MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  copsex2ga Structured version   Visualization version   GIF version

Theorem copsex2ga 5768
Description: Implicit substitution inference for ordered pairs. Compare copsex2g 5455. (Contributed by NM, 26-Feb-2014.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
Hypothesis
Ref Expression
copsex2ga.1 (𝐴 = ⟨𝑥, 𝑦⟩ → (𝜑𝜓))
Assertion
Ref Expression
copsex2ga (𝐴 ∈ (𝑉 × 𝑊) → (𝜑 ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem copsex2ga
StepHypRef Expression
1 xpss 5654 . . 3 (𝑉 × 𝑊) ⊆ (V × V)
21sseli 3945 . 2 (𝐴 ∈ (𝑉 × 𝑊) → 𝐴 ∈ (V × V))
3 copsex2ga.1 . . . 4 (𝐴 = ⟨𝑥, 𝑦⟩ → (𝜑𝜓))
43copsex2gb 5767 . . 3 (∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜓) ↔ (𝐴 ∈ (V × V) ∧ 𝜑))
54baibr 538 . 2 (𝐴 ∈ (V × V) → (𝜑 ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)))
62, 5syl 17 1 (𝐴 ∈ (𝑉 × 𝑊) → (𝜑 ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wex 1782  wcel 2107  Vcvv 3448  cop 4597   × cxp 5636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pr 5389
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2715  df-cleq 2729  df-clel 2815  df-v 3450  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-nul 4288  df-if 4492  df-sn 4592  df-pr 4594  df-op 4598  df-opab 5173  df-xp 5644
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator