| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isfldidl2 | Structured version Visualization version GIF version | ||
| Description: Determine if a ring is a field based on its ideals. (Contributed by Jeff Madsen, 6-Jan-2011.) |
| Ref | Expression |
|---|---|
| isfldidl2.1 | ⊢ 𝐺 = (1st ‘𝐾) |
| isfldidl2.2 | ⊢ 𝐻 = (2nd ‘𝐾) |
| isfldidl2.3 | ⊢ 𝑋 = ran 𝐺 |
| isfldidl2.4 | ⊢ 𝑍 = (GId‘𝐺) |
| Ref | Expression |
|---|---|
| isfldidl2 | ⊢ (𝐾 ∈ Fld ↔ (𝐾 ∈ CRingOps ∧ 𝑋 ≠ {𝑍} ∧ (Idl‘𝐾) = {{𝑍}, 𝑋})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfldidl2.1 | . . 3 ⊢ 𝐺 = (1st ‘𝐾) | |
| 2 | isfldidl2.2 | . . 3 ⊢ 𝐻 = (2nd ‘𝐾) | |
| 3 | isfldidl2.3 | . . 3 ⊢ 𝑋 = ran 𝐺 | |
| 4 | isfldidl2.4 | . . 3 ⊢ 𝑍 = (GId‘𝐺) | |
| 5 | eqid 2731 | . . 3 ⊢ (GId‘𝐻) = (GId‘𝐻) | |
| 6 | 1, 2, 3, 4, 5 | isfldidl 38107 | . 2 ⊢ (𝐾 ∈ Fld ↔ (𝐾 ∈ CRingOps ∧ (GId‘𝐻) ≠ 𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋})) |
| 7 | crngorngo 38039 | . . . . . . 7 ⊢ (𝐾 ∈ CRingOps → 𝐾 ∈ RingOps) | |
| 8 | eqcom 2738 | . . . . . . . 8 ⊢ ((GId‘𝐻) = 𝑍 ↔ 𝑍 = (GId‘𝐻)) | |
| 9 | 1, 2, 3, 4, 5 | 0rngo 38066 | . . . . . . . 8 ⊢ (𝐾 ∈ RingOps → (𝑍 = (GId‘𝐻) ↔ 𝑋 = {𝑍})) |
| 10 | 8, 9 | bitrid 283 | . . . . . . 7 ⊢ (𝐾 ∈ RingOps → ((GId‘𝐻) = 𝑍 ↔ 𝑋 = {𝑍})) |
| 11 | 7, 10 | syl 17 | . . . . . 6 ⊢ (𝐾 ∈ CRingOps → ((GId‘𝐻) = 𝑍 ↔ 𝑋 = {𝑍})) |
| 12 | 11 | necon3bid 2972 | . . . . 5 ⊢ (𝐾 ∈ CRingOps → ((GId‘𝐻) ≠ 𝑍 ↔ 𝑋 ≠ {𝑍})) |
| 13 | 12 | anbi1d 631 | . . . 4 ⊢ (𝐾 ∈ CRingOps → (((GId‘𝐻) ≠ 𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) ↔ (𝑋 ≠ {𝑍} ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}))) |
| 14 | 13 | pm5.32i 574 | . . 3 ⊢ ((𝐾 ∈ CRingOps ∧ ((GId‘𝐻) ≠ 𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋})) ↔ (𝐾 ∈ CRingOps ∧ (𝑋 ≠ {𝑍} ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}))) |
| 15 | 3anass 1094 | . . 3 ⊢ ((𝐾 ∈ CRingOps ∧ (GId‘𝐻) ≠ 𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) ↔ (𝐾 ∈ CRingOps ∧ ((GId‘𝐻) ≠ 𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}))) | |
| 16 | 3anass 1094 | . . 3 ⊢ ((𝐾 ∈ CRingOps ∧ 𝑋 ≠ {𝑍} ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) ↔ (𝐾 ∈ CRingOps ∧ (𝑋 ≠ {𝑍} ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}))) | |
| 17 | 14, 15, 16 | 3bitr4i 303 | . 2 ⊢ ((𝐾 ∈ CRingOps ∧ (GId‘𝐻) ≠ 𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) ↔ (𝐾 ∈ CRingOps ∧ 𝑋 ≠ {𝑍} ∧ (Idl‘𝐾) = {{𝑍}, 𝑋})) |
| 18 | 6, 17 | bitri 275 | 1 ⊢ (𝐾 ∈ Fld ↔ (𝐾 ∈ CRingOps ∧ 𝑋 ≠ {𝑍} ∧ (Idl‘𝐾) = {{𝑍}, 𝑋})) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 {csn 4576 {cpr 4578 ran crn 5617 ‘cfv 6481 1st c1st 7919 2nd c2nd 7920 GIdcgi 30465 RingOpscrngo 37933 Fldcfld 38030 CRingOpsccring 38032 Idlcidl 38046 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-1o 8385 df-en 8870 df-grpo 30468 df-gid 30469 df-ginv 30470 df-ablo 30520 df-ass 37882 df-exid 37884 df-mgmOLD 37888 df-sgrOLD 37900 df-mndo 37906 df-rngo 37934 df-drngo 37988 df-com2 38029 df-fld 38031 df-crngo 38033 df-idl 38049 df-igen 38099 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |