Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > copsex2gb | Structured version Visualization version GIF version |
Description: Implicit substitution inference for ordered pairs. Compare copsex2ga 5714. (Contributed by NM, 12-Mar-2014.) |
Ref | Expression |
---|---|
copsex2ga.1 | ⊢ (𝐴 = 〈𝑥, 𝑦〉 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
copsex2gb | ⊢ (∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜓) ↔ (𝐴 ∈ (V × V) ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elvv 5660 | . . 3 ⊢ (𝐴 ∈ (V × V) ↔ ∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉) | |
2 | 1 | anbi1i 623 | . 2 ⊢ ((𝐴 ∈ (V × V) ∧ 𝜑) ↔ (∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜑)) |
3 | 19.41vv 1957 | . 2 ⊢ (∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ (∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜑)) | |
4 | copsex2ga.1 | . . . 4 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → (𝜑 ↔ 𝜓)) | |
5 | 4 | pm5.32i 574 | . . 3 ⊢ ((𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ (𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜓)) |
6 | 5 | 2exbii 1854 | . 2 ⊢ (∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜓)) |
7 | 2, 3, 6 | 3bitr2ri 299 | 1 ⊢ (∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜓) ↔ (𝐴 ∈ (V × V) ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1541 ∃wex 1785 ∈ wcel 2109 Vcvv 3430 〈cop 4572 × cxp 5586 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-v 3432 df-dif 3894 df-un 3896 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-opab 5141 df-xp 5594 |
This theorem is referenced by: copsex2ga 5714 elopaba 5715 dfxrn2 36485 elcnvlem 41162 |
Copyright terms: Public domain | W3C validator |