Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cmpcref Structured version   Visualization version   GIF version

Theorem cmpcref 33846
Description: Equivalent definition of compact space in terms of open cover refinements. Compact spaces are topologies with finite open cover refinements. (Contributed by Thierry Arnoux, 7-Jan-2020.)
Assertion
Ref Expression
cmpcref Comp = CovHasRefFin

Proof of Theorem cmpcref
Dummy variables 𝑓 𝑗 𝑢 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 768 . . . . . . . . . . . . . . 15 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑥 ∈ (𝒫 𝑦 ∩ Fin)) ∧ 𝑗 = 𝑥) → 𝑥 ∈ (𝒫 𝑦 ∩ Fin))
2 elin 3932 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝒫 𝑦 ∩ Fin) ↔ (𝑥 ∈ 𝒫 𝑦𝑥 ∈ Fin))
31, 2sylib 218 . . . . . . . . . . . . . 14 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑥 ∈ (𝒫 𝑦 ∩ Fin)) ∧ 𝑗 = 𝑥) → (𝑥 ∈ 𝒫 𝑦𝑥 ∈ Fin))
43simpld 494 . . . . . . . . . . . . 13 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑥 ∈ (𝒫 𝑦 ∩ Fin)) ∧ 𝑗 = 𝑥) → 𝑥 ∈ 𝒫 𝑦)
5 elpwi 4572 . . . . . . . . . . . . 13 (𝑥 ∈ 𝒫 𝑦𝑥𝑦)
64, 5syl 17 . . . . . . . . . . . 12 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑥 ∈ (𝒫 𝑦 ∩ Fin)) ∧ 𝑗 = 𝑥) → 𝑥𝑦)
7 elpwi 4572 . . . . . . . . . . . . 13 (𝑦 ∈ 𝒫 𝑗𝑦𝑗)
87ad4antlr 733 . . . . . . . . . . . 12 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑥 ∈ (𝒫 𝑦 ∩ Fin)) ∧ 𝑗 = 𝑥) → 𝑦𝑗)
96, 8sstrd 3959 . . . . . . . . . . 11 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑥 ∈ (𝒫 𝑦 ∩ Fin)) ∧ 𝑗 = 𝑥) → 𝑥𝑗)
10 velpw 4570 . . . . . . . . . . 11 (𝑥 ∈ 𝒫 𝑗𝑥𝑗)
119, 10sylibr 234 . . . . . . . . . 10 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑥 ∈ (𝒫 𝑦 ∩ Fin)) ∧ 𝑗 = 𝑥) → 𝑥 ∈ 𝒫 𝑗)
123simprd 495 . . . . . . . . . 10 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑥 ∈ (𝒫 𝑦 ∩ Fin)) ∧ 𝑗 = 𝑥) → 𝑥 ∈ Fin)
1311, 12elind 4165 . . . . . . . . 9 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑥 ∈ (𝒫 𝑦 ∩ Fin)) ∧ 𝑗 = 𝑥) → 𝑥 ∈ (𝒫 𝑗 ∩ Fin))
14 simpr 484 . . . . . . . . . . 11 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑥 ∈ (𝒫 𝑦 ∩ Fin)) ∧ 𝑗 = 𝑥) → 𝑗 = 𝑥)
15 simpllr 775 . . . . . . . . . . 11 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑥 ∈ (𝒫 𝑦 ∩ Fin)) ∧ 𝑗 = 𝑥) → 𝑗 = 𝑦)
1614, 15eqtr3d 2767 . . . . . . . . . 10 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑥 ∈ (𝒫 𝑦 ∩ Fin)) ∧ 𝑗 = 𝑥) → 𝑥 = 𝑦)
17 eqid 2730 . . . . . . . . . . 11 𝑥 = 𝑥
18 eqid 2730 . . . . . . . . . . 11 𝑦 = 𝑦
1917, 18ssref 23405 . . . . . . . . . 10 ((𝑥 ∈ 𝒫 𝑗𝑥𝑦 𝑥 = 𝑦) → 𝑥Ref𝑦)
2011, 6, 16, 19syl3anc 1373 . . . . . . . . 9 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑥 ∈ (𝒫 𝑦 ∩ Fin)) ∧ 𝑗 = 𝑥) → 𝑥Ref𝑦)
21 breq1 5112 . . . . . . . . . 10 (𝑧 = 𝑥 → (𝑧Ref𝑦𝑥Ref𝑦))
2221rspcev 3591 . . . . . . . . 9 ((𝑥 ∈ (𝒫 𝑗 ∩ Fin) ∧ 𝑥Ref𝑦) → ∃𝑧 ∈ (𝒫 𝑗 ∩ Fin)𝑧Ref𝑦)
2313, 20, 22syl2anc 584 . . . . . . . 8 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑥 ∈ (𝒫 𝑦 ∩ Fin)) ∧ 𝑗 = 𝑥) → ∃𝑧 ∈ (𝒫 𝑗 ∩ Fin)𝑧Ref𝑦)
2423r19.29an 3138 . . . . . . 7 ((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ ∃𝑥 ∈ (𝒫 𝑦 ∩ Fin) 𝑗 = 𝑥) → ∃𝑧 ∈ (𝒫 𝑗 ∩ Fin)𝑧Ref𝑦)
25 simplr 768 . . . . . . . . . 10 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) → 𝑧 ∈ (𝒫 𝑗 ∩ Fin))
26 vex 3454 . . . . . . . . . . . . 13 𝑧 ∈ V
27 eqid 2730 . . . . . . . . . . . . . 14 𝑧 = 𝑧
2827, 18isref 23402 . . . . . . . . . . . . 13 (𝑧 ∈ V → (𝑧Ref𝑦 ↔ ( 𝑦 = 𝑧 ∧ ∀𝑢𝑧𝑣𝑦 𝑢𝑣)))
2926, 28ax-mp 5 . . . . . . . . . . . 12 (𝑧Ref𝑦 ↔ ( 𝑦 = 𝑧 ∧ ∀𝑢𝑧𝑣𝑦 𝑢𝑣))
3029simprbi 496 . . . . . . . . . . 11 (𝑧Ref𝑦 → ∀𝑢𝑧𝑣𝑦 𝑢𝑣)
3130adantl 481 . . . . . . . . . 10 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) → ∀𝑢𝑧𝑣𝑦 𝑢𝑣)
32 sseq2 3975 . . . . . . . . . . 11 (𝑣 = (𝑓𝑢) → (𝑢𝑣𝑢 ⊆ (𝑓𝑢)))
3332ac6sg 10447 . . . . . . . . . 10 (𝑧 ∈ (𝒫 𝑗 ∩ Fin) → (∀𝑢𝑧𝑣𝑦 𝑢𝑣 → ∃𝑓(𝑓:𝑧𝑦 ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢))))
3425, 31, 33sylc 65 . . . . . . . . 9 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) → ∃𝑓(𝑓:𝑧𝑦 ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)))
35 simplr 768 . . . . . . . . . . . . . . 15 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → 𝑓:𝑧𝑦)
3635frnd 6698 . . . . . . . . . . . . . 14 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → ran 𝑓𝑦)
37 vex 3454 . . . . . . . . . . . . . . . 16 𝑓 ∈ V
3837rnex 7888 . . . . . . . . . . . . . . 15 ran 𝑓 ∈ V
3938elpw 4569 . . . . . . . . . . . . . 14 (ran 𝑓 ∈ 𝒫 𝑦 ↔ ran 𝑓𝑦)
4036, 39sylibr 234 . . . . . . . . . . . . 13 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → ran 𝑓 ∈ 𝒫 𝑦)
4135ffnd 6691 . . . . . . . . . . . . . . 15 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → 𝑓 Fn 𝑧)
42 elin 3932 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ (𝒫 𝑗 ∩ Fin) ↔ (𝑧 ∈ 𝒫 𝑗𝑧 ∈ Fin))
4342simprbi 496 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (𝒫 𝑗 ∩ Fin) → 𝑧 ∈ Fin)
4443ad4antlr 733 . . . . . . . . . . . . . . 15 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → 𝑧 ∈ Fin)
45 fnfi 9147 . . . . . . . . . . . . . . 15 ((𝑓 Fn 𝑧𝑧 ∈ Fin) → 𝑓 ∈ Fin)
4641, 44, 45syl2anc 584 . . . . . . . . . . . . . 14 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → 𝑓 ∈ Fin)
47 rnfi 9297 . . . . . . . . . . . . . 14 (𝑓 ∈ Fin → ran 𝑓 ∈ Fin)
4846, 47syl 17 . . . . . . . . . . . . 13 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → ran 𝑓 ∈ Fin)
4940, 48elind 4165 . . . . . . . . . . . 12 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → ran 𝑓 ∈ (𝒫 𝑦 ∩ Fin))
