MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sofld Structured version   Visualization version   GIF version

Theorem sofld 6030
Description: The base set of a nonempty strict order is the same as the field of the relation. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
sofld ((𝑅 Or 𝐴𝑅 ⊆ (𝐴 × 𝐴) ∧ 𝑅 ≠ ∅) → 𝐴 = (dom 𝑅 ∪ ran 𝑅))

Proof of Theorem sofld
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relxp 5554 . . . . . . . . 9 Rel (𝐴 × 𝐴)
2 relss 5638 . . . . . . . . 9 (𝑅 ⊆ (𝐴 × 𝐴) → (Rel (𝐴 × 𝐴) → Rel 𝑅))
31, 2mpi 20 . . . . . . . 8 (𝑅 ⊆ (𝐴 × 𝐴) → Rel 𝑅)
43ad2antlr 727 . . . . . . 7 (((𝑅 Or 𝐴𝑅 ⊆ (𝐴 × 𝐴)) ∧ ¬ 𝐴 ⊆ (dom 𝑅 ∪ ran 𝑅)) → Rel 𝑅)
5 df-br 5040 . . . . . . . . . 10 (𝑥𝑅𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
6 ssun1 4072 . . . . . . . . . . . . 13 𝐴 ⊆ (𝐴 ∪ {𝑥})
7 undif1 4376 . . . . . . . . . . . . 13 ((𝐴 ∖ {𝑥}) ∪ {𝑥}) = (𝐴 ∪ {𝑥})
86, 7sseqtrri 3924 . . . . . . . . . . . 12 𝐴 ⊆ ((𝐴 ∖ {𝑥}) ∪ {𝑥})
9 simpll 767 . . . . . . . . . . . . . 14 (((𝑅 Or 𝐴𝑅 ⊆ (𝐴 × 𝐴)) ∧ 𝑥𝑅𝑦) → 𝑅 Or 𝐴)
10 dmss 5756 . . . . . . . . . . . . . . . . 17 (𝑅 ⊆ (𝐴 × 𝐴) → dom 𝑅 ⊆ dom (𝐴 × 𝐴))
11 dmxpid 5784 . . . . . . . . . . . . . . . . 17 dom (𝐴 × 𝐴) = 𝐴
1210, 11sseqtrdi 3937 . . . . . . . . . . . . . . . 16 (𝑅 ⊆ (𝐴 × 𝐴) → dom 𝑅𝐴)
1312ad2antlr 727 . . . . . . . . . . . . . . 15 (((𝑅 Or 𝐴𝑅 ⊆ (𝐴 × 𝐴)) ∧ 𝑥𝑅𝑦) → dom 𝑅𝐴)
143ad2antlr 727 . . . . . . . . . . . . . . . 16 (((𝑅 Or 𝐴𝑅 ⊆ (𝐴 × 𝐴)) ∧ 𝑥𝑅𝑦) → Rel 𝑅)
15 releldm 5798 . . . . . . . . . . . . . . . 16 ((Rel 𝑅𝑥𝑅𝑦) → 𝑥 ∈ dom 𝑅)
1614, 15sylancom 591 . . . . . . . . . . . . . . 15 (((𝑅 Or 𝐴𝑅 ⊆ (𝐴 × 𝐴)) ∧ 𝑥𝑅𝑦) → 𝑥 ∈ dom 𝑅)
1713, 16sseldd 3888 . . . . . . . . . . . . . 14 (((𝑅 Or 𝐴𝑅 ⊆ (𝐴 × 𝐴)) ∧ 𝑥𝑅𝑦) → 𝑥𝐴)
18 sossfld 6029 . . . . . . . . . . . . . 14 ((𝑅 Or 𝐴𝑥𝐴) → (𝐴 ∖ {𝑥}) ⊆ (dom 𝑅 ∪ ran 𝑅))
199, 17, 18syl2anc 587 . . . . . . . . . . . . 13 (((𝑅 Or 𝐴𝑅 ⊆ (𝐴 × 𝐴)) ∧ 𝑥𝑅𝑦) → (𝐴 ∖ {𝑥}) ⊆ (dom 𝑅 ∪ ran 𝑅))
20 ssun1 4072 . . . . . . . . . . . . . . 15 dom 𝑅 ⊆ (dom 𝑅 ∪ ran 𝑅)
2120, 16sseldi 3885 . . . . . . . . . . . . . 14 (((𝑅 Or 𝐴𝑅 ⊆ (𝐴 × 𝐴)) ∧ 𝑥𝑅𝑦) → 𝑥 ∈ (dom 𝑅 ∪ ran 𝑅))
