| Step | Hyp | Ref
| Expression |
| 1 | | relxp 5672 |
. . . . . . . . 9
⊢ Rel
(𝐴 × 𝐴) |
| 2 | | relss 5760 |
. . . . . . . . 9
⊢ (𝑅 ⊆ (𝐴 × 𝐴) → (Rel (𝐴 × 𝐴) → Rel 𝑅)) |
| 3 | 1, 2 | mpi 20 |
. . . . . . . 8
⊢ (𝑅 ⊆ (𝐴 × 𝐴) → Rel 𝑅) |
| 4 | 3 | ad2antlr 727 |
. . . . . . 7
⊢ (((𝑅 Or 𝐴 ∧ 𝑅 ⊆ (𝐴 × 𝐴)) ∧ ¬ 𝐴 ⊆ (dom 𝑅 ∪ ran 𝑅)) → Rel 𝑅) |
| 5 | | df-br 5120 |
. . . . . . . . . 10
⊢ (𝑥𝑅𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝑅) |
| 6 | | ssun1 4153 |
. . . . . . . . . . . . 13
⊢ 𝐴 ⊆ (𝐴 ∪ {𝑥}) |
| 7 | | undif1 4451 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∖ {𝑥}) ∪ {𝑥}) = (𝐴 ∪ {𝑥}) |
| 8 | 6, 7 | sseqtrri 4008 |
. . . . . . . . . . . 12
⊢ 𝐴 ⊆ ((𝐴 ∖ {𝑥}) ∪ {𝑥}) |
| 9 | | simpll 766 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 Or 𝐴 ∧ 𝑅 ⊆ (𝐴 × 𝐴)) ∧ 𝑥𝑅𝑦) → 𝑅 Or 𝐴) |
| 10 | | dmss 5882 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑅 ⊆ (𝐴 × 𝐴) → dom 𝑅 ⊆ dom (𝐴 × 𝐴)) |
| 11 | | dmxpid 5910 |
. . . . . . . . . . . . . . . . 17
⊢ dom
(𝐴 × 𝐴) = 𝐴 |
| 12 | 10, 11 | sseqtrdi 3999 |
. . . . . . . . . . . . . . . 16
⊢ (𝑅 ⊆ (𝐴 × 𝐴) → dom 𝑅 ⊆ 𝐴) |
| 13 | 12 | ad2antlr 727 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 Or 𝐴 ∧ 𝑅 ⊆ (𝐴 × 𝐴)) ∧ 𝑥𝑅𝑦) → dom 𝑅 ⊆ 𝐴) |
| 14 | 3 | ad2antlr 727 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑅 Or 𝐴 ∧ 𝑅 ⊆ (𝐴 × 𝐴)) ∧ 𝑥𝑅𝑦) → Rel 𝑅) |
| 15 | | releldm 5924 |
. . . . . . . . . . . . . . . 16
⊢ ((Rel
𝑅 ∧ 𝑥𝑅𝑦) → 𝑥 ∈ dom 𝑅) |
| 16 | 14, 15 | sylancom 588 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 Or 𝐴 ∧ 𝑅 ⊆ (𝐴 × 𝐴)) ∧ 𝑥𝑅𝑦) → 𝑥 ∈ dom 𝑅) |
| 17 | 13, 16 | sseldd 3959 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 Or 𝐴 ∧ 𝑅 ⊆ (𝐴 × 𝐴)) ∧ 𝑥𝑅𝑦) → 𝑥 ∈ 𝐴) |
| 18 | | sossfld 6175 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 Or 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝐴 ∖ {𝑥}) ⊆ (dom 𝑅 ∪ ran 𝑅)) |
| 19 | 9, 17, 18 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (((𝑅 Or 𝐴 ∧ 𝑅 ⊆ (𝐴 × 𝐴)) ∧ 𝑥𝑅𝑦) → (𝐴 ∖ {𝑥}) ⊆ (dom 𝑅 ∪ ran 𝑅)) |
| 20 | | ssun1 4153 |
