![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > crefss | Structured version Visualization version GIF version |
Description: The "every open cover has an 𝐴 refinement" predicate respects inclusion. (Contributed by Thierry Arnoux, 7-Jan-2020.) |
Ref | Expression |
---|---|
crefss | ⊢ (𝐴 ⊆ 𝐵 → CovHasRef𝐴 ⊆ CovHasRef𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sslin 4229 | . . . . . . 7 ⊢ (𝐴 ⊆ 𝐵 → (𝒫 𝑗 ∩ 𝐴) ⊆ (𝒫 𝑗 ∩ 𝐵)) | |
2 | ssrexv 4046 | . . . . . . 7 ⊢ ((𝒫 𝑗 ∩ 𝐴) ⊆ (𝒫 𝑗 ∩ 𝐵) → (∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐴)𝑧Ref𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐵)𝑧Ref𝑦)) | |
3 | 1, 2 | syl 17 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐴)𝑧Ref𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐵)𝑧Ref𝑦)) |
4 | 3 | imim2d 57 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → ((∪ 𝑗 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐴)𝑧Ref𝑦) → (∪ 𝑗 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐵)𝑧Ref𝑦))) |
5 | 4 | ralimdv 3163 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑦 ∈ 𝒫 𝑗(∪ 𝑗 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐴)𝑧Ref𝑦) → ∀𝑦 ∈ 𝒫 𝑗(∪ 𝑗 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐵)𝑧Ref𝑦))) |
6 | 5 | anim2d 611 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ((𝑗 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝑗(∪ 𝑗 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐴)𝑧Ref𝑦)) → (𝑗 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝑗(∪ 𝑗 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐵)𝑧Ref𝑦)))) |
7 | eqid 2726 | . . . 4 ⊢ ∪ 𝑗 = ∪ 𝑗 | |
8 | 7 | iscref 33354 | . . 3 ⊢ (𝑗 ∈ CovHasRef𝐴 ↔ (𝑗 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝑗(∪ 𝑗 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐴)𝑧Ref𝑦))) |
9 | 7 | iscref 33354 | . . 3 ⊢ (𝑗 ∈ CovHasRef𝐵 ↔ (𝑗 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝑗(∪ 𝑗 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐵)𝑧Ref𝑦))) |
10 | 6, 8, 9 | 3imtr4g 296 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝑗 ∈ CovHasRef𝐴 → 𝑗 ∈ CovHasRef𝐵)) |
11 | 10 | ssrdv 3983 | 1 ⊢ (𝐴 ⊆ 𝐵 → CovHasRef𝐴 ⊆ CovHasRef𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∀wral 3055 ∃wrex 3064 ∩ cin 3942 ⊆ wss 3943 𝒫 cpw 4597 ∪ cuni 4902 class class class wbr 5141 Topctop 22746 Refcref 23357 CovHasRefccref 33352 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-in 3950 df-ss 3960 df-pw 4599 df-uni 4903 df-cref 33353 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |