| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > copsex2gb | Structured version Visualization version GIF version | ||
| Description: Implicit substitution inference for ordered pairs. Compare copsex2ga 5817. (Contributed by NM, 12-Mar-2014.) |
| Ref | Expression |
|---|---|
| copsex2ga.1 | ⊢ (𝐴 = 〈𝑥, 𝑦〉 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| copsex2gb | ⊢ (∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜓) ↔ (𝐴 ∈ (V × V) ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elvv 5760 | . . 3 ⊢ (𝐴 ∈ (V × V) ↔ ∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉) | |
| 2 | 1 | anbi1i 624 | . 2 ⊢ ((𝐴 ∈ (V × V) ∧ 𝜑) ↔ (∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜑)) |
| 3 | 19.41vv 1950 | . 2 ⊢ (∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ (∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜑)) | |
| 4 | copsex2ga.1 | . . . 4 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → (𝜑 ↔ 𝜓)) | |
| 5 | 4 | pm5.32i 574 | . . 3 ⊢ ((𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ (𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜓)) |
| 6 | 5 | 2exbii 1849 | . 2 ⊢ (∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜓)) |
| 7 | 2, 3, 6 | 3bitr2ri 300 | 1 ⊢ (∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜓) ↔ (𝐴 ∈ (V × V) ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2108 Vcvv 3480 〈cop 4632 × cxp 5683 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-opab 5206 df-xp 5691 |
| This theorem is referenced by: copsex2ga 5817 elopaba 5818 dfxrn2 38377 elcnvlem 43614 |
| Copyright terms: Public domain | W3C validator |