Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > copsex2gb | Structured version Visualization version GIF version |
Description: Implicit substitution inference for ordered pairs. Compare copsex2ga 5729. (Contributed by NM, 12-Mar-2014.) |
Ref | Expression |
---|---|
copsex2ga.1 | ⊢ (𝐴 = 〈𝑥, 𝑦〉 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
copsex2gb | ⊢ (∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜓) ↔ (𝐴 ∈ (V × V) ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elvv 5672 | . . 3 ⊢ (𝐴 ∈ (V × V) ↔ ∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉) | |
2 | 1 | anbi1i 625 | . 2 ⊢ ((𝐴 ∈ (V × V) ∧ 𝜑) ↔ (∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜑)) |
3 | 19.41vv 1952 | . 2 ⊢ (∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ (∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜑)) | |
4 | copsex2ga.1 | . . . 4 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → (𝜑 ↔ 𝜓)) | |
5 | 4 | pm5.32i 576 | . . 3 ⊢ ((𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ (𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜓)) |
6 | 5 | 2exbii 1849 | . 2 ⊢ (∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜓)) |
7 | 2, 3, 6 | 3bitr2ri 300 | 1 ⊢ (∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜓) ↔ (𝐴 ∈ (V × V) ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1539 ∃wex 1779 ∈ wcel 2104 Vcvv 3437 〈cop 4571 × cxp 5598 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-opab 5144 df-xp 5606 |
This theorem is referenced by: copsex2ga 5729 elopaba 5730 dfxrn2 36590 elcnvlem 41422 |
Copyright terms: Public domain | W3C validator |