MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  copsex2gb Structured version   Visualization version   GIF version

Theorem copsex2gb 5750
Description: Implicit substitution inference for ordered pairs. Compare copsex2ga 5751. (Contributed by NM, 12-Mar-2014.)
Hypothesis
Ref Expression
copsex2ga.1 (𝐴 = ⟨𝑥, 𝑦⟩ → (𝜑𝜓))
Assertion
Ref Expression
copsex2gb (∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜓) ↔ (𝐴 ∈ (V × V) ∧ 𝜑))
Distinct variable groups:   𝑥,𝑦,𝐴   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)

Proof of Theorem copsex2gb
StepHypRef Expression
1 elvv 5694 . . 3 (𝐴 ∈ (V × V) ↔ ∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩)
21anbi1i 624 . 2 ((𝐴 ∈ (V × V) ∧ 𝜑) ↔ (∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
3 19.41vv 1951 . 2 (∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ (∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
4 copsex2ga.1 . . . 4 (𝐴 = ⟨𝑥, 𝑦⟩ → (𝜑𝜓))
54pm5.32i 574 . . 3 ((𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ (𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜓))
652exbii 1850 . 2 (∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜓))
72, 3, 63bitr2ri 300 1 (∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜓) ↔ (𝐴 ∈ (V × V) ∧ 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2111  Vcvv 3436  cop 4581   × cxp 5617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-opab 5156  df-xp 5625
This theorem is referenced by:  copsex2ga  5751  elopaba  5752  dfxrn2  38415  elcnvlem  43699
  Copyright terms: Public domain W3C validator