| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isfldidl2 | Structured version Visualization version GIF version | ||
| Description: Determine if a ring is a field based on its ideals. (Contributed by Jeff Madsen, 6-Jan-2011.) |
| Ref | Expression |
|---|---|
| isfldidl2.1 | ⊢ 𝐺 = (1st ‘𝐾) |
| isfldidl2.2 | ⊢ 𝐻 = (2nd ‘𝐾) |
| isfldidl2.3 | ⊢ 𝑋 = ran 𝐺 |
| isfldidl2.4 | ⊢ 𝑍 = (GId‘𝐺) |
| Ref | Expression |
|---|---|
| isfldidl2 | ⊢ (𝐾 ∈ Fld ↔ (𝐾 ∈ CRingOps ∧ 𝑋 ≠ {𝑍} ∧ (Idl‘𝐾) = {{𝑍}, 𝑋})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfldidl2.1 | . . 3 ⊢ 𝐺 = (1st ‘𝐾) | |
| 2 | isfldidl2.2 | . . 3 ⊢ 𝐻 = (2nd ‘𝐾) | |
| 3 | isfldidl2.3 | . . 3 ⊢ 𝑋 = ran 𝐺 | |
| 4 | isfldidl2.4 | . . 3 ⊢ 𝑍 = (GId‘𝐺) | |
| 5 | eqid 2729 | . . 3 ⊢ (GId‘𝐻) = (GId‘𝐻) | |
| 6 | 1, 2, 3, 4, 5 | isfldidl 38062 | . 2 ⊢ (𝐾 ∈ Fld ↔ (𝐾 ∈ CRingOps ∧ (GId‘𝐻) ≠ 𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋})) |
| 7 | crngorngo 37994 | . . . . . . 7 ⊢ (𝐾 ∈ CRingOps → 𝐾 ∈ RingOps) | |
| 8 | eqcom 2736 | . . . . . . . 8 ⊢ ((GId‘𝐻) = 𝑍 ↔ 𝑍 = (GId‘𝐻)) | |
| 9 | 1, 2, 3, 4, 5 | 0rngo 38021 | . . . . . . . 8 ⊢ (𝐾 ∈ RingOps → (𝑍 = (GId‘𝐻) ↔ 𝑋 = {𝑍})) |
| 10 | 8, 9 | bitrid 283 | . . . . . . 7 ⊢ (𝐾 ∈ RingOps → ((GId‘𝐻) = 𝑍 ↔ 𝑋 = {𝑍})) |
| 11 | 7, 10 | syl 17 | . . . . . 6 ⊢ (𝐾 ∈ CRingOps → ((GId‘𝐻) = 𝑍 ↔ 𝑋 = {𝑍})) |
| 12 | 11 | necon3bid 2969 | . . . . 5 ⊢ (𝐾 ∈ CRingOps → ((GId‘𝐻) ≠ 𝑍 ↔ 𝑋 ≠ {𝑍})) |
| 13 | 12 | anbi1d 631 | . . . 4 ⊢ (𝐾 ∈ CRingOps → (((GId‘𝐻) ≠ 𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) ↔ (𝑋 ≠ {𝑍} ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}))) |
| 14 | 13 | pm5.32i 574 | . . 3 ⊢ ((𝐾 ∈ CRingOps ∧ ((GId‘𝐻) ≠ 𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋})) ↔ (𝐾 ∈ CRingOps ∧ (𝑋 ≠ {𝑍} ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}))) |
| 15 | 3anass 1094 | . . 3 ⊢ ((𝐾 ∈ CRingOps ∧ (GId‘𝐻) ≠ 𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) ↔ (𝐾 ∈ CRingOps ∧ ((GId‘𝐻) ≠ 𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}))) | |
| 16 | 3anass 1094 | . . 3 ⊢ ((𝐾 ∈ CRingOps ∧ 𝑋 ≠ {𝑍} ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) ↔ (𝐾 ∈ CRingOps ∧ (𝑋 ≠ {𝑍} ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}))) | |
| 17 | 14, 15, 16 | 3bitr4i 303 | . 2 ⊢ ((𝐾 ∈ CRingOps ∧ (GId‘𝐻) ≠ 𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) ↔ (𝐾 ∈ CRingOps ∧ 𝑋 ≠ {𝑍} ∧ (Idl‘𝐾) = {{𝑍}, 𝑋})) |
| 18 | 6, 17 | bitri 275 | 1 ⊢ (𝐾 ∈ Fld ↔ (𝐾 ∈ CRingOps ∧ 𝑋 ≠ {𝑍} ∧ (Idl‘𝐾) = {{𝑍}, 𝑋})) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 {csn 4589 {cpr 4591 ran crn 5639 ‘cfv 6511 1st c1st 7966 2nd c2nd 7967 GIdcgi 30419 RingOpscrngo 37888 Fldcfld 37985 CRingOpsccring 37987 Idlcidl 38001 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-1o 8434 df-en 8919 df-grpo 30422 df-gid 30423 df-ginv 30424 df-ablo 30474 df-ass 37837 df-exid 37839 df-mgmOLD 37843 df-sgrOLD 37855 df-mndo 37861 df-rngo 37889 df-drngo 37943 df-com2 37984 df-fld 37986 df-crngo 37988 df-idl 38004 df-igen 38054 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |