| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > crefss | Structured version Visualization version GIF version | ||
| Description: The "every open cover has an 𝐴 refinement" predicate respects inclusion. (Contributed by Thierry Arnoux, 7-Jan-2020.) |
| Ref | Expression |
|---|---|
| crefss | ⊢ (𝐴 ⊆ 𝐵 → CovHasRef𝐴 ⊆ CovHasRef𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sslin 4206 | . . . . . . 7 ⊢ (𝐴 ⊆ 𝐵 → (𝒫 𝑗 ∩ 𝐴) ⊆ (𝒫 𝑗 ∩ 𝐵)) | |
| 2 | ssrexv 4016 | . . . . . . 7 ⊢ ((𝒫 𝑗 ∩ 𝐴) ⊆ (𝒫 𝑗 ∩ 𝐵) → (∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐴)𝑧Ref𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐵)𝑧Ref𝑦)) | |
| 3 | 1, 2 | syl 17 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐴)𝑧Ref𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐵)𝑧Ref𝑦)) |
| 4 | 3 | imim2d 57 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → ((∪ 𝑗 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐴)𝑧Ref𝑦) → (∪ 𝑗 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐵)𝑧Ref𝑦))) |
| 5 | 4 | ralimdv 3147 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑦 ∈ 𝒫 𝑗(∪ 𝑗 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐴)𝑧Ref𝑦) → ∀𝑦 ∈ 𝒫 𝑗(∪ 𝑗 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐵)𝑧Ref𝑦))) |
| 6 | 5 | anim2d 612 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ((𝑗 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝑗(∪ 𝑗 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐴)𝑧Ref𝑦)) → (𝑗 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝑗(∪ 𝑗 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐵)𝑧Ref𝑦)))) |
| 7 | eqid 2729 | . . . 4 ⊢ ∪ 𝑗 = ∪ 𝑗 | |
| 8 | 7 | iscref 33834 | . . 3 ⊢ (𝑗 ∈ CovHasRef𝐴 ↔ (𝑗 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝑗(∪ 𝑗 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐴)𝑧Ref𝑦))) |
| 9 | 7 | iscref 33834 | . . 3 ⊢ (𝑗 ∈ CovHasRef𝐵 ↔ (𝑗 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝑗(∪ 𝑗 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐵)𝑧Ref𝑦))) |
| 10 | 6, 8, 9 | 3imtr4g 296 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝑗 ∈ CovHasRef𝐴 → 𝑗 ∈ CovHasRef𝐵)) |
| 11 | 10 | ssrdv 3952 | 1 ⊢ (𝐴 ⊆ 𝐵 → CovHasRef𝐴 ⊆ CovHasRef𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ∩ cin 3913 ⊆ wss 3914 𝒫 cpw 4563 ∪ cuni 4871 class class class wbr 5107 Topctop 22780 Refcref 23389 CovHasRefccref 33832 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-in 3921 df-ss 3931 df-pw 4565 df-uni 4872 df-cref 33833 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |