MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfrel4v Structured version   Visualization version   GIF version

Theorem dfrel4v 6221
Description: A relation can be expressed as the set of ordered pairs in it. An analogue of dffn5 6980 for relations. (Contributed by Mario Carneiro, 16-Aug-2015.)
Assertion
Ref Expression
dfrel4v (Rel 𝑅𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑅𝑦})
Distinct variable group:   𝑥,𝑦,𝑅

Proof of Theorem dfrel4v
StepHypRef Expression
1 dfrel2 6220 . 2 (Rel 𝑅𝑅 = 𝑅)
2 eqcom 2747 . 2 (𝑅 = 𝑅𝑅 = 𝑅)
3 cnvcnv3 6219 . . 3 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑅𝑦}
43eqeq2i 2753 . 2 (𝑅 = 𝑅𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑅𝑦})
51, 2, 43bitri 297 1 (Rel 𝑅𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑅𝑦})
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1537   class class class wbr 5166  {copab 5228  ccnv 5699  Rel wrel 5705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708
This theorem is referenced by:  dfrel4  6222  dffn5  6980  fsplit  8158  pwsle  17552  tgphaus  24146  fneer  36319  inxp2  38323  dfxrn2  38332  1cosscnvxrn  38431  dfafn5a  47075  sprsymrelfo  47371
  Copyright terms: Public domain W3C validator