![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clelsb3 | Structured version Visualization version GIF version |
Description: Substitution applied to an atomic wff (class version of elsb3 2513). (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
Ref | Expression |
---|---|
clelsb3 | ⊢ ([𝑥 / 𝑦]𝑦 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1957 | . . 3 ⊢ Ⅎ𝑦 𝑤 ∈ 𝐴 | |
2 | 1 | sbco2 2492 | . 2 ⊢ ([𝑥 / 𝑦][𝑦 / 𝑤]𝑤 ∈ 𝐴 ↔ [𝑥 / 𝑤]𝑤 ∈ 𝐴) |
3 | nfv 1957 | . . . 4 ⊢ Ⅎ𝑤 𝑦 ∈ 𝐴 | |
4 | eleq1w 2842 | . . . 4 ⊢ (𝑤 = 𝑦 → (𝑤 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
5 | 3, 4 | sbie 2484 | . . 3 ⊢ ([𝑦 / 𝑤]𝑤 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) |
6 | 5 | sbbii 2019 | . 2 ⊢ ([𝑥 / 𝑦][𝑦 / 𝑤]𝑤 ∈ 𝐴 ↔ [𝑥 / 𝑦]𝑦 ∈ 𝐴) |
7 | nfv 1957 | . . 3 ⊢ Ⅎ𝑤 𝑥 ∈ 𝐴 | |
8 | eleq1w 2842 | . . 3 ⊢ (𝑤 = 𝑥 → (𝑤 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) | |
9 | 7, 8 | sbie 2484 | . 2 ⊢ ([𝑥 / 𝑤]𝑤 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴) |
10 | 2, 6, 9 | 3bitr3i 293 | 1 ⊢ ([𝑥 / 𝑦]𝑦 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 [wsb 2011 ∈ wcel 2107 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-clel 2774 |
This theorem is referenced by: hblem 2891 clelsb3f 2938 cbvreu 3365 sbcel1vOLD 3714 rmo3OLD 3746 iuninc 29941 measiuns 30878 ballotlemodife 31158 bj-nfcf 33493 wl-clelsb3df 33998 ellimcabssub0 40761 |
Copyright terms: Public domain | W3C validator |