Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > isfldidl2 | Structured version Visualization version GIF version |
Description: Determine if a ring is a field based on its ideals. (Contributed by Jeff Madsen, 6-Jan-2011.) |
Ref | Expression |
---|---|
isfldidl2.1 | ⊢ 𝐺 = (1st ‘𝐾) |
isfldidl2.2 | ⊢ 𝐻 = (2nd ‘𝐾) |
isfldidl2.3 | ⊢ 𝑋 = ran 𝐺 |
isfldidl2.4 | ⊢ 𝑍 = (GId‘𝐺) |
Ref | Expression |
---|---|
isfldidl2 | ⊢ (𝐾 ∈ Fld ↔ (𝐾 ∈ CRingOps ∧ 𝑋 ≠ {𝑍} ∧ (Idl‘𝐾) = {{𝑍}, 𝑋})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfldidl2.1 | . . 3 ⊢ 𝐺 = (1st ‘𝐾) | |
2 | isfldidl2.2 | . . 3 ⊢ 𝐻 = (2nd ‘𝐾) | |
3 | isfldidl2.3 | . . 3 ⊢ 𝑋 = ran 𝐺 | |
4 | isfldidl2.4 | . . 3 ⊢ 𝑍 = (GId‘𝐺) | |
5 | eqid 2738 | . . 3 ⊢ (GId‘𝐻) = (GId‘𝐻) | |
6 | 1, 2, 3, 4, 5 | isfldidl 36153 | . 2 ⊢ (𝐾 ∈ Fld ↔ (𝐾 ∈ CRingOps ∧ (GId‘𝐻) ≠ 𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋})) |
7 | crngorngo 36085 | . . . . . . 7 ⊢ (𝐾 ∈ CRingOps → 𝐾 ∈ RingOps) | |
8 | eqcom 2745 | . . . . . . . 8 ⊢ ((GId‘𝐻) = 𝑍 ↔ 𝑍 = (GId‘𝐻)) | |
9 | 1, 2, 3, 4, 5 | 0rngo 36112 | . . . . . . . 8 ⊢ (𝐾 ∈ RingOps → (𝑍 = (GId‘𝐻) ↔ 𝑋 = {𝑍})) |
10 | 8, 9 | syl5bb 282 | . . . . . . 7 ⊢ (𝐾 ∈ RingOps → ((GId‘𝐻) = 𝑍 ↔ 𝑋 = {𝑍})) |
11 | 7, 10 | syl 17 | . . . . . 6 ⊢ (𝐾 ∈ CRingOps → ((GId‘𝐻) = 𝑍 ↔ 𝑋 = {𝑍})) |
12 | 11 | necon3bid 2987 | . . . . 5 ⊢ (𝐾 ∈ CRingOps → ((GId‘𝐻) ≠ 𝑍 ↔ 𝑋 ≠ {𝑍})) |
13 | 12 | anbi1d 629 | . . . 4 ⊢ (𝐾 ∈ CRingOps → (((GId‘𝐻) ≠ 𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) ↔ (𝑋 ≠ {𝑍} ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}))) |
14 | 13 | pm5.32i 574 | . . 3 ⊢ ((𝐾 ∈ CRingOps ∧ ((GId‘𝐻) ≠ 𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋})) ↔ (𝐾 ∈ CRingOps ∧ (𝑋 ≠ {𝑍} ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}))) |
15 | 3anass 1093 | . . 3 ⊢ ((𝐾 ∈ CRingOps ∧ (GId‘𝐻) ≠ 𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) ↔ (𝐾 ∈ CRingOps ∧ ((GId‘𝐻) ≠ 𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}))) | |
16 | 3anass 1093 | . . 3 ⊢ ((𝐾 ∈ CRingOps ∧ 𝑋 ≠ {𝑍} ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) ↔ (𝐾 ∈ CRingOps ∧ (𝑋 ≠ {𝑍} ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}))) | |
17 | 14, 15, 16 | 3bitr4i 302 | . 2 ⊢ ((𝐾 ∈ CRingOps ∧ (GId‘𝐻) ≠ 𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) ↔ (𝐾 ∈ CRingOps ∧ 𝑋 ≠ {𝑍} ∧ (Idl‘𝐾) = {{𝑍}, 𝑋})) |
18 | 6, 17 | bitri 274 | 1 ⊢ (𝐾 ∈ Fld ↔ (𝐾 ∈ CRingOps ∧ 𝑋 ≠ {𝑍} ∧ (Idl‘𝐾) = {{𝑍}, 𝑋})) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 {csn 4558 {cpr 4560 ran crn 5581 ‘cfv 6418 1st c1st 7802 2nd c2nd 7803 GIdcgi 28753 RingOpscrngo 35979 Fldcfld 36076 CRingOpsccring 36078 Idlcidl 36092 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-grpo 28756 df-gid 28757 df-ginv 28758 df-ablo 28808 df-ass 35928 df-exid 35930 df-mgmOLD 35934 df-sgrOLD 35946 df-mndo 35952 df-rngo 35980 df-drngo 36034 df-com2 36075 df-fld 36077 df-crngo 36079 df-idl 36095 df-igen 36145 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |