Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cmpcref Structured version   Visualization version   GIF version

Theorem cmpcref 33788
Description: Equivalent definition of compact space in terms of open cover refinements. Compact spaces are topologies with finite open cover refinements. (Contributed by Thierry Arnoux, 7-Jan-2020.)
Assertion
Ref Expression
cmpcref Comp = CovHasRefFin

Proof of Theorem cmpcref
Dummy variables 𝑓 𝑗 𝑢 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 768 . . . . . . . . . . . . . . 15 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑥 ∈ (𝒫 𝑦 ∩ Fin)) ∧ 𝑗 = 𝑥) → 𝑥 ∈ (𝒫 𝑦 ∩ Fin))
2 elin 3986 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝒫 𝑦 ∩ Fin) ↔ (𝑥 ∈ 𝒫 𝑦𝑥 ∈ Fin))
31, 2sylib 218 . . . . . . . . . . . . . 14 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑥 ∈ (𝒫 𝑦 ∩ Fin)) ∧ 𝑗 = 𝑥) → (𝑥 ∈ 𝒫 𝑦𝑥 ∈ Fin))
43simpld 494 . . . . . . . . . . . . 13 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑥 ∈ (𝒫 𝑦 ∩ Fin)) ∧ 𝑗 = 𝑥) → 𝑥 ∈ 𝒫 𝑦)
5 elpwi 4629 . . . . . . . . . . . . 13 (𝑥 ∈ 𝒫 𝑦𝑥𝑦)
64, 5syl 17 . . . . . . . . . . . 12 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑥 ∈ (𝒫 𝑦 ∩ Fin)) ∧ 𝑗 = 𝑥) → 𝑥𝑦)
7 elpwi 4629 . . . . . . . . . . . . 13 (𝑦 ∈ 𝒫 𝑗𝑦𝑗)
87ad4antlr 732 . . . . . . . . . . . 12 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑥 ∈ (𝒫 𝑦 ∩ Fin)) ∧ 𝑗 = 𝑥) → 𝑦𝑗)
96, 8sstrd 4013 . . . . . . . . . . 11 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑥 ∈ (𝒫 𝑦 ∩ Fin)) ∧ 𝑗 = 𝑥) → 𝑥𝑗)
10 velpw 4627 . . . . . . . . . . 11 (𝑥 ∈ 𝒫 𝑗𝑥𝑗)
119, 10sylibr 234 . . . . . . . . . 10 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑥 ∈ (𝒫 𝑦 ∩ Fin)) ∧ 𝑗 = 𝑥) → 𝑥 ∈ 𝒫 𝑗)
123simprd 495 . . . . . . . . . 10 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑥 ∈ (𝒫 𝑦 ∩ Fin)) ∧ 𝑗 = 𝑥) → 𝑥 ∈ Fin)
1311, 12elind 4217 . . . . . . . . 9 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑥 ∈ (𝒫 𝑦 ∩ Fin)) ∧ 𝑗 = 𝑥) → 𝑥 ∈ (𝒫 𝑗 ∩ Fin))
14 simpr 484 . . . . . . . . . . 11 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑥 ∈ (𝒫 𝑦 ∩ Fin)) ∧ 𝑗 = 𝑥) → 𝑗 = 𝑥)
15 simpllr 775 . . . . . . . . . . 11 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑥 ∈ (𝒫 𝑦 ∩ Fin)) ∧ 𝑗 = 𝑥) → 𝑗 = 𝑦)
1614, 15eqtr3d 2776 . . . . . . . . . 10 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑥 ∈ (𝒫 𝑦 ∩ Fin)) ∧ 𝑗 = 𝑥) → 𝑥 = 𝑦)
17 eqid 2734 . . . . . . . . . . 11 𝑥 = 𝑥
18 eqid 2734 . . . . . . . . . . 11 𝑦 = 𝑦
1917, 18ssref 23534 . . . . . . . . . 10 ((𝑥 ∈ 𝒫 𝑗𝑥𝑦 𝑥 = 𝑦) → 𝑥Ref𝑦)
2011, 6, 16, 19syl3anc 1371 . . . . . . . . 9 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑥 ∈ (𝒫 𝑦 ∩ Fin)) ∧ 𝑗 = 𝑥) → 𝑥Ref𝑦)
21 breq1 5172 . . . . . . . . . 10 (𝑧 = 𝑥 → (𝑧Ref𝑦𝑥Ref𝑦))
2221rspcev 3631 . . . . . . . . 9 ((𝑥 ∈ (𝒫 𝑗 ∩ Fin) ∧ 𝑥Ref𝑦) → ∃𝑧 ∈ (𝒫 𝑗 ∩ Fin)𝑧Ref𝑦)
2313, 20, 22syl2anc 583 . . . . . . . 8 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑥 ∈ (𝒫 𝑦 ∩ Fin)) ∧ 𝑗 = 𝑥) → ∃𝑧 ∈ (𝒫 𝑗 ∩ Fin)𝑧Ref𝑦)
2423r19.29an 3160 . . . . . . 7 ((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ ∃𝑥 ∈ (𝒫 𝑦 ∩ Fin) 𝑗 = 𝑥) → ∃𝑧 ∈ (𝒫 𝑗 ∩ Fin)𝑧Ref𝑦)
25 simplr 768 . . . . . . . . . 10 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) → 𝑧 ∈ (𝒫 𝑗 ∩ Fin))
26 vex 3486 . . . . . . . . . . . . 13 𝑧 ∈ V
27 eqid 2734 . . . . . . . . . . . . . 14 𝑧 = 𝑧
2827, 18isref 23531 . . . . . . . . . . . . 13 (𝑧 ∈ V → (𝑧Ref𝑦 ↔ ( 𝑦 = 𝑧 ∧ ∀𝑢𝑧𝑣𝑦 𝑢𝑣)))
2926, 28ax-mp 5 . . . . . . . . . . . 12 (𝑧Ref𝑦 ↔ ( 𝑦 = 𝑧 ∧ ∀𝑢𝑧𝑣𝑦 𝑢𝑣))
3029simprbi 496 . . . . . . . . . . 11 (𝑧Ref𝑦 → ∀𝑢𝑧𝑣𝑦 𝑢𝑣)
3130adantl 481 . . . . . . . . . 10 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) → ∀𝑢𝑧𝑣𝑦 𝑢𝑣)
32 sseq2 4029 . . . . . . . . . . 11 (𝑣 = (𝑓𝑢) → (𝑢𝑣𝑢 ⊆ (𝑓𝑢)))
3332ac6sg 10553 . . . . . . . . . 10 (𝑧 ∈ (𝒫 𝑗 ∩ Fin) → (∀𝑢𝑧𝑣𝑦 𝑢𝑣 → ∃𝑓(𝑓:𝑧𝑦 ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢))))
3425, 31, 33sylc 65 . . . . . . . . 9 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) → ∃𝑓(𝑓:𝑧𝑦 ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)))
35 simplr 768 . . . . . . . . . . . . . . 15 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → 𝑓:𝑧𝑦)
3635frnd 6754 . . . . . . . . . . . . . 14 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → ran 𝑓𝑦)
37 vex 3486 . . . . . . . . . . . . . . . 16 𝑓 ∈ V
3837rnex 7946 . . . . . . . . . . . . . . 15 ran 𝑓 ∈ V
3938elpw 4626 . . . . . . . . . . . . . 14 (ran 𝑓 ∈ 𝒫 𝑦 ↔ ran 𝑓𝑦)
4036, 39sylibr 234 . . . . . . . . . . . . 13 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → ran 𝑓 ∈ 𝒫 𝑦)
4135ffnd 6747 . . . . . . . . . . . . . . 15 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → 𝑓 Fn 𝑧)
42 elin 3986 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ (𝒫 𝑗 ∩ Fin) ↔ (𝑧 ∈ 𝒫 𝑗𝑧 ∈ Fin))
4342simprbi 496 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (𝒫 𝑗 ∩ Fin) → 𝑧 ∈ Fin)
4443ad4antlr 732 . . . . . . . . . . . . . . 15 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → 𝑧 ∈ Fin)
45 fnfi 9240 . . . . . . . . . . . . . . 15 ((𝑓 Fn 𝑧𝑧 ∈ Fin) → 𝑓 ∈ Fin)
4641, 44, 45syl2anc 583 . . . . . . . . . . . . . 14 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → 𝑓 ∈ Fin)
47 rnfi 9404 . . . . . . . . . . . . . 14 (𝑓 ∈ Fin → ran 𝑓 ∈ Fin)
4846, 47syl 17 . . . . . . . . . . . . 13 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → ran 𝑓 ∈ Fin)
4940, 48elind 4217 . . . . . . . . . . . 12 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → ran 𝑓 ∈ (𝒫 𝑦 ∩ Fin))
50 simp-5r 785 . . . . . . . . . . . . 13 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → 𝑗 = 𝑦)
5127, 18refbas 23532 . . . . . . . . . . . . . . . 16 (𝑧Ref𝑦 𝑦 = 𝑧)
5251ad3antlr 730 . . . . . . . . . . . . . . 15 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → 𝑦 = 𝑧)
53 nfv 1913 . . . . . . . . . . . . . . . . . . 19 𝑢(((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦)
54 nfra1 3285 . . . . . . . . . . . . . . . . . . 19 𝑢𝑢𝑧 𝑢 ⊆ (𝑓𝑢)
5553, 54nfan 1898 . . . . . . . . . . . . . . . . . 18 𝑢((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢))
56 rspa 3249 . . . . . . . . . . . . . . . . . . . . 21 ((∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢) ∧ 𝑢𝑧) → 𝑢 ⊆ (𝑓𝑢))
5756adantll 713 . . . . . . . . . . . . . . . . . . . 20 ((((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) ∧ 𝑢𝑧) → 𝑢 ⊆ (𝑓𝑢))
5857sseld 4001 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) ∧ 𝑢𝑧) → (𝑥𝑢𝑥 ∈ (𝑓𝑢)))
5958ex 412 . . . . . . . . . . . . . . . . . 18 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → (𝑢𝑧 → (𝑥𝑢𝑥 ∈ (𝑓𝑢))))
6055, 59reximdai 3262 . . . . . . . . . . . . . . . . 17 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → (∃𝑢𝑧 𝑥𝑢 → ∃𝑢𝑧 𝑥 ∈ (𝑓𝑢)))
61 eluni2 4935 . . . . . . . . . . . . . . . . . 18 (𝑥 𝑧 ↔ ∃𝑢𝑧 𝑥𝑢)
6261a1i 11 . . . . . . . . . . . . . . . . 17 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → (𝑥 𝑧 ↔ ∃𝑢𝑧 𝑥𝑢))
63 fnunirn 7289 . . . . . . . . . . . . . . . . . 18 (𝑓 Fn 𝑧 → (𝑥 ran 𝑓 ↔ ∃𝑢𝑧 𝑥 ∈ (𝑓𝑢)))
6441, 63syl 17 . . . . . . . . . . . . . . . . 17 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → (𝑥 ran 𝑓 ↔ ∃𝑢𝑧 𝑥 ∈ (𝑓𝑢)))
6560, 62, 643imtr4d 294 . . . . . . . . . . . . . . . 16 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → (𝑥 𝑧𝑥 ran 𝑓))
6665ssrdv 4008 . . . . . . . . . . . . . . 15 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → 𝑧 ran 𝑓)
6752, 66eqsstrd 4041 . . . . . . . . . . . . . 14 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → 𝑦 ran 𝑓)
6836unissd 4941 . . . . . . . . . . . . . 14 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → ran 𝑓 𝑦)
6967, 68eqssd 4020 . . . . . . . . . . . . 13 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → 𝑦 = ran 𝑓)
7050, 69eqtrd 2774 . . . . . . . . . . . 12 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → 𝑗 = ran 𝑓)
71 unieq 4942 . . . . . . . . . . . . 13 (𝑥 = ran 𝑓 𝑥 = ran 𝑓)
7271rspceeqv 3653 . . . . . . . . . . . 12 ((ran 𝑓 ∈ (𝒫 𝑦 ∩ Fin) ∧ 𝑗 = ran 𝑓) → ∃𝑥 ∈ (𝒫 𝑦 ∩ Fin) 𝑗 = 𝑥)
7349, 70, 72syl2anc 583 . . . . . . . . . . 11 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → ∃𝑥 ∈ (𝒫 𝑦 ∩ Fin) 𝑗 = 𝑥)
7473expl 457 . . . . . . . . . 10 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) → ((𝑓:𝑧𝑦 ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → ∃𝑥 ∈ (𝒫 𝑦 ∩ Fin) 𝑗 = 𝑥))
7574exlimdv 1932 . . . . . . . . 9 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) → (∃𝑓(𝑓:𝑧𝑦 ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → ∃𝑥 ∈ (𝒫 𝑦 ∩ Fin) 𝑗 = 𝑥))
7634, 75mpd 15 . . . . . . . 8 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) → ∃𝑥 ∈ (𝒫 𝑦 ∩ Fin) 𝑗 = 𝑥)
7776r19.29an 3160 . . . . . . 7 ((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ ∃𝑧 ∈ (𝒫 𝑗 ∩ Fin)𝑧Ref𝑦) → ∃𝑥 ∈ (𝒫 𝑦 ∩ Fin) 𝑗 = 𝑥)
7824, 77impbida 800 . . . . . 6 (((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) → (∃𝑥 ∈ (𝒫 𝑦 ∩ Fin) 𝑗 = 𝑥 ↔ ∃𝑧 ∈ (𝒫 𝑗 ∩ Fin)𝑧Ref𝑦))
7978pm5.74da 803 . . . . 5 ((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) → (( 𝑗 = 𝑦 → ∃𝑥 ∈ (𝒫 𝑦 ∩ Fin) 𝑗 = 𝑥) ↔ ( 𝑗 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ Fin)𝑧Ref𝑦)))
8079ralbidva 3178 . . . 4 (𝑗 ∈ Top → (∀𝑦 ∈ 𝒫 𝑗( 𝑗 = 𝑦 → ∃𝑥 ∈ (𝒫 𝑦 ∩ Fin) 𝑗 = 𝑥) ↔ ∀𝑦 ∈ 𝒫 𝑗( 𝑗 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ Fin)𝑧Ref𝑦)))
8180pm5.32i 574 . . 3 ((𝑗 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝑗( 𝑗 = 𝑦 → ∃𝑥 ∈ (𝒫 𝑦 ∩ Fin) 𝑗 = 𝑥)) ↔ (𝑗 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝑗( 𝑗 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ Fin)𝑧Ref𝑦)))
82 eqid 2734 . . . 4 𝑗 = 𝑗
8382iscmp 23410 . . 3 (𝑗 ∈ Comp ↔ (𝑗 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝑗( 𝑗 = 𝑦 → ∃𝑥 ∈ (𝒫 𝑦 ∩ Fin) 𝑗 = 𝑥)))
8482iscref 33782 . . 3 (𝑗 ∈ CovHasRefFin ↔ (𝑗 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝑗( 𝑗 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ Fin)𝑧Ref𝑦)))
8581, 83, 843bitr4i 303 . 2 (𝑗 ∈ Comp ↔ 𝑗 ∈ CovHasRefFin)
8685eqriv 2731 1 Comp = CovHasRefFin
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wex 1777  wcel 2103  wral 3063  wrex 3072  Vcvv 3482  cin 3969  wss 3970  𝒫 cpw 4622   cuni 4931   class class class wbr 5169  ran crn 5700   Fn wfn 6567  wf 6568  cfv 6572  Fincfn 8999  Topctop 22913  Compccmp 23408  Refcref 23524  CovHasRefccref 33780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2105  ax-9 2113  ax-10 2136  ax-11 2153  ax-12 2173  ax-ext 2705  ax-rep 5306  ax-sep 5320  ax-nul 5327  ax-pow 5386  ax-pr 5450  ax-un 7766  ax-reg 9657  ax-inf2 9706  ax-ac2 10528
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2890  df-ne 2943  df-ral 3064  df-rex 3073  df-rmo 3383  df-reu 3384  df-rab 3439  df-v 3484  df-sbc 3799  df-csb 3916  df-dif 3973  df-un 3975  df-in 3977  df-ss 3987  df-pss 3990  df-nul 4348  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4973  df-iun 5021  df-iin 5022  df-br 5170  df-opab 5232  df-mpt 5253  df-tr 5287  df-id 5597  df-eprel 5603  df-po 5611  df-so 5612  df-fr 5654  df-se 5655  df-we 5656  df-xp 5705  df-rel 5706  df-cnv 5707  df-co 5708  df-dm 5709  df-rn 5710  df-res 5711  df-ima 5712  df-pred 6331  df-ord 6397  df-on 6398  df-lim 6399  df-suc 6400  df-iota 6524  df-fun 6574  df-fn 6575  df-f 6576  df-f1 6577  df-fo 6578  df-f1o 6579  df-fv 6580  df-isom 6581  df-riota 7401  df-ov 7448  df-om 7900  df-1st 8026  df-2nd 8027  df-frecs 8318  df-wrecs 8349  df-recs 8423  df-rdg 8462  df-1o 8518  df-en 9000  df-dom 9001  df-fin 9003  df-r1 9829  df-rank 9830  df-card 10004  df-ac 10181  df-cmp 23409  df-ref 23527  df-cref 33781
This theorem is referenced by:  cmpfiref  33789  cmppcmp  33796
  Copyright terms: Public domain W3C validator