![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfrel4v | Structured version Visualization version GIF version |
Description: A relation can be expressed as the set of ordered pairs in it. An analogue of dffn5 6980 for relations. (Contributed by Mario Carneiro, 16-Aug-2015.) |
Ref | Expression |
---|---|
dfrel4v | ⊢ (Rel 𝑅 ↔ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrel2 6220 | . 2 ⊢ (Rel 𝑅 ↔ ◡◡𝑅 = 𝑅) | |
2 | eqcom 2747 | . 2 ⊢ (◡◡𝑅 = 𝑅 ↔ 𝑅 = ◡◡𝑅) | |
3 | cnvcnv3 6219 | . . 3 ⊢ ◡◡𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦} | |
4 | 3 | eqeq2i 2753 | . 2 ⊢ (𝑅 = ◡◡𝑅 ↔ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦}) |
5 | 1, 2, 4 | 3bitri 297 | 1 ⊢ (Rel 𝑅 ↔ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦}) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 class class class wbr 5166 {copab 5228 ◡ccnv 5699 Rel wrel 5705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 |
This theorem is referenced by: dfrel4 6222 dffn5 6980 fsplit 8158 pwsle 17552 tgphaus 24146 fneer 36319 inxp2 38323 dfxrn2 38332 1cosscnvxrn 38431 dfafn5a 47075 sprsymrelfo 47371 |
Copyright terms: Public domain | W3C validator |