![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > copsex2ga | Structured version Visualization version GIF version |
Description: Implicit substitution inference for ordered pairs. Compare copsex2g 5455. (Contributed by NM, 26-Feb-2014.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
copsex2ga.1 | ⊢ (𝐴 = ⟨𝑥, 𝑦⟩ → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
copsex2ga | ⊢ (𝐴 ∈ (𝑉 × 𝑊) → (𝜑 ↔ ∃𝑥∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpss 5654 | . . 3 ⊢ (𝑉 × 𝑊) ⊆ (V × V) | |
2 | 1 | sseli 3945 | . 2 ⊢ (𝐴 ∈ (𝑉 × 𝑊) → 𝐴 ∈ (V × V)) |
3 | copsex2ga.1 | . . . 4 ⊢ (𝐴 = ⟨𝑥, 𝑦⟩ → (𝜑 ↔ 𝜓)) | |
4 | 3 | copsex2gb 5767 | . . 3 ⊢ (∃𝑥∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜓) ↔ (𝐴 ∈ (V × V) ∧ 𝜑)) |
5 | 4 | baibr 538 | . 2 ⊢ (𝐴 ∈ (V × V) → (𝜑 ↔ ∃𝑥∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜓))) |
6 | 2, 5 | syl 17 | 1 ⊢ (𝐴 ∈ (𝑉 × 𝑊) → (𝜑 ↔ ∃𝑥∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∃wex 1782 ∈ wcel 2107 Vcvv 3448 ⟨cop 4597 × cxp 5636 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2708 ax-sep 5261 ax-nul 5268 ax-pr 5389 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2715 df-cleq 2729 df-clel 2815 df-v 3450 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-nul 4288 df-if 4492 df-sn 4592 df-pr 4594 df-op 4598 df-opab 5173 df-xp 5644 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |