑈‘𝑆) ∈ 𝐵) |
15 | 11 | simprrd 771 | . . . 4 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → dom 𝐺 = 𝒫 𝐵) |
16 | 7, 15 | eleqtrrd 2835 | . . 3 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → 𝑆 ∈ dom 𝐺) |
17 | 1, 8, 3, 16 | glbcl 18333 | . 2 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → (𝐺‘𝑆) ∈ 𝐵) |
18 | 14, 17 | jca 511 | 1 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → ((𝑈‘𝑆) ∈ 𝐵 ∧ (𝐺‘𝑆) ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ⊆ wss 3948 𝒫 cpw 4602 dom cdm 5676 ‘cfv 6543 Basecbs 17151 Posetcpo 18270 lubclub 18272 glbcglb 18273 CLatccla 18461 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-lub 18309 df-glb 18310 df-clat 18462 |
This theorem is referenced by: clatlubcl 18466 clatglbcl 18468 |
Copyright terms: Public domain | W3C validator |