MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfrel4v Structured version   Visualization version   GIF version

Theorem dfrel4v 6082
Description: A relation can be expressed as the set of ordered pairs in it. An analogue of dffn5 6810 for relations. (Contributed by Mario Carneiro, 16-Aug-2015.)
Assertion
Ref Expression
dfrel4v (Rel 𝑅𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑅𝑦})
Distinct variable group:   𝑥,𝑦,𝑅

Proof of Theorem dfrel4v
StepHypRef Expression
1 dfrel2 6081 . 2 (Rel 𝑅𝑅 = 𝑅)
2 eqcom 2745 . 2 (𝑅 = 𝑅𝑅 = 𝑅)
3 cnvcnv3 6080 . . 3 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑅𝑦}
43eqeq2i 2751 . 2 (𝑅 = 𝑅𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑅𝑦})
51, 2, 43bitri 296 1 (Rel 𝑅𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑅𝑦})
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539   class class class wbr 5070  {copab 5132  ccnv 5579  Rel wrel 5585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-cnv 5588
This theorem is referenced by:  dfrel4  6083  dffn5  6810  fsplit  7928  fsplitOLD  7929  pwsle  17120  tgphaus  23176  fneer  34469  inxp2  36424  dfxrn2  36433  1cosscnvxrn  36520  dfafn5a  44539  sprsymrelfo  44837
  Copyright terms: Public domain W3C validator