. . . . . . . . . . . . . . 15
⊢ dom 𝑅 ⊆ (dom 𝑅 ∪ ran 𝑅) |
| 21 | 20, 16 | sselid 3956 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 Or 𝐴 ∧ 𝑅 ⊆ (𝐴 × 𝐴)) ∧ 𝑥𝑅𝑦) → 𝑥 ∈ (dom 𝑅 ∪ ran 𝑅)) |
| 22 | 21 | snssd 4785 |
. . . . . . . . . . . . 13
⊢ (((𝑅 Or 𝐴 ∧ 𝑅 ⊆ (𝐴 × 𝐴)) ∧ 𝑥𝑅𝑦) → {𝑥} ⊆ (dom 𝑅 ∪ ran 𝑅)) |
| 23 | 19, 22 | unssd 4167 |
. . . . . . . . . . . 12
⊢ (((𝑅 Or 𝐴 ∧ 𝑅 ⊆ (𝐴 × 𝐴)) ∧ 𝑥𝑅𝑦) → ((𝐴 ∖ {𝑥}) ∪ {𝑥}) ⊆ (dom 𝑅 ∪ ran 𝑅)) |
| 24 | 8, 23 | sstrid 3970 |
. . . . . . . . . . 11
⊢ (((𝑅 Or 𝐴 ∧ 𝑅 ⊆ (𝐴 × 𝐴)) ∧ 𝑥𝑅𝑦) → 𝐴 ⊆ (dom 𝑅 ∪ ran 𝑅)) |
| 25 | 24 | ex 412 |
. . . . . . . . . 10
⊢ ((𝑅 Or 𝐴 ∧ 𝑅 ⊆ (𝐴 × 𝐴)) → (𝑥𝑅𝑦 → 𝐴 ⊆ (dom 𝑅 ∪ ran 𝑅))) |
| 26 | 5, 25 | biimtrrid 243 |
. . . . . . . . 9
⊢ ((𝑅 Or 𝐴 ∧ 𝑅 ⊆ (𝐴 × 𝐴)) → (〈𝑥, 𝑦〉 ∈ 𝑅 → 𝐴 ⊆ (dom 𝑅 ∪ ran 𝑅))) |
| 27 | 26 | con3dimp 408 |
. . . . . . . 8
⊢ (((𝑅 Or 𝐴 ∧ 𝑅 ⊆ (𝐴 × 𝐴)) ∧ ¬ 𝐴 ⊆ (dom 𝑅 ∪ ran 𝑅)) → ¬ 〈𝑥, 𝑦〉 ∈ 𝑅) |
| 28 | 27 | pm2.21d 121 |
. . . . . . 7
⊢ (((𝑅 Or 𝐴 ∧ 𝑅 ⊆ (𝐴 × 𝐴)) ∧ ¬ 𝐴 ⊆ (dom 𝑅 ∪ ran 𝑅)) → (〈𝑥, 𝑦〉 ∈ 𝑅 → 〈𝑥, 𝑦〉 ∈ ∅)) |
| 29 | 4, 28 | relssdv 5767 |
. . . . . 6
⊢ (((𝑅 Or 𝐴 ∧ 𝑅 ⊆ (𝐴 × 𝐴)) ∧ ¬ 𝐴 ⊆ (dom 𝑅 ∪ ran 𝑅)) → 𝑅 ⊆ ∅) |
| 30 | | ss0 4377 |
. . . . . 6
⊢ (𝑅 ⊆ ∅ → 𝑅 = ∅) |
| 31 | 29, 30 | syl 17 |
. . . . 5
⊢ (((𝑅 Or 𝐴 ∧ 𝑅 ⊆ (𝐴 × 𝐴)) ∧ ¬ 𝐴 ⊆ (dom 𝑅 ∪ ran 𝑅)) → 𝑅 = ∅) |
| 32 | 31 | ex 412 |
. . . 4
⊢ ((𝑅 Or 𝐴 ∧ 𝑅 ⊆ (𝐴 × 𝐴)) → (¬ 𝐴 ⊆ (dom 𝑅 ∪ ran 𝑅) → 𝑅 = ∅)) |
| 33 | 32 | necon1ad 2949 |
. . 3
⊢ ((𝑅 Or 𝐴 ∧ 𝑅 ⊆ (𝐴 × 𝐴)) → (𝑅 ≠ ∅ → 𝐴 ⊆ (dom 𝑅 ∪ ran 𝑅))) |
| 34 | 33 | 3impia 1117 |
. 2
⊢ ((𝑅 Or 𝐴 ∧ 𝑅 ⊆ (𝐴 × 𝐴) ∧ 𝑅 ≠ ∅) → 𝐴 ⊆ (dom 𝑅 ∪ ran 𝑅)) |
| 35 | | rnss 5919 |
. . . . 5
⊢ (𝑅 ⊆ (𝐴 × 𝐴) → ran 𝑅 ⊆ ran (𝐴 × 𝐴)) |
| 36 | | rnxpid 6162 |
. . . . 5
⊢ ran
(𝐴 × 𝐴) = 𝐴 |
| 37 | 35, 36 | sseqtrdi 3999 |
. . . 4
⊢ (𝑅 ⊆ (𝐴 × 𝐴) → ran 𝑅 ⊆ 𝐴) |
| 38 | 12, 37 | unssd 4167 |
. . 3
⊢ (𝑅 ⊆ (𝐴 × 𝐴) → (dom 𝑅 ∪ ran 𝑅) ⊆ 𝐴) |
| 39 | 38 | 3ad2ant2 1134 |
. 2
⊢ ((𝑅 Or 𝐴 ∧ 𝑅 ⊆ (𝐴 × 𝐴) ∧ 𝑅 ≠ ∅) → (dom 𝑅 ∪ ran 𝑅) ⊆ 𝐴) |
| 40 | 34, 39 | eqssd 3976 |
1
⊢ ((𝑅 Or 𝐴 ∧ 𝑅 ⊆ (𝐴 × 𝐴) ∧ 𝑅 ≠ ∅) → 𝐴 = (dom 𝑅 ∪ ran 𝑅)) |