Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > crefss | Structured version Visualization version GIF version |
Description: The "every open cover has an 𝐴 refinement" predicate respects inclusion. (Contributed by Thierry Arnoux, 7-Jan-2020.) |
Ref | Expression |
---|---|
crefss | ⊢ (𝐴 ⊆ 𝐵 → CovHasRef𝐴 ⊆ CovHasRef𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sslin 4171 | . . . . . . 7 ⊢ (𝐴 ⊆ 𝐵 → (𝒫 𝑗 ∩ 𝐴) ⊆ (𝒫 𝑗 ∩ 𝐵)) | |
2 | ssrexv 3990 | . . . . . . 7 ⊢ ((𝒫 𝑗 ∩ 𝐴) ⊆ (𝒫 𝑗 ∩ 𝐵) → (∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐴)𝑧Ref𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐵)𝑧Ref𝑦)) | |
3 | 1, 2 | syl 17 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐴)𝑧Ref𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐵)𝑧Ref𝑦)) |
4 | 3 | imim2d 57 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → ((∪ 𝑗 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐴)𝑧Ref𝑦) → (∪ 𝑗 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐵)𝑧Ref𝑦))) |
5 | 4 | ralimdv 3160 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑦 ∈ 𝒫 𝑗(∪ 𝑗 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐴)𝑧Ref𝑦) → ∀𝑦 ∈ 𝒫 𝑗(∪ 𝑗 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐵)𝑧Ref𝑦))) |
6 | 5 | anim2d 611 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ((𝑗 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝑗(∪ 𝑗 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐴)𝑧Ref𝑦)) → (𝑗 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝑗(∪ 𝑗 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐵)𝑧Ref𝑦)))) |
7 | eqid 2733 | . . . 4 ⊢ ∪ 𝑗 = ∪ 𝑗 | |
8 | 7 | iscref 31822 | . . 3 ⊢ (𝑗 ∈ CovHasRef𝐴 ↔ (𝑗 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝑗(∪ 𝑗 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐴)𝑧Ref𝑦))) |
9 | 7 | iscref 31822 | . . 3 ⊢ (𝑗 ∈ CovHasRef𝐵 ↔ (𝑗 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝑗(∪ 𝑗 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐵)𝑧Ref𝑦))) |
10 | 6, 8, 9 | 3imtr4g 295 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝑗 ∈ CovHasRef𝐴 → 𝑗 ∈ CovHasRef𝐵)) |
11 | 10 | ssrdv 3929 | 1 ⊢ (𝐴 ⊆ 𝐵 → CovHasRef𝐴 ⊆ CovHasRef𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2101 ∀wral 3059 ∃wrex 3068 ∩ cin 3888 ⊆ wss 3889 𝒫 cpw 4536 ∪ cuni 4841 class class class wbr 5077 Topctop 22070 Refcref 22681 CovHasRefccref 31820 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1540 df-ex 1778 df-sb 2063 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3060 df-rex 3069 df-rab 3224 df-v 3436 df-in 3896 df-ss 3906 df-pw 4538 df-uni 4842 df-cref 31821 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |