MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfrel4v Structured version   Visualization version   GIF version

Theorem dfrel4v 6163
Description: A relation can be expressed as the set of ordered pairs in it. An analogue of dffn5 6919 for relations. (Contributed by Mario Carneiro, 16-Aug-2015.)
Assertion
Ref Expression
dfrel4v (Rel 𝑅𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑅𝑦})
Distinct variable group:   𝑥,𝑦,𝑅

Proof of Theorem dfrel4v
StepHypRef Expression
1 dfrel2 6162 . 2 (Rel 𝑅𝑅 = 𝑅)
2 eqcom 2736 . 2 (𝑅 = 𝑅𝑅 = 𝑅)
3 cnvcnv3 6161 . . 3 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑅𝑦}
43eqeq2i 2742 . 2 (𝑅 = 𝑅𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑅𝑦})
51, 2, 43bitri 297 1 (Rel 𝑅𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑅𝑦})
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540   class class class wbr 5107  {copab 5169  ccnv 5637  Rel wrel 5643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-cnv 5646
This theorem is referenced by:  dfrel4  6164  dffn5  6919  fsplit  8096  pwsle  17455  tgphaus  24004  fneer  36341  inxp2  38349  dfxrn2  38358  1cosscnvxrn  38466  dfafn5a  47161  sprsymrelfo  47498
  Copyright terms: Public domain W3C validator