MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  copsex2gb Structured version   Visualization version   GIF version

Theorem copsex2gb 5728
Description: Implicit substitution inference for ordered pairs. Compare copsex2ga 5729. (Contributed by NM, 12-Mar-2014.)
Hypothesis
Ref Expression
copsex2ga.1 (𝐴 = ⟨𝑥, 𝑦⟩ → (𝜑𝜓))
Assertion
Ref Expression
copsex2gb (∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜓) ↔ (𝐴 ∈ (V × V) ∧ 𝜑))
Distinct variable groups:   𝑥,𝑦,𝐴   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)

Proof of Theorem copsex2gb
StepHypRef Expression
1 elvv 5672 . . 3 (𝐴 ∈ (V × V) ↔ ∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩)
21anbi1i 624 . 2 ((𝐴 ∈ (V × V) ∧ 𝜑) ↔ (∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
3 19.41vv 1951 . 2 (∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ (∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
4 copsex2ga.1 . . . 4 (𝐴 = ⟨𝑥, 𝑦⟩ → (𝜑𝜓))
54pm5.32i 575 . . 3 ((𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ (𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜓))
652exbii 1848 . 2 (∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜓))
72, 3, 63bitr2ri 299 1 (∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜓) ↔ (𝐴 ∈ (V × V) ∧ 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1538  wex 1778  wcel 2103  Vcvv 3436  cop 4570   × cxp 5598
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1968  ax-7 2008  ax-8 2105  ax-9 2113  ax-ext 2706  ax-sep 5231  ax-nul 5238  ax-pr 5360
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1541  df-fal 1551  df-ex 1779  df-sb 2065  df-clab 2713  df-cleq 2727  df-clel 2813  df-v 3438  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4565  df-pr 4567  df-op 4571  df-opab 5143  df-xp 5606
This theorem is referenced by:  copsex2ga  5729  elopaba  5730  dfxrn2  36600  elcnvlem  41435
  Copyright terms: Public domain W3C validator