Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isfldidl2 Structured version   Visualization version   GIF version

Theorem isfldidl2 38098
Description: Determine if a ring is a field based on its ideals. (Contributed by Jeff Madsen, 6-Jan-2011.)
Hypotheses
Ref Expression
isfldidl2.1 𝐺 = (1st𝐾)
isfldidl2.2 𝐻 = (2nd𝐾)
isfldidl2.3 𝑋 = ran 𝐺
isfldidl2.4 𝑍 = (GId‘𝐺)
Assertion
Ref Expression
isfldidl2 (𝐾 ∈ Fld ↔ (𝐾 ∈ CRingOps ∧ 𝑋 ≠ {𝑍} ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}))

Proof of Theorem isfldidl2
StepHypRef Expression
1 isfldidl2.1 . . 3 𝐺 = (1st𝐾)
2 isfldidl2.2 . . 3 𝐻 = (2nd𝐾)
3 isfldidl2.3 . . 3 𝑋 = ran 𝐺
4 isfldidl2.4 . . 3 𝑍 = (GId‘𝐺)
5 eqid 2736 . . 3 (GId‘𝐻) = (GId‘𝐻)
61, 2, 3, 4, 5isfldidl 38097 . 2 (𝐾 ∈ Fld ↔ (𝐾 ∈ CRingOps ∧ (GId‘𝐻) ≠ 𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}))
7 crngorngo 38029 . . . . . . 7 (𝐾 ∈ CRingOps → 𝐾 ∈ RingOps)
8 eqcom 2743 . . . . . . . 8 ((GId‘𝐻) = 𝑍𝑍 = (GId‘𝐻))
91, 2, 3, 4, 50rngo 38056 . . . . . . . 8 (𝐾 ∈ RingOps → (𝑍 = (GId‘𝐻) ↔ 𝑋 = {𝑍}))
108, 9bitrid 283 . . . . . . 7 (𝐾 ∈ RingOps → ((GId‘𝐻) = 𝑍𝑋 = {𝑍}))
117, 10syl 17 . . . . . 6 (𝐾 ∈ CRingOps → ((GId‘𝐻) = 𝑍𝑋 = {𝑍}))
1211necon3bid 2977 . . . . 5 (𝐾 ∈ CRingOps → ((GId‘𝐻) ≠ 𝑍𝑋 ≠ {𝑍}))
1312anbi1d 631 . . . 4 (𝐾 ∈ CRingOps → (((GId‘𝐻) ≠ 𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) ↔ (𝑋 ≠ {𝑍} ∧ (Idl‘𝐾) = {{𝑍}, 𝑋})))
1413pm5.32i 574 . . 3 ((𝐾 ∈ CRingOps ∧ ((GId‘𝐻) ≠ 𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋})) ↔ (𝐾 ∈ CRingOps ∧ (𝑋 ≠ {𝑍} ∧ (Idl‘𝐾) = {{𝑍}, 𝑋})))
15 3anass 1094 . . 3 ((𝐾 ∈ CRingOps ∧ (GId‘𝐻) ≠ 𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) ↔ (𝐾 ∈ CRingOps ∧ ((GId‘𝐻) ≠ 𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋})))
16 3anass 1094 . . 3 ((𝐾 ∈ CRingOps ∧ 𝑋 ≠ {𝑍} ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) ↔ (𝐾 ∈ CRingOps ∧ (𝑋 ≠ {𝑍} ∧ (Idl‘𝐾) = {{𝑍}, 𝑋})))
1714, 15, 163bitr4i 303 . 2 ((𝐾 ∈ CRingOps ∧ (GId‘𝐻) ≠ 𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) ↔ (𝐾 ∈ CRingOps ∧ 𝑋 ≠ {𝑍} ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}))
186, 17bitri 275 1 (𝐾 ∈ Fld ↔ (𝐾 ∈ CRingOps ∧ 𝑋 ≠ {𝑍} ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  {csn 4606  {cpr 4608  ran crn 5660  cfv 6536  1st c1st 7991  2nd c2nd 7992  GIdcgi 30476  RingOpscrngo 37923  Fldcfld 38020  CRingOpsccring 38022  Idlcidl 38036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-1o 8485  df-en 8965  df-grpo 30479  df-gid 30480  df-ginv 30481  df-ablo 30531  df-ass 37872  df-exid 37874  df-mgmOLD 37878  df-sgrOLD 37890  df-mndo 37896  df-rngo 37924  df-drngo 37978  df-com2 38019  df-fld 38021  df-crngo 38023  df-idl 38039  df-igen 38089
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator