Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cmpcref Structured version   Visualization version   GIF version

Theorem cmpcref 33863
Description: Equivalent definition of compact space in terms of open cover refinements. Compact spaces are topologies with finite open cover refinements. (Contributed by Thierry Arnoux, 7-Jan-2020.)
Assertion
Ref Expression
cmpcref Comp = CovHasRefFin

Proof of Theorem cmpcref
Dummy variables 𝑓 𝑗 𝑢 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 768 . . . . . . . . . . . . . . 15 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑥 ∈ (𝒫 𝑦 ∩ Fin)) ∧ 𝑗 = 𝑥) → 𝑥 ∈ (𝒫 𝑦 ∩ Fin))
2 elin 3913 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝒫 𝑦 ∩ Fin) ↔ (𝑥 ∈ 𝒫 𝑦𝑥 ∈ Fin))
31, 2sylib 218 . . . . . . . . . . . . . 14 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑥 ∈ (𝒫 𝑦 ∩ Fin)) ∧ 𝑗 = 𝑥) → (𝑥 ∈ 𝒫 𝑦𝑥 ∈ Fin))
43simpld 494 . . . . . . . . . . . . 13 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑥 ∈ (𝒫 𝑦 ∩ Fin)) ∧ 𝑗 = 𝑥) → 𝑥 ∈ 𝒫 𝑦)
5 elpwi 4554 . . . . . . . . . . . . 13 (𝑥 ∈ 𝒫 𝑦𝑥𝑦)
64, 5syl 17 . . . . . . . . . . . 12 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑥 ∈ (𝒫 𝑦 ∩ Fin)) ∧ 𝑗 = 𝑥) → 𝑥𝑦)
7 elpwi 4554 . . . . . . . . . . . . 13 (𝑦 ∈ 𝒫 𝑗𝑦𝑗)
87ad4antlr 733 . . . . . . . . . . . 12 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑥 ∈ (𝒫 𝑦 ∩ Fin)) ∧ 𝑗 = 𝑥) → 𝑦𝑗)
96, 8sstrd 3940 . . . . . . . . . . 11 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑥 ∈ (𝒫 𝑦 ∩ Fin)) ∧ 𝑗 = 𝑥) → 𝑥𝑗)
10 velpw 4552 . . . . . . . . . . 11 (𝑥 ∈ 𝒫 𝑗𝑥𝑗)
119, 10sylibr 234 . . . . . . . . . 10 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑥 ∈ (𝒫 𝑦 ∩ Fin)) ∧ 𝑗 = 𝑥) → 𝑥 ∈ 𝒫 𝑗)
123simprd 495 . . . . . . . . . 10 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑥 ∈ (𝒫 𝑦 ∩ Fin)) ∧ 𝑗 = 𝑥) → 𝑥 ∈ Fin)
1311, 12elind 4147 . . . . . . . . 9 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑥 ∈ (𝒫 𝑦 ∩ Fin)) ∧ 𝑗 = 𝑥) → 𝑥 ∈ (𝒫 𝑗 ∩ Fin))
14 simpr 484 . . . . . . . . . . 11 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑥 ∈ (𝒫 𝑦 ∩ Fin)) ∧ 𝑗 = 𝑥) → 𝑗 = 𝑥)
15 simpllr 775 . . . . . . . . . . 11 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑥 ∈ (𝒫 𝑦 ∩ Fin)) ∧ 𝑗 = 𝑥) → 𝑗 = 𝑦)
1614, 15eqtr3d 2768 . . . . . . . . . 10 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑥 ∈ (𝒫 𝑦 ∩ Fin)) ∧ 𝑗 = 𝑥) → 𝑥 = 𝑦)
17 eqid 2731 . . . . . . . . . . 11 𝑥 = 𝑥
18 eqid 2731 . . . . . . . . . . 11 𝑦 = 𝑦
1917, 18ssref 23427 . . . . . . . . . 10 ((𝑥 ∈ 𝒫 𝑗𝑥𝑦 𝑥 = 𝑦) → 𝑥Ref𝑦)
2011, 6, 16, 19syl3anc 1373 . . . . . . . . 9 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑥 ∈ (𝒫 𝑦 ∩ Fin)) ∧ 𝑗 = 𝑥) → 𝑥Ref𝑦)
21 breq1 5092 . . . . . . . . . 10 (𝑧 = 𝑥 → (𝑧Ref𝑦𝑥Ref𝑦))
2221rspcev 3572 . . . . . . . . 9 ((𝑥 ∈ (𝒫 𝑗 ∩ Fin) ∧ 𝑥Ref𝑦) → ∃𝑧 ∈ (𝒫 𝑗 ∩ Fin)𝑧Ref𝑦)
2313, 20, 22syl2anc 584 . . . . . . . 8 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑥 ∈ (𝒫 𝑦 ∩ Fin)) ∧ 𝑗 = 𝑥) → ∃𝑧 ∈ (𝒫 𝑗 ∩ Fin)𝑧Ref𝑦)
2423r19.29an 3136 . . . . . . 7 ((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ ∃𝑥 ∈ (𝒫 𝑦 ∩ Fin) 𝑗 = 𝑥) → ∃𝑧 ∈ (𝒫 𝑗 ∩ Fin)𝑧Ref𝑦)
25 simplr 768 . . . . . . . . . 10 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) → 𝑧 ∈ (𝒫 𝑗 ∩ Fin))
26 vex 3440 . . . . . . . . . . . . 13 𝑧 ∈ V
27 eqid 2731 . . . . . . . . . . . . . 14 𝑧 = 𝑧
2827, 18isref 23424 . . . . . . . . . . . . 13 (𝑧 ∈ V → (𝑧Ref𝑦 ↔ ( 𝑦 = 𝑧 ∧ ∀𝑢𝑧𝑣𝑦 𝑢𝑣)))
2926, 28ax-mp 5 . . . . . . . . . . . 12 (𝑧Ref𝑦 ↔ ( 𝑦 = 𝑧 ∧ ∀𝑢𝑧𝑣𝑦 𝑢𝑣))
3029simprbi 496 . . . . . . . . . . 11 (𝑧Ref𝑦 → ∀𝑢𝑧𝑣𝑦 𝑢𝑣)
3130adantl 481 . . . . . . . . . 10 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) → ∀𝑢𝑧𝑣𝑦 𝑢𝑣)
32 sseq2 3956 . . . . . . . . . . 11 (𝑣 = (𝑓𝑢) → (𝑢𝑣𝑢 ⊆ (𝑓𝑢)))
3332ac6sg 10379 . . . . . . . . . 10 (𝑧 ∈ (𝒫 𝑗 ∩ Fin) → (∀𝑢𝑧𝑣𝑦 𝑢𝑣 → ∃𝑓(𝑓:𝑧𝑦 ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢))))
3425, 31, 33sylc 65 . . . . . . . . 9 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) → ∃𝑓(𝑓:𝑧𝑦 ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)))
35 simplr 768 . . . . . . . . . . . . . . 15 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → 𝑓:𝑧𝑦)
3635frnd 6659 . . . . . . . . . . . . . 14 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → ran 𝑓𝑦)
37 vex 3440 . . . . . . . . . . . . . . . 16 𝑓 ∈ V
3837rnex 7840 . . . . . . . . . . . . . . 15 ran 𝑓 ∈ V
3938elpw 4551 . . . . . . . . . . . . . 14 (ran 𝑓 ∈ 𝒫 𝑦 ↔ ran 𝑓𝑦)
4036, 39sylibr 234 . . . . . . . . . . . . 13 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → ran 𝑓 ∈ 𝒫 𝑦)
4135ffnd 6652 . . . . . . . . . . . . . . 15 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → 𝑓 Fn 𝑧)
42 elin 3913 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ (𝒫 𝑗 ∩ Fin) ↔ (𝑧 ∈ 𝒫 𝑗𝑧 ∈ Fin))
4342simprbi 496 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (𝒫 𝑗 ∩ Fin) → 𝑧 ∈ Fin)
4443ad4antlr 733 . . . . . . . . . . . . . . 15 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → 𝑧 ∈ Fin)
45 fnfi 9087 . . . . . . . . . . . . . . 15 ((𝑓 Fn 𝑧𝑧 ∈ Fin) → 𝑓 ∈ Fin)
4641, 44, 45syl2anc 584 . . . . . . . . . . . . . 14 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → 𝑓 ∈ Fin)
47 rnfi 9224 . . . . . . . . . . . . . 14 (𝑓 ∈ Fin → ran 𝑓 ∈ Fin)
4846, 47syl 17 . . . . . . . . . . . . 13 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → ran 𝑓 ∈ Fin)
