![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > copsex2gb | Structured version Visualization version GIF version |
Description: Implicit substitution inference for ordered pairs. Compare copsex2ga 5808. (Contributed by NM, 12-Mar-2014.) |
Ref | Expression |
---|---|
copsex2ga.1 | ⊢ (𝐴 = ⟨𝑥, 𝑦⟩ → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
copsex2gb | ⊢ (∃𝑥∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜓) ↔ (𝐴 ∈ (V × V) ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elvv 5751 | . . 3 ⊢ (𝐴 ∈ (V × V) ↔ ∃𝑥∃𝑦 𝐴 = ⟨𝑥, 𝑦⟩) | |
2 | 1 | anbi1i 625 | . 2 ⊢ ((𝐴 ∈ (V × V) ∧ 𝜑) ↔ (∃𝑥∃𝑦 𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) |
3 | 19.41vv 1955 | . 2 ⊢ (∃𝑥∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ (∃𝑥∃𝑦 𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) | |
4 | copsex2ga.1 | . . . 4 ⊢ (𝐴 = ⟨𝑥, 𝑦⟩ → (𝜑 ↔ 𝜓)) | |
5 | 4 | pm5.32i 576 | . . 3 ⊢ ((𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ (𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)) |
6 | 5 | 2exbii 1852 | . 2 ⊢ (∃𝑥∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)) |
7 | 2, 3, 6 | 3bitr2ri 300 | 1 ⊢ (∃𝑥∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜓) ↔ (𝐴 ∈ (V × V) ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∃wex 1782 ∈ wcel 2107 Vcvv 3475 ⟨cop 4635 × cxp 5675 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-opab 5212 df-xp 5683 |
This theorem is referenced by: copsex2ga 5808 elopaba 5809 dfxrn2 37246 elcnvlem 42352 |
Copyright terms: Public domain | W3C validator |