MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sofld Structured version   Visualization version   GIF version

Theorem sofld 6143
Description: The base set of a nonempty strict order is the same as the field of the relation. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
sofld ((𝑅 Or 𝐴𝑅 ⊆ (𝐴 × 𝐴) ∧ 𝑅 ≠ ∅) → 𝐴 = (dom 𝑅 ∪ ran 𝑅))

Proof of Theorem sofld
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relxp 5655 . . . . . . . . 9 Rel (𝐴 × 𝐴)
2 relss 5741 . . . . . . . . 9 (𝑅 ⊆ (𝐴 × 𝐴) → (Rel (𝐴 × 𝐴) → Rel 𝑅))
31, 2mpi 20 . . . . . . . 8 (𝑅 ⊆ (𝐴 × 𝐴) → Rel 𝑅)
43ad2antlr 726 . . . . . . 7 (((𝑅 Or 𝐴𝑅 ⊆ (𝐴 × 𝐴)) ∧ ¬ 𝐴 ⊆ (dom 𝑅 ∪ ran 𝑅)) → Rel 𝑅)
5 df-br 5110 . . . . . . . . . 10 (𝑥𝑅𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
6 ssun1 4136 . . . . . . . . . . . . 13 𝐴 ⊆ (𝐴 ∪ {𝑥})
7 undif1 4439 . . . . . . . . . . . . 13 ((𝐴 ∖ {𝑥}) ∪ {𝑥}) = (𝐴 ∪ {𝑥})
86, 7sseqtrri 3985 . . . . . . . . . . . 12 𝐴 ⊆ ((𝐴 ∖ {𝑥}) ∪ {𝑥})
9 simpll 766 . . . . . . . . . . . . . 14 (((𝑅 Or 𝐴𝑅 ⊆ (𝐴 × 𝐴)) ∧ 𝑥𝑅𝑦) → 𝑅 Or 𝐴)
10 dmss 5862 . . . . . . . . . . . . . . . . 17 (𝑅 ⊆ (𝐴 × 𝐴) → dom 𝑅 ⊆ dom (𝐴 × 𝐴))
11 dmxpid 5889 . . . . . . . . . . . . . . . . 17 dom (𝐴 × 𝐴) = 𝐴
1210, 11sseqtrdi 3998 . . . . . . . . . . . . . . . 16 (𝑅 ⊆ (𝐴 × 𝐴) → dom 𝑅𝐴)
1312ad2antlr 726 . . . . . . . . . . . . . . 15 (((𝑅 Or 𝐴𝑅 ⊆ (𝐴 × 𝐴)) ∧ 𝑥𝑅𝑦) → dom 𝑅𝐴)
143ad2antlr 726 . . . . . . . . . . . . . . . 16 (((𝑅 Or 𝐴𝑅 ⊆ (𝐴 × 𝐴)) ∧ 𝑥𝑅𝑦) → Rel 𝑅)
15 releldm 5903 . . . . . . . . . . . . . . . 16 ((Rel 𝑅𝑥𝑅𝑦) → 𝑥 ∈ dom 𝑅)
1614, 15sylancom 589 . . . . . . . . . . . . . . 15 (((𝑅 Or 𝐴𝑅 ⊆ (𝐴 × 𝐴)) ∧ 𝑥𝑅𝑦) → 𝑥 ∈ dom 𝑅)
1713, 16sseldd 3949 . . . . . . . . . . . . . 14 (((𝑅 Or 𝐴𝑅 ⊆ (𝐴 × 𝐴)) ∧ 𝑥𝑅𝑦) → 𝑥𝐴)
18 sossfld 6142 . . . . . . . . . . . . . 14 ((𝑅 Or 𝐴𝑥𝐴) → (𝐴 ∖ {𝑥}) ⊆ (dom 𝑅 ∪ ran 𝑅))
199, 17, 18syl2anc 585 . . . . . . . . . . . . 13 (((𝑅 Or 𝐴𝑅 ⊆ (𝐴 × 𝐴)) ∧ 𝑥𝑅𝑦) → (𝐴 ∖ {𝑥}) ⊆ (dom 𝑅 ∪ ran 𝑅))
20 ssun1 4136 . . . . . . . . . . . . . . 15 dom 𝑅 ⊆ (dom 𝑅 ∪ ran 𝑅)
2120, 16sselid 3946 . . . . . . . . . . . . . 14 (((𝑅 Or 𝐴𝑅 ⊆ (𝐴 × 𝐴)) ∧ 𝑥𝑅𝑦) → 𝑥 ∈ (dom 𝑅 ∪ ran 𝑅))
2221snssd 4773 . . . . . . . . . . . . 13 (((𝑅 Or 𝐴𝑅 ⊆ (𝐴 × 𝐴)) ∧ 𝑥𝑅𝑦) → {𝑥} ⊆ (dom 𝑅 ∪ ran 𝑅))
2319, 22unssd 4150 . . . . . . . . . . . 12 (((𝑅 Or 𝐴𝑅 ⊆ (𝐴 × 𝐴)) ∧ 𝑥𝑅𝑦) → ((𝐴 ∖ {𝑥}) ∪ {𝑥}) ⊆ (dom 𝑅 ∪ ran 𝑅))
248, 23sstrid 3959 . . . . . . . . . . 11 (((𝑅 Or 𝐴𝑅 ⊆ (𝐴 × 𝐴)) ∧ 𝑥𝑅𝑦) → 𝐴 ⊆ (dom 𝑅 ∪ ran 𝑅))
2524ex 414 . . . . . . . . . 10 ((𝑅 Or 𝐴𝑅 ⊆ (𝐴 × 𝐴)) → (𝑥𝑅𝑦𝐴 ⊆ (dom 𝑅 ∪ ran 𝑅)))
265, 25biimtrrid 242 . . . . . . . . 9 ((𝑅 Or 𝐴𝑅 ⊆ (𝐴 × 𝐴)) → (⟨𝑥, 𝑦⟩ ∈ 𝑅𝐴 ⊆ (dom 𝑅 ∪ ran 𝑅)))
2726con3dimp 410 . . . . . . . 8 (((𝑅 Or 𝐴𝑅 ⊆ (𝐴 × 𝐴)) ∧ ¬ 𝐴 ⊆ (dom 𝑅 ∪ ran 𝑅)) → ¬ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
2827pm2.21d 121 . . . . . . 7 (((𝑅 Or 𝐴𝑅 ⊆ (𝐴 × 𝐴)) ∧ ¬ 𝐴 ⊆ (dom 𝑅 ∪ ran 𝑅)) → (⟨𝑥, 𝑦⟩ ∈ 𝑅 → ⟨𝑥, 𝑦⟩ ∈ ∅))
294, 28relssdv 5748 . . . . . 6 (((𝑅 Or 𝐴𝑅 ⊆ (𝐴 × 𝐴)) ∧ ¬ 𝐴 ⊆ (dom 𝑅 ∪ ran 𝑅)) → 𝑅 ⊆ ∅)
30 ss0 4362 . . . . . 6 (𝑅 ⊆ ∅ → 𝑅 = ∅)
3129, 30syl 17 . . . . 5 (((𝑅 Or 𝐴𝑅 ⊆ (𝐴 × 𝐴)) ∧ ¬ 𝐴 ⊆ (dom 𝑅 ∪ ran 𝑅)) → 𝑅 = ∅)
3231ex 414 . . . 4 ((𝑅 Or 𝐴𝑅 ⊆ (𝐴 × 𝐴)) → (¬ 𝐴 ⊆ (dom 𝑅 ∪ ran 𝑅) → 𝑅 = ∅))
3332necon1ad 2957 . . 3 ((𝑅 Or 𝐴𝑅 ⊆ (𝐴 × 𝐴)) → (𝑅 ≠ ∅ → 𝐴 ⊆ (dom 𝑅 ∪ ran 𝑅)))
34333impia 1118 . 2 ((𝑅 Or 𝐴𝑅 ⊆ (𝐴 × 𝐴) ∧ 𝑅 ≠ ∅) → 𝐴 ⊆ (dom 𝑅 ∪ ran 𝑅))
35 rnss 5898 . . . . 5 (𝑅 ⊆ (𝐴 × 𝐴) → ran 𝑅 ⊆ ran (𝐴 × 𝐴))
36 rnxpid 6129 . . . . 5 ran (𝐴 × 𝐴) = 𝐴
3735, 36sseqtrdi 3998 . . . 4 (𝑅 ⊆ (𝐴 × 𝐴) → ran 𝑅𝐴)
3812, 37unssd 4150 . . 3 (𝑅 ⊆ (𝐴 × 𝐴) → (dom 𝑅 ∪ ran 𝑅) ⊆ 𝐴)
39383ad2ant2 1135 . 2 ((𝑅 Or 𝐴𝑅 ⊆ (𝐴 × 𝐴) ∧ 𝑅 ≠ ∅) → (dom 𝑅 ∪ ran 𝑅) ⊆ 𝐴)
4034, 39eqssd 3965 1 ((𝑅 Or 𝐴𝑅 ⊆ (𝐴 × 𝐴) ∧ 𝑅 ≠ ∅) → 𝐴 = (dom 𝑅 ∪ ran 𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  wne 2940  cdif 3911  cun 3912  wss 3914  c0 4286  {csn 4590  cop 4596   class class class wbr 5109   Or wor 5548   × cxp 5635  dom cdm 5637  ran crn 5638  Rel wrel 5642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pr 5388
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-sn 4591  df-pr 4593  df-op 4597  df-br 5110  df-opab 5172  df-po 5549  df-so 5550  df-xp 5643  df-rel 5644  df-cnv 5645  df-dm 5647  df-rn 5648
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator