Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elopaba | Structured version Visualization version GIF version |
Description: Membership in an ordered-pair class abstraction. (Contributed by NM, 25-Feb-2014.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
copsex2ga.1 | ⊢ (𝐴 = 〈𝑥, 𝑦〉 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
elopaba | ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜓} ↔ (𝐴 ∈ (V × V) ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elopab 5440 | . 2 ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜓} ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜓)) | |
2 | copsex2ga.1 | . . 3 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → (𝜑 ↔ 𝜓)) | |
3 | 2 | copsex2gb 5716 | . 2 ⊢ (∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜓) ↔ (𝐴 ∈ (V × V) ∧ 𝜑)) |
4 | 1, 3 | bitri 274 | 1 ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜓} ↔ (𝐴 ∈ (V × V) ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∃wex 1782 ∈ wcel 2106 Vcvv 3432 〈cop 4567 {copab 5136 × cxp 5587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-opab 5137 df-xp 5595 |
This theorem is referenced by: dicelvalN 39192 |
Copyright terms: Public domain | W3C validator |