Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isfldidl2 Structured version   Visualization version   GIF version

Theorem isfldidl2 35873
Description: Determine if a ring is a field based on its ideals. (Contributed by Jeff Madsen, 6-Jan-2011.)
Hypotheses
Ref Expression
isfldidl2.1 𝐺 = (1st𝐾)
isfldidl2.2 𝐻 = (2nd𝐾)
isfldidl2.3 𝑋 = ran 𝐺
isfldidl2.4 𝑍 = (GId‘𝐺)
Assertion
Ref Expression
isfldidl2 (𝐾 ∈ Fld ↔ (𝐾 ∈ CRingOps ∧ 𝑋 ≠ {𝑍} ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}))

Proof of Theorem isfldidl2
StepHypRef Expression
1 isfldidl2.1 . . 3 𝐺 = (1st𝐾)
2 isfldidl2.2 . . 3 𝐻 = (2nd𝐾)
3 isfldidl2.3 . . 3 𝑋 = ran 𝐺
4 isfldidl2.4 . . 3 𝑍 = (GId‘𝐺)
5 eqid 2739 . . 3 (GId‘𝐻) = (GId‘𝐻)
61, 2, 3, 4, 5isfldidl 35872 . 2 (𝐾 ∈ Fld ↔ (𝐾 ∈ CRingOps ∧ (GId‘𝐻) ≠ 𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}))
7 crngorngo 35804 . . . . . . 7 (𝐾 ∈ CRingOps → 𝐾 ∈ RingOps)
8 eqcom 2746 . . . . . . . 8 ((GId‘𝐻) = 𝑍𝑍 = (GId‘𝐻))
91, 2, 3, 4, 50rngo 35831 . . . . . . . 8 (𝐾 ∈ RingOps → (𝑍 = (GId‘𝐻) ↔ 𝑋 = {𝑍}))
108, 9syl5bb 286 . . . . . . 7 (𝐾 ∈ RingOps → ((GId‘𝐻) = 𝑍𝑋 = {𝑍}))
117, 10syl 17 . . . . . 6 (𝐾 ∈ CRingOps → ((GId‘𝐻) = 𝑍𝑋 = {𝑍}))
1211necon3bid 2979 . . . . 5 (𝐾 ∈ CRingOps → ((GId‘𝐻) ≠ 𝑍𝑋 ≠ {𝑍}))
1312anbi1d 633 . . . 4 (𝐾 ∈ CRingOps → (((GId‘𝐻) ≠ 𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) ↔ (𝑋 ≠ {𝑍} ∧ (Idl‘𝐾) = {{𝑍}, 𝑋})))
1413pm5.32i 578 . . 3 ((𝐾 ∈ CRingOps ∧ ((GId‘𝐻) ≠ 𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋})) ↔ (𝐾 ∈ CRingOps ∧ (𝑋 ≠ {𝑍} ∧ (Idl‘𝐾) = {{𝑍}, 𝑋})))
15 3anass 1096 . . 3 ((𝐾 ∈ CRingOps ∧ (GId‘𝐻) ≠ 𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) ↔ (𝐾 ∈ CRingOps ∧ ((GId‘𝐻) ≠ 𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋})))
16 3anass 1096 . . 3 ((𝐾 ∈ CRingOps ∧ 𝑋 ≠ {𝑍} ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) ↔ (𝐾 ∈ CRingOps ∧ (𝑋 ≠ {𝑍} ∧ (Idl‘𝐾) = {{𝑍}, 𝑋})))
1714, 15, 163bitr4i 306 . 2 ((𝐾 ∈ CRingOps ∧ (GId‘𝐻) ≠ 𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) ↔ (𝐾 ∈ CRingOps ∧ 𝑋 ≠ {𝑍} ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}))
186, 17bitri 278 1 (𝐾 ∈ Fld ↔ (𝐾 ∈ CRingOps ∧ 𝑋 ≠ {𝑍} ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399  w3a 1088   = wceq 1542  wcel 2114  wne 2935  {csn 4517  {cpr 4519  ran crn 5527  cfv 6340  1st c1st 7715  2nd c2nd 7716  GIdcgi 28428  RingOpscrngo 35698  Fldcfld 35795  CRingOpsccring 35797  Idlcidl 35811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5233  ax-pr 5297  ax-un 7482
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3401  df-sbc 3682  df-csb 3792  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-pss 3863  df-nul 4213  df-if 4416  df-pw 4491  df-sn 4518  df-pr 4520  df-tp 4522  df-op 4524  df-uni 4798  df-int 4838  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5484  df-we 5486  df-xp 5532  df-rel 5533  df-cnv 5534  df-co 5535  df-dm 5536  df-rn 5537  df-res 5538  df-ima 5539  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7130  df-ov 7176  df-oprab 7177  df-mpo 7178  df-om 7603  df-1st 7717  df-2nd 7718  df-1o 8134  df-er 8323  df-en 8559  df-dom 8560  df-sdom 8561  df-fin 8562  df-grpo 28431  df-gid 28432  df-ginv 28433  df-ablo 28483  df-ass 35647  df-exid 35649  df-mgmOLD 35653  df-sgrOLD 35665  df-mndo 35671  df-rngo 35699  df-drngo 35753  df-com2 35794  df-fld 35796  df-crngo 35798  df-idl 35814  df-igen 35864
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator