Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > isfldidl2 | Structured version Visualization version GIF version |
Description: Determine if a ring is a field based on its ideals. (Contributed by Jeff Madsen, 6-Jan-2011.) |
Ref | Expression |
---|---|
isfldidl2.1 | ⊢ 𝐺 = (1st ‘𝐾) |
isfldidl2.2 | ⊢ 𝐻 = (2nd ‘𝐾) |
isfldidl2.3 | ⊢ 𝑋 = ran 𝐺 |
isfldidl2.4 | ⊢ 𝑍 = (GId‘𝐺) |
Ref | Expression |
---|---|
isfldidl2 | ⊢ (𝐾 ∈ Fld ↔ (𝐾 ∈ CRingOps ∧ 𝑋 ≠ {𝑍} ∧ (Idl‘𝐾) = {{𝑍}, 𝑋})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfldidl2.1 | . . 3 ⊢ 𝐺 = (1st ‘𝐾) | |
2 | isfldidl2.2 | . . 3 ⊢ 𝐻 = (2nd ‘𝐾) | |
3 | isfldidl2.3 | . . 3 ⊢ 𝑋 = ran 𝐺 | |
4 | isfldidl2.4 | . . 3 ⊢ 𝑍 = (GId‘𝐺) | |
5 | eqid 2739 | . . 3 ⊢ (GId‘𝐻) = (GId‘𝐻) | |
6 | 1, 2, 3, 4, 5 | isfldidl 35872 | . 2 ⊢ (𝐾 ∈ Fld ↔ (𝐾 ∈ CRingOps ∧ (GId‘𝐻) ≠ 𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋})) |
7 | crngorngo 35804 | . . . . . . 7 ⊢ (𝐾 ∈ CRingOps → 𝐾 ∈ RingOps) | |
8 | eqcom 2746 | . . . . . . . 8 ⊢ ((GId‘𝐻) = 𝑍 ↔ 𝑍 = (GId‘𝐻)) | |
9 | 1, 2, 3, 4, 5 | 0rngo 35831 | . . . . . . . 8 ⊢ (𝐾 ∈ RingOps → (𝑍 = (GId‘𝐻) ↔ 𝑋 = {𝑍})) |
10 | 8, 9 | syl5bb 286 | . . . . . . 7 ⊢ (𝐾 ∈ RingOps → ((GId‘𝐻) = 𝑍 ↔ 𝑋 = {𝑍})) |
11 | 7, 10 | syl 17 | . . . . . 6 ⊢ (𝐾 ∈ CRingOps → ((GId‘𝐻) = 𝑍 ↔ 𝑋 = {𝑍})) |
12 | 11 | necon3bid 2979 | . . . . 5 ⊢ (𝐾 ∈ CRingOps → ((GId‘𝐻) ≠ 𝑍 ↔ 𝑋 ≠ {𝑍})) |
13 | 12 | anbi1d 633 | . . . 4 ⊢ (𝐾 ∈ CRingOps → (((GId‘𝐻) ≠ 𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) ↔ (𝑋 ≠ {𝑍} ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}))) |
14 | 13 | pm5.32i 578 | . . 3 ⊢ ((𝐾 ∈ CRingOps ∧ ((GId‘𝐻) ≠ 𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋})) ↔ (𝐾 ∈ CRingOps ∧ (𝑋 ≠ {𝑍} ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}))) |
15 | 3anass 1096 | . . 3 ⊢ ((𝐾 ∈ CRingOps ∧ (GId‘𝐻) ≠ 𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) ↔ (𝐾 ∈ CRingOps ∧ ((GId‘𝐻) ≠ 𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}))) | |
16 | 3anass 1096 | . . 3 ⊢ ((𝐾 ∈ CRingOps ∧ 𝑋 ≠ {𝑍} ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) ↔ (𝐾 ∈ CRingOps ∧ (𝑋 ≠ {𝑍} ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}))) | |
17 | 14, 15, 16 | 3bitr4i 306 | . 2 ⊢ ((𝐾 ∈ CRingOps ∧ (GId‘𝐻) ≠ 𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) ↔ (𝐾 ∈ CRingOps ∧ 𝑋 ≠ {𝑍} ∧ (Idl‘𝐾) = {{𝑍}, 𝑋})) |
18 | 6, 17 | bitri 278 | 1 ⊢ (𝐾 ∈ Fld ↔ (𝐾 ∈ CRingOps ∧ 𝑋 ≠ {𝑍} ∧ (Idl‘𝐾) = {{𝑍}, 𝑋})) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 ∧ w3a 1088 = wceq 1542 ∈ wcel 2114 ≠ wne 2935 {csn 4517 {cpr 4519 ran crn 5527 ‘cfv 6340 1st c1st 7715 2nd c2nd 7716 GIdcgi 28428 RingOpscrngo 35698 Fldcfld 35795 CRingOpsccring 35797 Idlcidl 35811 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-rep 5155 ax-sep 5168 ax-nul 5175 ax-pow 5233 ax-pr 5297 ax-un 7482 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-ral 3059 df-rex 3060 df-reu 3061 df-rmo 3062 df-rab 3063 df-v 3401 df-sbc 3682 df-csb 3792 df-dif 3847 df-un 3849 df-in 3851 df-ss 3861 df-pss 3863 df-nul 4213 df-if 4416 df-pw 4491 df-sn 4518 df-pr 4520 df-tp 4522 df-op 4524 df-uni 4798 df-int 4838 df-iun 4884 df-br 5032 df-opab 5094 df-mpt 5112 df-tr 5138 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5484 df-we 5486 df-xp 5532 df-rel 5533 df-cnv 5534 df-co 5535 df-dm 5536 df-rn 5537 df-res 5538 df-ima 5539 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7130 df-ov 7176 df-oprab 7177 df-mpo 7178 df-om 7603 df-1st 7717 df-2nd 7718 df-1o 8134 df-er 8323 df-en 8559 df-dom 8560 df-sdom 8561 df-fin 8562 df-grpo 28431 df-gid 28432 df-ginv 28433 df-ablo 28483 df-ass 35647 df-exid 35649 df-mgmOLD 35653 df-sgrOLD 35665 df-mndo 35671 df-rngo 35699 df-drngo 35753 df-com2 35794 df-fld 35796 df-crngo 35798 df-idl 35814 df-igen 35864 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |