Step | Hyp | Ref
| Expression |
1 | | simplr 768 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑗 ∈ Top
∧ 𝑦 ∈ 𝒫
𝑗) ∧ ∪ 𝑗 =
∪ 𝑦) ∧ 𝑥 ∈ (𝒫 𝑦 ∩ Fin)) ∧ ∪ 𝑗 =
∪ 𝑥) → 𝑥 ∈ (𝒫 𝑦 ∩ Fin)) |
2 | | elin 3874 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ (𝒫 𝑦 ∩ Fin) ↔ (𝑥 ∈ 𝒫 𝑦 ∧ 𝑥 ∈ Fin)) |
3 | 1, 2 | sylib 221 |
. . . . . . . . . . . . . 14
⊢
(((((𝑗 ∈ Top
∧ 𝑦 ∈ 𝒫
𝑗) ∧ ∪ 𝑗 =
∪ 𝑦) ∧ 𝑥 ∈ (𝒫 𝑦 ∩ Fin)) ∧ ∪ 𝑗 =
∪ 𝑥) → (𝑥 ∈ 𝒫 𝑦 ∧ 𝑥 ∈ Fin)) |
4 | 3 | simpld 498 |
. . . . . . . . . . . . 13
⊢
(((((𝑗 ∈ Top
∧ 𝑦 ∈ 𝒫
𝑗) ∧ ∪ 𝑗 =
∪ 𝑦) ∧ 𝑥 ∈ (𝒫 𝑦 ∩ Fin)) ∧ ∪ 𝑗 =
∪ 𝑥) → 𝑥 ∈ 𝒫 𝑦) |
5 | | elpwi 4503 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ 𝒫 𝑦 → 𝑥 ⊆ 𝑦) |
6 | 4, 5 | syl 17 |
. . . . . . . . . . . 12
⊢
(((((𝑗 ∈ Top
∧ 𝑦 ∈ 𝒫
𝑗) ∧ ∪ 𝑗 =
∪ 𝑦) ∧ 𝑥 ∈ (𝒫 𝑦 ∩ Fin)) ∧ ∪ 𝑗 =
∪ 𝑥) → 𝑥 ⊆ 𝑦) |
7 | | elpwi 4503 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ 𝒫 𝑗 → 𝑦 ⊆ 𝑗) |
8 | 7 | ad4antlr 732 |
. . . . . . . . . . . 12
⊢
(((((𝑗 ∈ Top
∧ 𝑦 ∈ 𝒫
𝑗) ∧ ∪ 𝑗 =
∪ 𝑦) ∧ 𝑥 ∈ (𝒫 𝑦 ∩ Fin)) ∧ ∪ 𝑗 =
∪ 𝑥) → 𝑦 ⊆ 𝑗) |
9 | 6, 8 | sstrd 3902 |
. . . . . . . . . . 11
⊢
(((((𝑗 ∈ Top
∧ 𝑦 ∈ 𝒫
𝑗) ∧ ∪ 𝑗 =
∪ 𝑦) ∧ 𝑥 ∈ (𝒫 𝑦 ∩ Fin)) ∧ ∪ 𝑗 =
∪ 𝑥) → 𝑥 ⊆ 𝑗) |
10 | | velpw 4499 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝒫 𝑗 ↔ 𝑥 ⊆ 𝑗) |
11 | 9, 10 | sylibr 237 |
. . . . . . . . . 10
⊢
(((((𝑗 ∈ Top
∧ 𝑦 ∈ 𝒫
𝑗) ∧ ∪ 𝑗 =
∪ 𝑦) ∧ 𝑥 ∈ (𝒫 𝑦 ∩ Fin)) ∧ ∪ 𝑗 =
∪ 𝑥) → 𝑥 ∈ 𝒫 𝑗) |
12 | 3 | simprd 499 |
. . . . . . . . . 10
⊢
(((((𝑗 ∈ Top
∧ 𝑦 ∈ 𝒫
𝑗) ∧ ∪ 𝑗 =
∪ 𝑦) ∧ 𝑥 ∈ (𝒫 𝑦 ∩ Fin)) ∧ ∪ 𝑗 =
∪ 𝑥) → 𝑥 ∈ Fin) |
13 | 11, 12 | elind 4099 |
. . . . . . . . 9
⊢
(((((𝑗 ∈ Top
∧ 𝑦 ∈ 𝒫
𝑗) ∧ ∪ 𝑗 =
∪ 𝑦) ∧ 𝑥 ∈ (𝒫 𝑦 ∩ Fin)) ∧ ∪ 𝑗 =
∪ 𝑥) → 𝑥 ∈ (𝒫 𝑗 ∩ Fin)) |
14 | | simpr 488 |
. . . . . . . . . . 11
⊢
(((((𝑗 ∈ Top
∧ 𝑦 ∈ 𝒫
𝑗) ∧ ∪ 𝑗 =
∪ 𝑦) ∧ 𝑥 ∈ (𝒫 𝑦 ∩ Fin)) ∧ ∪ 𝑗 =
∪ 𝑥) → ∪ 𝑗 = ∪
𝑥) |
15 | | simpllr 775 |
. . . . . . . . . . 11
⊢
(((((𝑗 ∈ Top
∧ 𝑦 ∈ 𝒫
𝑗) ∧ ∪ 𝑗 =
∪ 𝑦) ∧ 𝑥 ∈ (𝒫 𝑦 ∩ Fin)) ∧ ∪ 𝑗 =
∪ 𝑥) → ∪ 𝑗 = ∪
𝑦) |
16 | 14, 15 | eqtr3d 2795 |
. . . . . . . . . 10
⊢
(((((𝑗 ∈ Top
∧ 𝑦 ∈ 𝒫
𝑗) ∧ ∪ 𝑗 =
∪ 𝑦) ∧ 𝑥 ∈ (𝒫 𝑦 ∩ Fin)) ∧ ∪ 𝑗 =
∪ 𝑥) → ∪ 𝑥 = ∪
𝑦) |
17 | | eqid 2758 |
. . . . . . . . . . 11
⊢ ∪ 𝑥 =
∪ 𝑥 |
18 | | eqid 2758 |
. . . . . . . . . . 11
⊢ ∪ 𝑦 =
∪ 𝑦 |
19 | 17, 18 | ssref 22212 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝒫 𝑗 ∧ 𝑥 ⊆ 𝑦 ∧ ∪ 𝑥 = ∪
𝑦) → 𝑥Ref𝑦) |
20 | 11, 6, 16, 19 | syl3anc 1368 |
. . . . . . . . 9
⊢
(((((𝑗 ∈ Top
∧ 𝑦 ∈ 𝒫
𝑗) ∧ ∪ 𝑗 =
∪ 𝑦) ∧ 𝑥 ∈ (𝒫 𝑦 ∩ Fin)) ∧ ∪ 𝑗 =
∪ 𝑥) → 𝑥Ref𝑦) |
21 | | breq1 5035 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑥 → (𝑧Ref𝑦 ↔ 𝑥Ref𝑦)) |
22 | 21 | rspcev 3541 |
. . . . . . . . 9
⊢ ((𝑥 ∈ (𝒫 𝑗 ∩ Fin) ∧ 𝑥Ref𝑦) → ∃𝑧 ∈ (𝒫 𝑗 ∩ Fin)𝑧Ref𝑦) |
23 | 13, 20, 22 | syl2anc 587 |
. . . . . . . 8
⊢
(((((𝑗 ∈ Top
∧ 𝑦 ∈ 𝒫
𝑗) ∧ ∪ 𝑗 =
∪ 𝑦) ∧ 𝑥 ∈ (𝒫 𝑦 ∩ Fin)) ∧ ∪ 𝑗 =
∪ 𝑥) → ∃𝑧 ∈ (𝒫 𝑗 ∩ Fin)𝑧Ref𝑦) |
24 | 23 | r19.29an 3212 |
. . . . . . 7
⊢ ((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ ∪ 𝑗 =
∪ 𝑦) ∧ ∃𝑥 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝑗 = ∪
𝑥) → ∃𝑧 ∈ (𝒫 𝑗 ∩ Fin)𝑧Ref𝑦) |
25 | | simplr 768 |
. . . . . . . . . 10
⊢
(((((𝑗 ∈ Top
∧ 𝑦 ∈ 𝒫
𝑗) ∧ ∪ 𝑗 =
∪ 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) → 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) |
26 | | vex 3413 |
. . . . . . . . . . . . 13
⊢ 𝑧 ∈ V |
27 | | eqid 2758 |
. . . . . . . . . . . . . 14
⊢ ∪ 𝑧 =
∪ 𝑧 |
28 | 27, 18 | isref 22209 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ V → (𝑧Ref𝑦 ↔ (∪ 𝑦 = ∪
𝑧 ∧ ∀𝑢 ∈ 𝑧 ∃𝑣 ∈ 𝑦 𝑢 ⊆ 𝑣))) |
29 | 26, 28 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ (𝑧Ref𝑦 ↔ (∪ 𝑦 = ∪
𝑧 ∧ ∀𝑢 ∈ 𝑧 ∃𝑣 ∈ 𝑦 𝑢 ⊆ 𝑣)) |
30 | 29 | simprbi 500 |
. . . . . . . . . . 11
⊢ (𝑧Ref𝑦 → ∀𝑢 ∈ 𝑧 ∃𝑣 ∈ 𝑦 𝑢 ⊆ 𝑣) |
31 | 30 | adantl 485 |
. . . . . . . . . 10
⊢
(((((𝑗 ∈ Top
∧ 𝑦 ∈ 𝒫
𝑗) ∧ ∪ 𝑗 =
