Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cmpcref Structured version   Visualization version   GIF version

Theorem cmpcref 31800
Description: Equivalent definition of compact space in terms of open cover refinements. Compact spaces are topologies with finite open cover refinements. (Contributed by Thierry Arnoux, 7-Jan-2020.)
Assertion
Ref Expression
cmpcref Comp = CovHasRefFin

Proof of Theorem cmpcref
Dummy variables 𝑓 𝑗 𝑢 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 766 . . . . . . . . . . . . . . 15 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑥 ∈ (𝒫 𝑦 ∩ Fin)) ∧ 𝑗 = 𝑥) → 𝑥 ∈ (𝒫 𝑦 ∩ Fin))
2 elin 3903 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝒫 𝑦 ∩ Fin) ↔ (𝑥 ∈ 𝒫 𝑦𝑥 ∈ Fin))
31, 2sylib 217 . . . . . . . . . . . . . 14 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑥 ∈ (𝒫 𝑦 ∩ Fin)) ∧ 𝑗 = 𝑥) → (𝑥 ∈ 𝒫 𝑦𝑥 ∈ Fin))
43simpld 495 . . . . . . . . . . . . 13 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑥 ∈ (𝒫 𝑦 ∩ Fin)) ∧ 𝑗 = 𝑥) → 𝑥 ∈ 𝒫 𝑦)
5 elpwi 4542 . . . . . . . . . . . . 13 (𝑥 ∈ 𝒫 𝑦𝑥𝑦)
64, 5syl 17 . . . . . . . . . . . 12 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑥 ∈ (𝒫 𝑦 ∩ Fin)) ∧ 𝑗 = 𝑥) → 𝑥𝑦)
7 elpwi 4542 . . . . . . . . . . . . 13 (𝑦 ∈ 𝒫 𝑗𝑦𝑗)
87ad4antlr 730 . . . . . . . . . . . 12 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑥 ∈ (𝒫 𝑦 ∩ Fin)) ∧ 𝑗 = 𝑥) → 𝑦𝑗)
96, 8sstrd 3931 . . . . . . . . . . 11 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑥 ∈ (𝒫 𝑦 ∩ Fin)) ∧ 𝑗 = 𝑥) → 𝑥𝑗)
10 velpw 4538 . . . . . . . . . . 11 (𝑥 ∈ 𝒫 𝑗𝑥𝑗)
119, 10sylibr 233 . . . . . . . . . 10 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑥 ∈ (𝒫 𝑦 ∩ Fin)) ∧ 𝑗 = 𝑥) → 𝑥 ∈ 𝒫 𝑗)
123simprd 496 . . . . . . . . . 10 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑥 ∈ (𝒫 𝑦 ∩ Fin)) ∧ 𝑗 = 𝑥) → 𝑥 ∈ Fin)
1311, 12elind 4128 . . . . . . . . 9 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑥 ∈ (𝒫 𝑦 ∩ Fin)) ∧ 𝑗 = 𝑥) → 𝑥 ∈ (𝒫 𝑗 ∩ Fin))
14 simpr 485 . . . . . . . . . . 11 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑥 ∈ (𝒫 𝑦 ∩ Fin)) ∧ 𝑗 = 𝑥) → 𝑗 = 𝑥)
15 simpllr 773 . . . . . . . . . . 11 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑥 ∈ (𝒫 𝑦 ∩ Fin)) ∧ 𝑗 = 𝑥) → 𝑗 = 𝑦)
1614, 15eqtr3d 2780 . . . . . . . . . 10 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑥 ∈ (𝒫 𝑦 ∩ Fin)) ∧ 𝑗 = 𝑥) → 𝑥 = 𝑦)
17 eqid 2738 . . . . . . . . . . 11 𝑥 = 𝑥
18 eqid 2738 . . . . . . . . . . 11 𝑦 = 𝑦
1917, 18ssref 22663 . . . . . . . . . 10 ((𝑥 ∈ 𝒫 𝑗𝑥𝑦 𝑥 = 𝑦) → 𝑥Ref𝑦)
2011, 6, 16, 19syl3anc 1370 . . . . . . . . 9 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑥 ∈ (𝒫 𝑦 ∩ Fin)) ∧ 𝑗 = 𝑥) → 𝑥Ref𝑦)
21 breq1 5077 . . . . . . . . . 10 (𝑧 = 𝑥 → (𝑧Ref𝑦𝑥Ref𝑦))
2221rspcev 3561 . . . . . . . . 9 ((𝑥 ∈ (𝒫 𝑗 ∩ Fin) ∧ 𝑥Ref𝑦) → ∃𝑧 ∈ (𝒫 𝑗 ∩ Fin)𝑧Ref𝑦)
2313, 20, 22syl2anc 584 . . . . . . . 8 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑥 ∈ (𝒫 𝑦 ∩ Fin)) ∧ 𝑗 = 𝑥) → ∃𝑧 ∈ (𝒫 𝑗 ∩ Fin)𝑧Ref𝑦)
2423r19.29an 3217 . . . . . . 7 ((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ ∃𝑥 ∈ (𝒫 𝑦 ∩ Fin) 𝑗 = 𝑥) → ∃𝑧 ∈ (𝒫 𝑗 ∩ Fin)𝑧Ref𝑦)
25 simplr 766 . . . . . . . . . 10 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) → 𝑧 ∈ (𝒫 𝑗 ∩ Fin))
26 vex 3436 . . . . . . . . . . . . 13 𝑧 ∈ V
27 eqid 2738 . . . . . . . . . . . . . 14 𝑧 = 𝑧
2827, 18isref 22660 . . . . . . . . . . . . 13 (𝑧 ∈ V → (𝑧Ref𝑦 ↔ ( 𝑦 = 𝑧 ∧ ∀𝑢𝑧𝑣𝑦 𝑢𝑣)))
2926, 28ax-mp 5 . . . . . . . . . . . 12 (𝑧Ref𝑦 ↔ ( 𝑦 = 𝑧 ∧ ∀𝑢𝑧𝑣𝑦 𝑢𝑣))
3029simprbi 497 . . . . . . . . . . 11 (𝑧Ref𝑦 → ∀𝑢𝑧𝑣𝑦 𝑢𝑣)
3130adantl 482 . . . . . . . . . 10 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) → ∀𝑢𝑧𝑣𝑦 𝑢𝑣)
32 sseq2 3947 . . . . . . . . . . 11 (𝑣 = (𝑓𝑢) → (𝑢𝑣𝑢 ⊆ (𝑓𝑢)))
3332ac6sg 10244 . . . . . . . . . 10 (𝑧 ∈ (𝒫 𝑗 ∩ Fin) → (∀𝑢𝑧𝑣𝑦 𝑢𝑣 → ∃𝑓(𝑓:𝑧𝑦 ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢))))
3425, 31, 33sylc 65 . . . . . . . . 9 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) → ∃𝑓(𝑓:𝑧𝑦 ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)))
35 simplr 766 . . . . . . . . . . . . . . 15 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → 𝑓:𝑧𝑦)
3635frnd 6608 . . . . . . . . . . . . . 14 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → ran 𝑓𝑦)
37 vex 3436 . . . . . . . . . . . . . . . 16 𝑓 ∈ V
3837rnex 7759 . . . . . . . . . . . . . . 15 ran 𝑓 ∈ V
3938elpw 4537 . . . . . . . . . . . . . 14 (ran 𝑓 ∈ 𝒫 𝑦 ↔ ran 𝑓𝑦)
4036, 39sylibr 233 . . . . . . . . . . . . 13 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → ran 𝑓 ∈ 𝒫 𝑦)
4135ffnd 6601 . . . . . . . . . . . . . . 15 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → 𝑓 Fn 𝑧)
42 elin 3903 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ (𝒫 𝑗 ∩ Fin) ↔ (𝑧 ∈ 𝒫 𝑗𝑧 ∈ Fin))
4342simprbi 497 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (𝒫 𝑗 ∩ Fin) → 𝑧 ∈ Fin)
4443ad4antlr 730 . . . . . . . . . . . . . . 15 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → 𝑧 ∈ Fin)
45 fnfi 8964 . . . . . . . . . . . . . . 15 ((𝑓 Fn 𝑧𝑧 ∈ Fin) → 𝑓 ∈ Fin)
4641, 44, 45syl2anc 584 . . . . . . . . . . . . . 14 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → 𝑓 ∈ Fin)
47 rnfi 9102 . . . . . . . . . . . . . 14 (𝑓 ∈ Fin → ran 𝑓 ∈ Fin)
4846, 47syl 17 . . . . . . . . . . . . 13 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → ran 𝑓 ∈ Fin)
4940, 48elind 4128 . . . . . . . . . . . 12 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → ran 𝑓 ∈ (𝒫 𝑦 ∩ Fin))
50 simp-5r 783 . . . . . . . . . . . . 13 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → 𝑗 = 𝑦)
5127, 18refbas 22661 . . . . . . . . . . . . . . . 16 (𝑧Ref𝑦 𝑦 = 𝑧)
5251ad3antlr 728 . . . . . . . . . . . . . . 15 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → 𝑦 = 𝑧)
53 nfv 1917 . . . . . . . . . . . . . . . . . . 19 𝑢(((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦)
54 nfra1 3144 . . . . . . . . . . . . . . . . . . 19 𝑢𝑢𝑧 𝑢 ⊆ (𝑓𝑢)
5553, 54nfan 1902 . . . . . . . . . . . . . . . . . 18 𝑢((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢))
56 rspa 3132 . . . . . . . . . . . . . . . . . . . . 21 ((∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢) ∧ 𝑢𝑧) → 𝑢 ⊆ (𝑓𝑢))
5756adantll 711 . . . . . . . . . . . . . . . . . . . 20 ((((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) ∧ 𝑢𝑧) → 𝑢 ⊆ (𝑓𝑢))
5857sseld 3920 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) ∧ 𝑢𝑧) → (𝑥𝑢𝑥 ∈ (𝑓𝑢)))
5958ex 413 . . . . . . . . . . . . . . . . . 18 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → (𝑢𝑧 → (𝑥𝑢𝑥 ∈ (𝑓𝑢))))
6055, 59reximdai 3244 . . . . . . . . . . . . . . . . 17 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → (∃𝑢𝑧 𝑥𝑢 → ∃𝑢𝑧 𝑥 ∈ (𝑓𝑢)))
61 eluni2 4843 . . . . . . . . . . . . . . . . . 18 (𝑥 𝑧 ↔ ∃𝑢𝑧 𝑥𝑢)
6261a1i 11 . . . . . . . . . . . . . . . . 17 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → (𝑥 𝑧 ↔ ∃𝑢𝑧 𝑥𝑢))
63 fnunirn 7127 . . . . . . . . . . . . . . . . . 18 (𝑓 Fn 𝑧 → (𝑥 ran 𝑓 ↔ ∃𝑢𝑧 𝑥 ∈ (𝑓𝑢)))
6441, 63syl 17 . . . . . . . . . . . . . . . . 17 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → (𝑥 ran 𝑓 ↔ ∃𝑢𝑧 𝑥 ∈ (𝑓𝑢)))
6560, 62, 643imtr4d 294 . . . . . . . . . . . . . . . 16 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → (𝑥 𝑧𝑥 ran 𝑓))
6665ssrdv 3927 . . . . . . . . . . . . . . 15 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → 𝑧 ran 𝑓)
6752, 66eqsstrd 3959 . . . . . . . . . . . . . 14 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → 𝑦 ran 𝑓)
6836unissd 4849 . . . . . . . . . . . . . 14 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → ran 𝑓 𝑦)
6967, 68eqssd 3938 . . . . . . . . . . . . 13 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → 𝑦 = ran 𝑓)
7050, 69eqtrd 2778 . . . . . . . . . . . 12 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → 𝑗 = ran 𝑓)
71 unieq 4850 . . . . . . . . . . . . 13 (𝑥 = ran 𝑓 𝑥 = ran 𝑓)
7271rspceeqv 3575 . . . . . . . . . . . 12 ((ran 𝑓 ∈ (𝒫 𝑦 ∩ Fin) ∧ 𝑗 = ran 𝑓) → ∃𝑥 ∈ (𝒫 𝑦 ∩ Fin) 𝑗 = 𝑥)