4940, 48elind 4147 . . . . . . . . . . . 12 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → ran 𝑓 ∈ (𝒫 𝑦 ∩ Fin))
50 simp-5r 785 . . . . . . . . . . . . 13 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → 𝑗 = 𝑦)
5127, 18refbas 23425 . . . . . . . . . . . . . . . 16 (𝑧Ref𝑦 𝑦 = 𝑧)
5251ad3antlr 731 . . . . . . . . . . . . . . 15 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → 𝑦 = 𝑧)
53 nfv 1915 . . . . . . . . . . . . . . . . . . 19 𝑢(((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦)
54 nfra1 3256 . . . . . . . . . . . . . . . . . . 19 𝑢𝑢𝑧 𝑢 ⊆ (𝑓𝑢)
5553, 54nfan 1900 . . . . . . . . . . . . . . . . . 18 𝑢((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢))
56 rspa 3221 . . . . . . . . . . . . . . . . . . . . 21 ((∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢) ∧ 𝑢𝑧) → 𝑢 ⊆ (𝑓𝑢))
5756adantll 714 . . . . . . . . . . . . . . . . . . . 20 ((((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) ∧ 𝑢𝑧) → 𝑢 ⊆ (𝑓𝑢))
5857sseld 3928 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) ∧ 𝑢𝑧) → (𝑥𝑢𝑥 ∈ (𝑓𝑢)))
5958ex 412 . . . . . . . . . . . . . . . . . 18 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → (𝑢𝑧 → (𝑥𝑢𝑥 ∈ (𝑓𝑢))))
6055, 59reximdai 3234 . . . . . . . . . . . . . . . . 17 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → (∃𝑢𝑧 𝑥𝑢 → ∃𝑢𝑧 𝑥 ∈ (𝑓𝑢)))
61 eluni2 4860 . . . . . . . . . . . . . . . . . 18 (𝑥 𝑧 ↔ ∃𝑢𝑧 𝑥𝑢)
6261a1i 11 . . . . . . . . . . . . . . . . 17 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → (𝑥 𝑧 ↔ ∃𝑢𝑧 𝑥𝑢))
63 fnunirn 7187 . . . . . . . . . . . . . . . . . 18 (𝑓 Fn 𝑧 → (𝑥 ran 𝑓 ↔ ∃𝑢𝑧 𝑥 ∈ (𝑓𝑢)))
6441, 63syl 17 . . . . . . . . . . . . . . . . 17 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → (𝑥 ran 𝑓 ↔ ∃𝑢𝑧 𝑥 ∈ (𝑓𝑢)))
6560, 62, 643imtr4d 294 . . . . . . . . . . . . . . . 16 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → (𝑥 𝑧𝑥 ran 𝑓))
6665ssrdv 3935 . . . . . . . . . . . . . . 15 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → 𝑧 ran 𝑓)
6752, 66eqsstrd 3964 . . . . . . . . . . . . . 14 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → 𝑦 ran 𝑓)
6836unissd 4866 . . . . . . . . . . . . . 14 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → ran 𝑓 𝑦)
6967, 68eqssd 3947 . . . . . . . . . . . . 13 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → 𝑦 = ran 𝑓)
7050, 69eqtrd 2766 . . . . . . . . . . . 12 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → 𝑗 = ran 𝑓)
71 unieq 4867 . . . . . . . . . . . . 13 (𝑥 = ran 𝑓 𝑥 = ran 𝑓)
7271rspceeqv 3595 . . . . . . . . . . . 12 ((ran 𝑓 ∈ (𝒫 𝑦 ∩ Fin) ∧ 𝑗 = ran 𝑓) → ∃𝑥 ∈ (𝒫 𝑦 ∩ Fin) 𝑗 = 𝑥)
7349, 70, 72syl2anc 584 . . . . . . . . . . 11 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → ∃𝑥 ∈ (𝒫 𝑦 ∩ Fin) 𝑗 = 𝑥)
7473expl 457 . . . . . . . . . 10 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) → ((𝑓:𝑧𝑦 ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → ∃𝑥 ∈ (𝒫 𝑦 ∩ Fin) 𝑗 = 𝑥))
7574exlimdv 1934 . . . . . . . . 9 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) → (∃𝑓(𝑓:𝑧𝑦 ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → ∃𝑥 ∈ (𝒫 𝑦 ∩ Fin) 𝑗 = 𝑥))
7634, 75mpd 15 . . . . . . . 8 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) → ∃𝑥 ∈ (𝒫 𝑦 ∩ Fin) 𝑗 = 𝑥)
7776r19.29an 3136 . . . . . . 7 ((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ ∃𝑧 ∈ (𝒫 𝑗 ∩ Fin)𝑧Ref𝑦) → ∃𝑥 ∈ (𝒫 𝑦 ∩ Fin) 𝑗 = 𝑥)
7824, 77impbida 800 . . . . . 6 (((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) → (∃𝑥 ∈ (𝒫 𝑦 ∩ Fin) 𝑗 = 𝑥 ↔ ∃𝑧 ∈ (𝒫 𝑗 ∩ Fin)𝑧Ref𝑦))
7978pm5.74da 803 . . . . 5 ((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) → (( 𝑗 = 𝑦 → ∃𝑥 ∈ (𝒫 𝑦 ∩ Fin) 𝑗 = 𝑥) ↔ ( 𝑗 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ Fin)𝑧Ref𝑦)))
8079ralbidva 3153 . . . 4 (𝑗 ∈ Top → (∀𝑦 ∈ 𝒫 𝑗( 𝑗 = 𝑦 → ∃𝑥 ∈ (𝒫 𝑦 ∩ Fin) 𝑗 = 𝑥) ↔ ∀𝑦 ∈ 𝒫 𝑗( 𝑗 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ Fin)𝑧Ref𝑦)))
8180pm5.32i 574 . . 3 ((𝑗 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝑗( 𝑗 = 𝑦 → ∃𝑥 ∈ (𝒫 𝑦 ∩ Fin) 𝑗 = 𝑥)) ↔ (𝑗 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝑗( 𝑗 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ Fin)𝑧Ref𝑦)))
82 eqid 2731 . . . 4 𝑗 = 𝑗
8382iscmp 23303 . . 3 (𝑗 ∈ Comp ↔ (𝑗 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝑗( 𝑗 = 𝑦 → ∃𝑥 ∈ (𝒫 𝑦 ∩ Fin) 𝑗 = 𝑥)))
8482iscref 33857 . . 3 (𝑗 ∈ CovHasRefFin ↔ (𝑗 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝑗( 𝑗 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ Fin)𝑧Ref𝑦)))
8581, 83, 843bitr4i 303 . 2 (𝑗 ∈ Comp ↔ 𝑗 ∈ CovHasRefFin)
8685eqriv 2728 1 Comp = CovHasRefFin
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2111  wral 3047  wrex 3056  Vcvv 3436  cin 3896  wss 3897  𝒫 cpw 4547   cuni 4856   class class class wbr 5089  ran crn 5615   Fn wfn 6476  wf 6477  cfv 6481  Fincfn 8869  Topctop 22808  Compccmp 23301  Refcref 23417  CovHasRefccref 33855
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-reg 9478  ax-inf2 9531  ax-ac2 10354
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-en 8870  df-dom 8871  df-fin 8873  df-r1 9657  df-rank 9658  df-card 9832  df-ac 10007  df-cmp 23302  df-ref 23420  df-cref 33856
This theorem is referenced by:  cmpfiref  33864  cmppcmp  33871
  Copyright terms: Public domain W3C validator