MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  copsex2gb Structured version   Visualization version   GIF version

Theorem copsex2gb 5728
Description: Implicit substitution inference for ordered pairs. Compare copsex2ga 5729. (Contributed by NM, 12-Mar-2014.)
Hypothesis
Ref Expression
copsex2ga.1 (𝐴 = ⟨𝑥, 𝑦⟩ → (𝜑𝜓))
Assertion
Ref Expression
copsex2gb (∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜓) ↔ (𝐴 ∈ (V × V) ∧ 𝜑))
Distinct variable groups:   𝑥,𝑦,𝐴   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)

Proof of Theorem copsex2gb
StepHypRef Expression
1 elvv 5672 . . 3 (𝐴 ∈ (V × V) ↔ ∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩)
21anbi1i 625 . 2 ((𝐴 ∈ (V × V) ∧ 𝜑) ↔ (∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
3 19.41vv 1952 . 2 (∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ (∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
4 copsex2ga.1 . . . 4 (𝐴 = ⟨𝑥, 𝑦⟩ → (𝜑𝜓))
54pm5.32i 576 . . 3 ((𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ (𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜓))
652exbii 1849 . 2 (∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜓))
72, 3, 63bitr2ri 300 1 (∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜓) ↔ (𝐴 ∈ (V × V) ∧ 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1539  wex 1779  wcel 2104  Vcvv 3437  cop 4571   × cxp 5598
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-opab 5144  df-xp 5606
This theorem is referenced by:  copsex2ga  5729  elopaba  5730  dfxrn2  36590  elcnvlem  41422
  Copyright terms: Public domain W3C validator