7349, 70, 72syl2anc 584 . . . . . . . . . . 11 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → ∃𝑥 ∈ (𝒫 𝑦 ∩ Fin) 𝑗 = 𝑥)
7473expl 458 . . . . . . . . . 10 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) → ((𝑓:𝑧𝑦 ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → ∃𝑥 ∈ (𝒫 𝑦 ∩ Fin) 𝑗 = 𝑥))
7574exlimdv 1936 . . . . . . . . 9 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) → (∃𝑓(𝑓:𝑧𝑦 ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → ∃𝑥 ∈ (𝒫 𝑦 ∩ Fin) 𝑗 = 𝑥))
7634, 75mpd 15 . . . . . . . 8 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) → ∃𝑥 ∈ (𝒫 𝑦 ∩ Fin) 𝑗 = 𝑥)
7776r19.29an 3217 . . . . . . 7 ((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ ∃𝑧 ∈ (𝒫 𝑗 ∩ Fin)𝑧Ref𝑦) → ∃𝑥 ∈ (𝒫 𝑦 ∩ Fin) 𝑗 = 𝑥)
7824, 77impbida 798 . . . . . 6 (((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) → (∃𝑥 ∈ (𝒫 𝑦 ∩ Fin) 𝑗 = 𝑥 ↔ ∃𝑧 ∈ (𝒫 𝑗 ∩ Fin)𝑧Ref𝑦))
7978pm5.74da 801 . . . . 5 ((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) → (( 𝑗 = 𝑦 → ∃𝑥 ∈ (𝒫 𝑦 ∩ Fin) 𝑗 = 𝑥) ↔ ( 𝑗 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ Fin)𝑧Ref𝑦)))
8079ralbidva 3111 . . . 4 (𝑗 ∈ Top → (∀𝑦 ∈ 𝒫 𝑗( 𝑗 = 𝑦 → ∃𝑥 ∈ (𝒫 𝑦 ∩ Fin) 𝑗 = 𝑥) ↔ ∀𝑦 ∈ 𝒫 𝑗( 𝑗 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ Fin)𝑧Ref𝑦)))
8180pm5.32i 575 . . 3 ((𝑗 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝑗( 𝑗 = 𝑦 → ∃𝑥 ∈ (𝒫 𝑦 ∩ Fin) 𝑗 = 𝑥)) ↔ (𝑗 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝑗( 𝑗 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ Fin)𝑧Ref𝑦)))
82 eqid 2738 . . . 4 𝑗 = 𝑗
8382iscmp 22539 . . 3 (𝑗 ∈ Comp ↔ (𝑗 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝑗( 𝑗 = 𝑦 → ∃𝑥 ∈ (𝒫 𝑦 ∩ Fin) 𝑗 = 𝑥)))
8482iscref 31794 . . 3 (𝑗 ∈ CovHasRefFin ↔ (𝑗 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝑗( 𝑗 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ Fin)𝑧Ref𝑦)))
8581, 83, 843bitr4i 303 . 2 (𝑗 ∈ Comp ↔ 𝑗 ∈ CovHasRefFin)
8685eqriv 2735 1 Comp = CovHasRefFin
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wex 1782  wcel 2106  wral 3064  wrex 3065  Vcvv 3432  cin 3886  wss 3887  𝒫 cpw 4533   cuni 4839   class class class wbr 5074  ran crn 5590   Fn wfn 6428  wf 6429  cfv 6433  Fincfn 8733  Topctop 22042  Compccmp 22537  Refcref 22653  CovHasRefccref 31792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-reg 9351  ax-inf2 9399  ax-ac2 10219
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-fin 8737  df-r1 9522  df-rank 9523  df-card 9697  df-ac 9872  df-cmp 22538  df-ref 22656  df-cref 31793
This theorem is referenced by:  cmpfiref  31801  cmppcmp  31808
  Copyright terms: Public domain W3C validator