∪ 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) → ∀𝑢 ∈ 𝑧 ∃𝑣 ∈ 𝑦 𝑢 ⊆ 𝑣) |
32 | | sseq2 3918 |
. . . . . . . . . . 11
⊢ (𝑣 = (𝑓‘𝑢) → (𝑢 ⊆ 𝑣 ↔ 𝑢 ⊆ (𝑓‘𝑢))) |
33 | 32 | ac6sg 9948 |
. . . . . . . . . 10
⊢ (𝑧 ∈ (𝒫 𝑗 ∩ Fin) →
(∀𝑢 ∈ 𝑧 ∃𝑣 ∈ 𝑦 𝑢 ⊆ 𝑣 → ∃𝑓(𝑓:𝑧⟶𝑦 ∧ ∀𝑢 ∈ 𝑧 𝑢 ⊆ (𝑓‘𝑢)))) |
34 | 25, 31, 33 | sylc 65 |
. . . . . . . . 9
⊢
(((((𝑗 ∈ Top
∧ 𝑦 ∈ 𝒫
𝑗) ∧ ∪ 𝑗 =
∪ 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) → ∃𝑓(𝑓:𝑧⟶𝑦 ∧ ∀𝑢 ∈ 𝑧 𝑢 ⊆ (𝑓‘𝑢))) |
35 | | simplr 768 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝑗 ∈ Top
∧ 𝑦 ∈ 𝒫
𝑗) ∧ ∪ 𝑗 =
∪ 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧⟶𝑦) ∧ ∀𝑢 ∈ 𝑧 𝑢 ⊆ (𝑓‘𝑢)) → 𝑓:𝑧⟶𝑦) |
36 | 35 | frnd 6505 |
. . . . . . . . . . . . . 14
⊢
(((((((𝑗 ∈ Top
∧ 𝑦 ∈ 𝒫
𝑗) ∧ ∪ 𝑗 =
∪ 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧⟶𝑦) ∧ ∀𝑢 ∈ 𝑧 𝑢 ⊆ (𝑓‘𝑢)) → ran 𝑓 ⊆ 𝑦) |
37 | | vex 3413 |
. . . . . . . . . . . . . . . 16
⊢ 𝑓 ∈ V |
38 | 37 | rnex 7622 |
. . . . . . . . . . . . . . 15
⊢ ran 𝑓 ∈ V |
39 | 38 | elpw 4498 |
. . . . . . . . . . . . . 14
⊢ (ran
𝑓 ∈ 𝒫 𝑦 ↔ ran 𝑓 ⊆ 𝑦) |
40 | 36, 39 | sylibr 237 |
. . . . . . . . . . . . 13
⊢
(((((((𝑗 ∈ Top
∧ 𝑦 ∈ 𝒫
𝑗) ∧ ∪ 𝑗 =
∪ 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧⟶𝑦) ∧ ∀𝑢 ∈ 𝑧 𝑢 ⊆ (𝑓‘𝑢)) → ran 𝑓 ∈ 𝒫 𝑦) |
41 | 35 | ffnd 6499 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝑗 ∈ Top
∧ 𝑦 ∈ 𝒫
𝑗) ∧ ∪ 𝑗 =
∪ 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧⟶𝑦) ∧ ∀𝑢 ∈ 𝑧 𝑢 ⊆ (𝑓‘𝑢)) → 𝑓 Fn 𝑧) |
42 | | elin 3874 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 ∈ (𝒫 𝑗 ∩ Fin) ↔ (𝑧 ∈ 𝒫 𝑗 ∧ 𝑧 ∈ Fin)) |
43 | 42 | simprbi 500 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ∈ (𝒫 𝑗 ∩ Fin) → 𝑧 ∈ Fin) |
44 | 43 | ad4antlr 732 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝑗 ∈ Top
∧ 𝑦 ∈ 𝒫
𝑗) ∧ ∪ 𝑗 =
∪ 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧⟶𝑦) ∧ ∀𝑢 ∈ 𝑧 𝑢 ⊆ (𝑓‘𝑢)) → 𝑧 ∈ Fin) |
45 | | fnfi 8829 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓 Fn 𝑧 ∧ 𝑧 ∈ Fin) → 𝑓 ∈ Fin) |
46 | 41, 44, 45 | syl2anc 587 |
. . . . . . . . . . . . . 14
⊢
(((((((𝑗 ∈ Top
∧ 𝑦 ∈ 𝒫
𝑗) ∧ ∪ 𝑗 =
∪ 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧⟶𝑦) ∧ ∀𝑢 ∈ 𝑧 𝑢 ⊆ (𝑓‘𝑢)) → 𝑓 ∈ Fin) |
47 | | rnfi 8840 |
. . . . . . . . . . . . . 14
⊢ (𝑓 ∈ Fin → ran 𝑓 ∈ Fin) |
48 | 46, 47 | syl 17 |
. . . . . . . . . . . . 13
⊢
(((((((𝑗 ∈ Top
∧ 𝑦 ∈ 𝒫
𝑗) ∧ ∪ 𝑗 =
∪ 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧⟶𝑦) ∧ ∀𝑢 ∈ 𝑧 𝑢 ⊆ (𝑓‘𝑢)) → ran 𝑓 ∈ Fin) |
49 | 40, 48 | elind 4099 |
. . . . . . . . . . . 12
⊢
(((((((𝑗 ∈ Top
∧ 𝑦 ∈ 𝒫
𝑗) ∧ ∪ 𝑗 =
∪ 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧⟶𝑦) ∧ ∀𝑢 ∈ 𝑧 𝑢 ⊆ (𝑓‘𝑢)) → ran 𝑓 ∈ (𝒫 𝑦 ∩ Fin)) |
50 | | simp-5r 785 |
. . . . . . . . . . . . 13
⊢
(((((((𝑗 ∈ Top
∧ 𝑦 ∈ 𝒫
𝑗) ∧ ∪ 𝑗 =
∪ 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧⟶𝑦) ∧ ∀𝑢 ∈ 𝑧 𝑢 ⊆ (𝑓‘𝑢)) → ∪ 𝑗 = ∪
𝑦) |
51 | 27, 18 | refbas 22210 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧Ref𝑦 → ∪ 𝑦 = ∪
𝑧) |
52 | 51 | ad3antlr 730 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝑗 ∈ Top
∧ 𝑦 ∈ 𝒫
𝑗) ∧ ∪ 𝑗 =
∪ 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧⟶𝑦) ∧ ∀𝑢 ∈ 𝑧 𝑢 ⊆ (𝑓‘𝑢)) → ∪ 𝑦 = ∪
𝑧) |
53 | | nfv 1915 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑢(((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ ∪ 𝑗 =
∪ 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧⟶𝑦) |
54 | | nfra1 3147 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑢∀𝑢 ∈ 𝑧 𝑢 ⊆ (𝑓‘𝑢) |
55 | 53, 54 | nfan 1900 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑢((((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ ∪ 𝑗 =
∪ 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧⟶𝑦) ∧ ∀𝑢 ∈ 𝑧 𝑢 ⊆ (𝑓‘𝑢)) |
56 | | rspa 3135 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((∀𝑢 ∈
𝑧 𝑢 ⊆ (𝑓‘𝑢) ∧ 𝑢 ∈ 𝑧) → 𝑢 ⊆ (𝑓‘𝑢)) |
57 | 56 | adantll 713 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((((𝑗 ∈ Top
∧ 𝑦 ∈ 𝒫
𝑗) ∧ ∪ 𝑗 =
∪ 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧⟶𝑦) ∧ ∀𝑢 ∈ 𝑧 𝑢 ⊆ (𝑓‘𝑢)) ∧ 𝑢 ∈ 𝑧) → 𝑢 ⊆ (𝑓‘𝑢)) |
58 | 57 | sseld 3891 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((((𝑗 ∈ Top
∧ 𝑦 ∈ 𝒫
𝑗) ∧ ∪ 𝑗 =
∪ 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧⟶𝑦) ∧ ∀𝑢 ∈ 𝑧 𝑢 ⊆ (𝑓‘𝑢)) ∧ 𝑢 ∈ 𝑧) → (𝑥 ∈ 𝑢 → 𝑥 ∈ (𝑓‘𝑢))) |
59 | 58 | ex 416 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((𝑗 ∈ Top
∧ 𝑦 ∈ 𝒫
𝑗) ∧ ∪ 𝑗 =
∪ 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧⟶𝑦) ∧ ∀𝑢 ∈ 𝑧 𝑢 ⊆ (𝑓‘𝑢)) → (𝑢 ∈ 𝑧 → (𝑥 ∈ 𝑢 → 𝑥 ∈ (𝑓‘𝑢)))) |
60 | 55, 59 | reximdai 3235 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝑗 ∈ Top
∧ 𝑦 ∈ 𝒫
𝑗) ∧ ∪ 𝑗 =
∪ 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧⟶𝑦) ∧ ∀𝑢 ∈ 𝑧 𝑢 ⊆ (𝑓‘𝑢)) → (∃𝑢 ∈ 𝑧 𝑥 ∈ 𝑢 → ∃𝑢 ∈ 𝑧 𝑥 ∈ (𝑓‘𝑢))) |
61 | | eluni2 4802 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ ∪ 𝑧
↔ ∃𝑢 ∈
𝑧 𝑥 ∈ 𝑢) |
62 | 61 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝑗 ∈ Top
∧ 𝑦 ∈ 𝒫
𝑗) ∧ ∪ 𝑗 =
∪ 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧⟶𝑦) ∧ ∀𝑢 ∈ 𝑧 𝑢 ⊆ (𝑓‘𝑢)) → (𝑥 ∈ ∪ 𝑧 ↔ ∃𝑢 ∈ 𝑧 𝑥 ∈ 𝑢)) |
63 | | fnunirn 7004 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓 Fn 𝑧 → (𝑥 ∈ ∪ ran
𝑓 ↔ ∃𝑢 ∈ 𝑧 𝑥 ∈ (𝑓‘𝑢))) |
64 | 41, 63 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝑗 ∈ Top
∧ 𝑦 ∈ 𝒫
𝑗) ∧ ∪ 𝑗 =
∪ 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧⟶𝑦) ∧ ∀𝑢 ∈ 𝑧 𝑢 ⊆ (𝑓‘𝑢)) → (𝑥 ∈ ∪ ran
𝑓 ↔ ∃𝑢 ∈ 𝑧 𝑥 ∈ (𝑓‘𝑢))) |
65 | 60, 62, 64 | 3imtr4d 297 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝑗 ∈ Top
∧ 𝑦 ∈ 𝒫
𝑗) ∧ ∪ 𝑗 =
∪ 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧⟶𝑦) ∧ ∀𝑢 ∈ 𝑧 𝑢 ⊆ (𝑓‘𝑢)) → (𝑥 ∈ ∪ 𝑧 → 𝑥 ∈ ∪ ran
𝑓)) |
66 | 65 | ssrdv 3898 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝑗 ∈ Top
∧ 𝑦 ∈ 𝒫
𝑗) ∧ ∪ 𝑗 =
∪ 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧⟶𝑦) ∧ ∀𝑢 ∈ 𝑧 𝑢 ⊆ (𝑓‘𝑢)) → ∪ 𝑧 ⊆ ∪ ran 𝑓) |
67 | 52, 66 | eqsstrd 3930 |
. . . . . . . . . . . . . 14
⊢
(((((((𝑗 ∈ Top
∧ 𝑦 ∈ 𝒫
𝑗) ∧ ∪ 𝑗 =
∪ 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧⟶𝑦) ∧ ∀𝑢 ∈ 𝑧 𝑢 ⊆ (𝑓‘𝑢)) → ∪ 𝑦 ⊆ ∪ ran 𝑓) |
68 | 36 | unissd 4808 |
. . . . . . . . . . . . . 14
⊢
(((((((𝑗 ∈ Top
∧ 𝑦 ∈ 𝒫
𝑗) ∧ ∪ 𝑗 =
∪ 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧⟶𝑦) ∧ ∀𝑢 ∈ 𝑧 𝑢 ⊆ (𝑓‘𝑢)) → ∪ ran
𝑓 ⊆ ∪ 𝑦) |
69 | 67, 68 | eqssd 3909 |
. . . . . . . . . . . . 13
⊢
(((((((𝑗 ∈ Top
∧ 𝑦 ∈ 𝒫
𝑗) ∧ ∪ 𝑗 =
∪ 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧⟶𝑦) ∧ ∀𝑢 ∈ 𝑧 𝑢 ⊆ (𝑓‘𝑢)) → ∪ 𝑦 = ∪
ran 𝑓) |
70 | 50, 69 | eqtrd 2793 |
. . . . . . . . . . . 12
⊢
(((((((𝑗 ∈ Top
∧ 𝑦 ∈ 𝒫
𝑗) ∧ ∪ 𝑗 =
∪ 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧⟶𝑦) ∧ ∀𝑢 ∈ 𝑧 𝑢 ⊆ (𝑓‘𝑢)) → ∪ 𝑗 = ∪
ran 𝑓) |
71 | | unieq 4809 |
. . . . . . . . . . . . 13
⊢ (𝑥 = ran 𝑓 → ∪ 𝑥 = ∪
ran 𝑓) |
72 | 71 | rspceeqv 3556 |
. . . . . . . . . . . 12
⊢ ((ran
𝑓 ∈ (𝒫 𝑦 ∩ Fin) ∧ ∪ 𝑗 =
∪ ran 𝑓) → ∃𝑥 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝑗 = ∪
𝑥) |
73 | 49, 70, 72 | syl2anc 587 |
. . . . . . . . . . 11
⊢
(((((((𝑗 ∈ Top
∧ 𝑦 ∈ 𝒫
𝑗) ∧ ∪ 𝑗 =
∪ 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) ∧ 𝑓:𝑧⟶𝑦) ∧ ∀𝑢 ∈ 𝑧 𝑢 ⊆ (𝑓‘𝑢)) → ∃𝑥 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝑗 = ∪
𝑥) |
74 | 73 | expl 461 |
. . . . . . . . . 10
⊢
(((((𝑗 ∈ Top
∧ 𝑦 ∈ 𝒫
𝑗) ∧ ∪ 𝑗 =
∪ 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) → ((𝑓:𝑧⟶𝑦 ∧ ∀𝑢 ∈ 𝑧 𝑢 ⊆ (𝑓‘𝑢)) → ∃𝑥 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝑗 = ∪
𝑥)) |
75 | 74 | exlimdv 1934 |
. . . . . . . . 9
⊢
(((((𝑗 ∈ Top
∧ 𝑦 ∈ 𝒫
𝑗) ∧ ∪ 𝑗 =
∪ 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) → (∃𝑓(𝑓:𝑧⟶𝑦 ∧ ∀𝑢 ∈ 𝑧 𝑢 ⊆ (𝑓‘𝑢)) → ∃𝑥 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝑗 = ∪
𝑥)) |
76 | 34, 75 | mpd 15 |
. . . . . . . 8
⊢
(((((𝑗 ∈ Top
∧ 𝑦 ∈ 𝒫
𝑗) ∧ ∪ 𝑗 =
∪ 𝑦) ∧ 𝑧 ∈ (𝒫 𝑗 ∩ Fin)) ∧ 𝑧Ref𝑦) → ∃𝑥 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝑗 = ∪
𝑥) |
77 | 76 | r19.29an 3212 |
. . . . . . 7
⊢ ((((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ ∪ 𝑗 =
∪ 𝑦) ∧ ∃𝑧 ∈ (𝒫 𝑗 ∩ Fin)𝑧Ref𝑦) → ∃𝑥 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝑗 = ∪
𝑥) |
78 | 24, 77 | impbida 800 |
. . . . . 6
⊢ (((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) ∧ ∪ 𝑗 =
∪ 𝑦) → (∃𝑥 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝑗 = ∪
𝑥 ↔ ∃𝑧 ∈ (𝒫 𝑗 ∩ Fin)𝑧Ref𝑦)) |
79 | 78 | pm5.74da 803 |
. . . . 5
⊢ ((𝑗 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑗) → ((∪ 𝑗 =
∪ 𝑦 → ∃𝑥 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝑗 = ∪
𝑥) ↔ (∪ 𝑗 =
∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ Fin)𝑧Ref𝑦))) |
80 | 79 | ralbidva 3125 |
. . . 4
⊢ (𝑗 ∈ Top →
(∀𝑦 ∈ 𝒫
𝑗(∪ 𝑗 =
∪ 𝑦 → ∃𝑥 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝑗 = ∪
𝑥) ↔ ∀𝑦 ∈ 𝒫 𝑗(∪
𝑗 = ∪ 𝑦
→ ∃𝑧 ∈
(𝒫 𝑗 ∩
Fin)𝑧Ref𝑦))) |
81 | 80 | pm5.32i 578 |
. . 3
⊢ ((𝑗 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝑗(∪
𝑗 = ∪ 𝑦
→ ∃𝑥 ∈
(𝒫 𝑦 ∩
Fin)∪ 𝑗 = ∪ 𝑥)) ↔ (𝑗 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝑗(∪ 𝑗 = ∪
𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ Fin)𝑧Ref𝑦))) |
82 | | eqid 2758 |
. . . 4
⊢ ∪ 𝑗 =
∪ 𝑗 |
83 | 82 | iscmp 22088 |
. . 3
⊢ (𝑗 ∈ Comp ↔ (𝑗 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝑗(∪
𝑗 = ∪ 𝑦
→ ∃𝑥 ∈
(𝒫 𝑦 ∩
Fin)∪ 𝑗 = ∪ 𝑥))) |
84 | 82 | iscref 31315 |
. . 3
⊢ (𝑗 ∈ CovHasRefFin ↔
(𝑗 ∈ Top ∧
∀𝑦 ∈ 𝒫
𝑗(∪ 𝑗 =
∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ Fin)𝑧Ref𝑦))) |
85 | 81, 83, 84 | 3bitr4i 306 |
. 2
⊢ (𝑗 ∈ Comp ↔ 𝑗 ∈
CovHasRefFin) |
86 | 85 | eqriv 2755 |
1
⊢ Comp =
CovHasRefFin |