2221snssd 4708 . . . . . . . . . . . . 13 (((𝑅 Or 𝐴𝑅 ⊆ (𝐴 × 𝐴)) ∧ 𝑥𝑅𝑦) → {𝑥} ⊆ (dom 𝑅 ∪ ran 𝑅))
2319, 22unssd 4086 . . . . . . . . . . . 12 (((𝑅 Or 𝐴𝑅 ⊆ (𝐴 × 𝐴)) ∧ 𝑥𝑅𝑦) → ((𝐴 ∖ {𝑥}) ∪ {𝑥}) ⊆ (dom 𝑅 ∪ ran 𝑅))
248, 23sstrid 3898 . . . . . . . . . . 11 (((𝑅 Or 𝐴𝑅 ⊆ (𝐴 × 𝐴)) ∧ 𝑥𝑅𝑦) → 𝐴 ⊆ (dom 𝑅 ∪ ran 𝑅))
2524ex 416 . . . . . . . . . 10 ((𝑅 Or 𝐴𝑅 ⊆ (𝐴 × 𝐴)) → (𝑥𝑅𝑦𝐴 ⊆ (dom 𝑅 ∪ ran 𝑅)))
265, 25syl5bir 246 . . . . . . . . 9 ((𝑅 Or 𝐴𝑅 ⊆ (𝐴 × 𝐴)) → (⟨𝑥, 𝑦⟩ ∈ 𝑅𝐴 ⊆ (dom 𝑅 ∪ ran 𝑅)))
2726con3dimp 412 . . . . . . . 8 (((𝑅 Or 𝐴𝑅 ⊆ (𝐴 × 𝐴)) ∧ ¬ 𝐴 ⊆ (dom 𝑅 ∪ ran 𝑅)) → ¬ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
2827pm2.21d 121 . . . . . . 7 (((𝑅 Or 𝐴𝑅 ⊆ (𝐴 × 𝐴)) ∧ ¬ 𝐴 ⊆ (dom 𝑅 ∪ ran 𝑅)) → (⟨𝑥, 𝑦⟩ ∈ 𝑅 → ⟨𝑥, 𝑦⟩ ∈ ∅))
294, 28relssdv 5643 . . . . . 6 (((𝑅 Or 𝐴𝑅 ⊆ (𝐴 × 𝐴)) ∧ ¬ 𝐴 ⊆ (dom 𝑅 ∪ ran 𝑅)) → 𝑅 ⊆ ∅)
30 ss0 4299 . . . . . 6 (𝑅 ⊆ ∅ → 𝑅 = ∅)
3129, 30syl 17 . . . . 5 (((𝑅 Or 𝐴𝑅 ⊆ (𝐴 × 𝐴)) ∧ ¬ 𝐴 ⊆ (dom 𝑅 ∪ ran 𝑅)) → 𝑅 = ∅)
3231ex 416 . . . 4 ((𝑅 Or 𝐴𝑅 ⊆ (𝐴 × 𝐴)) → (¬ 𝐴 ⊆ (dom 𝑅 ∪ ran 𝑅) → 𝑅 = ∅))
3332necon1ad 2949 . . 3 ((𝑅 Or 𝐴𝑅 ⊆ (𝐴 × 𝐴)) → (𝑅 ≠ ∅ → 𝐴 ⊆ (dom 𝑅 ∪ ran 𝑅)))
34333impia 1119 . 2 ((𝑅 Or 𝐴𝑅 ⊆ (𝐴 × 𝐴) ∧ 𝑅 ≠ ∅) → 𝐴 ⊆ (dom 𝑅 ∪ ran 𝑅))
35 rnss 5793 . . . . 5 (𝑅 ⊆ (𝐴 × 𝐴) → ran 𝑅 ⊆ ran (𝐴 × 𝐴))
36 rnxpid 6016 . . . . 5 ran (𝐴 × 𝐴) = 𝐴
3735, 36sseqtrdi 3937 . . . 4 (𝑅 ⊆ (𝐴 × 𝐴) → ran 𝑅𝐴)
3812, 37unssd 4086 . . 3 (𝑅 ⊆ (𝐴 × 𝐴) → (dom 𝑅 ∪ ran 𝑅) ⊆ 𝐴)
39383ad2ant2 1136 . 2 ((𝑅 Or 𝐴𝑅 ⊆ (𝐴 × 𝐴) ∧ 𝑅 ≠ ∅) → (dom 𝑅 ∪ ran 𝑅) ⊆ 𝐴)
4034, 39eqssd 3904 1 ((𝑅 Or 𝐴𝑅 ⊆ (𝐴 × 𝐴) ∧ 𝑅 ≠ ∅) → 𝐴 = (dom 𝑅 ∪ ran 𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2112  wne 2932  cdif 3850  cun 3851  wss 3853  c0 4223  {csn 4527  cop 4533   class class class wbr 5039   Or wor 5452   × cxp 5534  dom cdm 5536  ran crn 5537  Rel wrel 5541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pr 5307
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3400  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-sn 4528  df-pr 4530  df-op 4534  df-br 5040  df-opab 5102  df-po 5453  df-so 5454  df-xp 5542  df-rel 5543  df-cnv 5544  df-dm 5546  df-rn 5547
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator