Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > copsex2gb | Structured version Visualization version GIF version |
Description: Implicit substitution inference for ordered pairs. Compare copsex2ga 5729. (Contributed by NM, 12-Mar-2014.) |
Ref | Expression |
---|---|
copsex2ga.1 | ⊢ (𝐴 = 〈𝑥, 𝑦〉 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
copsex2gb | ⊢ (∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜓) ↔ (𝐴 ∈ (V × V) ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elvv 5672 | . . 3 ⊢ (𝐴 ∈ (V × V) ↔ ∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉) | |
2 | 1 | anbi1i 624 | . 2 ⊢ ((𝐴 ∈ (V × V) ∧ 𝜑) ↔ (∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜑)) |
3 | 19.41vv 1951 | . 2 ⊢ (∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ (∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜑)) | |
4 | copsex2ga.1 | . . . 4 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → (𝜑 ↔ 𝜓)) | |
5 | 4 | pm5.32i 575 | . . 3 ⊢ ((𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ (𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜓)) |
6 | 5 | 2exbii 1848 | . 2 ⊢ (∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜓)) |
7 | 2, 3, 6 | 3bitr2ri 299 | 1 ⊢ (∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜓) ↔ (𝐴 ∈ (V × V) ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1538 ∃wex 1778 ∈ wcel 2103 Vcvv 3436 〈cop 4570 × cxp 5598 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1968 ax-7 2008 ax-8 2105 ax-9 2113 ax-ext 2706 ax-sep 5231 ax-nul 5238 ax-pr 5360 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1779 df-sb 2065 df-clab 2713 df-cleq 2727 df-clel 2813 df-v 3438 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4565 df-pr 4567 df-op 4571 df-opab 5143 df-xp 5606 |
This theorem is referenced by: copsex2ga 5729 elopaba 5730 dfxrn2 36600 elcnvlem 41435 |
Copyright terms: Public domain | W3C validator |