![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elopaba | Structured version Visualization version GIF version |
Description: Membership in an ordered pair class builder. (Contributed by NM, 25-Feb-2014.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
copsex2ga.1 | ⊢ (𝐴 = 〈𝑥, 𝑦〉 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
elopaba | ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜓} ↔ (𝐴 ∈ (V × V) ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elopab 5179 | . 2 ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜓} ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜓)) | |
2 | copsex2ga.1 | . . 3 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → (𝜑 ↔ 𝜓)) | |
3 | 2 | copsex2gb 5433 | . 2 ⊢ (∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜓) ↔ (𝐴 ∈ (V × V) ∧ 𝜑)) |
4 | 1, 3 | bitri 267 | 1 ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜓} ↔ (𝐴 ∈ (V × V) ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 = wceq 1653 ∃wex 1875 ∈ wcel 2157 Vcvv 3385 〈cop 4374 {copab 4905 × cxp 5310 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pr 5097 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-v 3387 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-opab 4906 df-xp 5318 |
This theorem is referenced by: dicelvalN 37199 |
Copyright terms: Public domain | W3C validator |