50 simp-5r 785 . . . . . . . . . . . . 13 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → 𝑗 = 𝑦)
5127, 18refbas 23403 . . . . . . . . . . . . . . . 16 (𝑧Ref𝑦 𝑦 = 𝑧)
5251ad3antlr 731 . . . . . . . . . . . . . . 15 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → 𝑦 = 𝑧)
53 nfv 1914 . . . . . . . . . . . . . . . . . . 19 𝑢(((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦)
54 nfra1 3262 . . . . . . . . . . . . . . . . . . 19 𝑢𝑢𝑧 𝑢 ⊆ (𝑓𝑢)
5553, 54nfan 1899 . . . . . . . . . . . . . . . . . 18 𝑢((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢))
56 rspa 3227 . . . . . . . . . . . . . . . . . . . . 21 ((∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢) ∧ 𝑢𝑧) → 𝑢 ⊆ (𝑓𝑢))
5756adantll 714 . . . . . . . . . . . . . . . . . . . 20 ((((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) ∧ 𝑢𝑧) → 𝑢 ⊆ (𝑓𝑢))
5857sseld 3947 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) ∧ 𝑢𝑧) → (𝑥𝑢𝑥 ∈ (𝑓𝑢)))
5958ex 412 . . . . . . . . . . . . . . . . . 18 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → (𝑢𝑧 → (𝑥𝑢𝑥 ∈ (𝑓𝑢))))
6055, 59reximdai 3240 . . . . . . . . . . . . . . . . 17 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → (∃𝑢𝑧 𝑥𝑢 → ∃𝑢𝑧 𝑥 ∈ (𝑓𝑢)))
61 eluni2 4877 . . . . . . . . . . . . . . . . . 18 (𝑥 𝑧 ↔ ∃𝑢𝑧 𝑥𝑢)
6261a1i 11 . . . . . . . . . . . . . . . . 17 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → (𝑥 𝑧 ↔ ∃𝑢𝑧 𝑥𝑢))
63 fnunirn 7230 . . . . . . . . . . . . . . . . . 18 (𝑓 Fn 𝑧 → (𝑥 ran 𝑓 ↔ ∃𝑢𝑧 𝑥 ∈ (𝑓𝑢)))
6441, 63syl 17 . . . . . . . . . . . . . . . . 17 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → (𝑥 ran 𝑓 ↔ ∃𝑢𝑧 𝑥 ∈ (𝑓𝑢)))
6560, 62, 643imtr4d 294 . . . . . . . . . . . . . . . 16 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → (𝑥 𝑧𝑥 ran 𝑓))
6665ssrdv 3954 . . . . . . . . . . . . . . 15 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → 𝑧 ran 𝑓)
6752, 66eqsstrd 3983 . . . . . . . . . . . . . 14 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → 𝑦 ran 𝑓)
6836unissd 4883 . . . . . . . . . . . . . 14 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → ran 𝑓 𝑦)
6967, 68eqssd 3966 . . . . . . . . . . . . 13 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → 𝑦 = ran 𝑓)
7050, 69eqtrd 2765 . . . . . . . . . . . 12 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → 𝑗 = ran 𝑓)
71 unieq 4884 . . . . . . . . . . . . 13 (𝑥 = ran 𝑓 𝑥 = ran 𝑓)
7271rspceeqv 3614 . . . . . . . . . . . 12 ((ran 𝑓 ∈ (𝒫 𝑦 ∩ Fin) ∧ 𝑗 = ran 𝑓) → ∃𝑥 ∈ (𝒫 𝑦 ∩ Fin) 𝑗 = 𝑥)
7349, 70, 72syl2anc 584 . . . . . . . . . . 11 (((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧𝑦) ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → ∃𝑥 ∈ (𝒫 𝑦 ∩ Fin) 𝑗 = 𝑥)
7473expl 457 . . . . . . . . . 10 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) → ((𝑓:𝑧𝑦 ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → ∃𝑥 ∈ (𝒫 𝑦 ∩ Fin) 𝑗 = 𝑥))
7574exlimdv 1933 . . . . . . . . 9 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) → (∃𝑓(𝑓:𝑧𝑦 ∧ ∀𝑢𝑧 𝑢 ⊆ (𝑓𝑢)) → ∃𝑥 ∈ (𝒫 𝑦 ∩ Fin) 𝑗 = 𝑥))
7634, 75mpd 15 . . . . . . . 8 (((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) → ∃𝑥 ∈ (𝒫 𝑦 ∩ Fin) 𝑗 = 𝑥)
7776r19.29an 3138 . . . . . . 7 ((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) ∧ ∃𝑧 ∈ (𝒫 𝑗 ∩ Fin)𝑧Ref𝑦) → ∃𝑥 ∈ (𝒫 𝑦 ∩ Fin) 𝑗 = 𝑥)
7824, 77impbida 800 . . . . . 6 (((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ 𝑗 = 𝑦) → (∃𝑥 ∈ (𝒫 𝑦 ∩ Fin) 𝑗 = 𝑥 ↔ ∃𝑧 ∈ (𝒫 𝑗 ∩ Fin)𝑧Ref𝑦))
7978pm5.74da 803 . . . . 5 ((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) → (( 𝑗 = 𝑦 → ∃𝑥 ∈ (𝒫 𝑦 ∩ Fin) 𝑗 = 𝑥) ↔ ( 𝑗 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ Fin)𝑧Ref𝑦)))
8079ralbidva 3155 . . . 4 (𝑗 ∈ Top → (∀𝑦 ∈ 𝒫 𝑗( 𝑗 = 𝑦 → ∃𝑥 ∈ (𝒫 𝑦 ∩ Fin) 𝑗 = 𝑥) ↔ ∀𝑦 ∈ 𝒫 𝑗( 𝑗 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ Fin)𝑧Ref𝑦)))
8180pm5.32i 574 . . 3 ((𝑗 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝑗( 𝑗 = 𝑦 → ∃𝑥 ∈ (𝒫 𝑦 ∩ Fin) 𝑗 = 𝑥)) ↔ (𝑗 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝑗( 𝑗 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ Fin)𝑧Ref𝑦)))
82 eqid 2730 . . . 4 𝑗 = 𝑗
8382iscmp 23281 . . 3 (𝑗 ∈ Comp ↔ (𝑗 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝑗( 𝑗 = 𝑦 → ∃𝑥 ∈ (𝒫 𝑦 ∩ Fin) 𝑗 = 𝑥)))
8482iscref 33840 . . 3 (𝑗 ∈ CovHasRefFin ↔ (𝑗 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝑗( 𝑗 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ Fin)𝑧Ref𝑦)))
8581, 83, 843bitr4i 303 . 2 (𝑗 ∈ Comp ↔ 𝑗 ∈ CovHasRefFin)
8685eqriv 2727 1 Comp = CovHasRefFin
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wral 3045  wrex 3054  Vcvv 3450  cin 3915  wss 3916  𝒫 cpw 4565   cuni 4873   class class class wbr 5109  ran crn 5641   Fn wfn 6508  wf 6509  cfv 6513  Fincfn 8920  Topctop 22786  Compccmp 23279  Refcref 23395  CovHasRefccref 33838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-reg 9551  ax-inf2 9600  ax-ac2 10422
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-iin 4960  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-se 5594  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-isom 6522  df-riota 7346  df-ov 7392  df-om 7845  df-1st 7970  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-en 8921  df-dom 8922  df-fin 8924  df-r1 9723  df-rank 9724  df-card 9898  df-ac 10075  df-cmp 23280  df-ref 23398  df-cref 33839
This theorem is referenced by:  cmpfiref  33847  cmppcmp  33854
  Copyright terms: Public domain W3C validator