![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isfldidl2 | Structured version Visualization version GIF version |
Description: Determine if a ring is a field based on its ideals. (Contributed by Jeff Madsen, 6-Jan-2011.) |
Ref | Expression |
---|---|
isfldidl2.1 | ⊢ 𝐺 = (1st ‘𝐾) |
isfldidl2.2 | ⊢ 𝐻 = (2nd ‘𝐾) |
isfldidl2.3 | ⊢ 𝑋 = ran 𝐺 |
isfldidl2.4 | ⊢ 𝑍 = (GId‘𝐺) |
Ref | Expression |
---|---|
isfldidl2 | ⊢ (𝐾 ∈ Fld ↔ (𝐾 ∈ CRingOps ∧ 𝑋 ≠ {𝑍} ∧ (Idl‘𝐾) = {{𝑍}, 𝑋})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfldidl2.1 | . . 3 ⊢ 𝐺 = (1st ‘𝐾) | |
2 | isfldidl2.2 | . . 3 ⊢ 𝐻 = (2nd ‘𝐾) | |
3 | isfldidl2.3 | . . 3 ⊢ 𝑋 = ran 𝐺 | |
4 | isfldidl2.4 | . . 3 ⊢ 𝑍 = (GId‘𝐺) | |
5 | eqid 2731 | . . 3 ⊢ (GId‘𝐻) = (GId‘𝐻) | |
6 | 1, 2, 3, 4, 5 | isfldidl 37240 | . 2 ⊢ (𝐾 ∈ Fld ↔ (𝐾 ∈ CRingOps ∧ (GId‘𝐻) ≠ 𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋})) |
7 | crngorngo 37172 | . . . . . . 7 ⊢ (𝐾 ∈ CRingOps → 𝐾 ∈ RingOps) | |
8 | eqcom 2738 | . . . . . . . 8 ⊢ ((GId‘𝐻) = 𝑍 ↔ 𝑍 = (GId‘𝐻)) | |
9 | 1, 2, 3, 4, 5 | 0rngo 37199 | . . . . . . . 8 ⊢ (𝐾 ∈ RingOps → (𝑍 = (GId‘𝐻) ↔ 𝑋 = {𝑍})) |
10 | 8, 9 | bitrid 282 | . . . . . . 7 ⊢ (𝐾 ∈ RingOps → ((GId‘𝐻) = 𝑍 ↔ 𝑋 = {𝑍})) |
11 | 7, 10 | syl 17 | . . . . . 6 ⊢ (𝐾 ∈ CRingOps → ((GId‘𝐻) = 𝑍 ↔ 𝑋 = {𝑍})) |
12 | 11 | necon3bid 2984 | . . . . 5 ⊢ (𝐾 ∈ CRingOps → ((GId‘𝐻) ≠ 𝑍 ↔ 𝑋 ≠ {𝑍})) |
13 | 12 | anbi1d 629 | . . . 4 ⊢ (𝐾 ∈ CRingOps → (((GId‘𝐻) ≠ 𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) ↔ (𝑋 ≠ {𝑍} ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}))) |
14 | 13 | pm5.32i 574 | . . 3 ⊢ ((𝐾 ∈ CRingOps ∧ ((GId‘𝐻) ≠ 𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋})) ↔ (𝐾 ∈ CRingOps ∧ (𝑋 ≠ {𝑍} ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}))) |
15 | 3anass 1094 | . . 3 ⊢ ((𝐾 ∈ CRingOps ∧ (GId‘𝐻) ≠ 𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) ↔ (𝐾 ∈ CRingOps ∧ ((GId‘𝐻) ≠ 𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}))) | |
16 | 3anass 1094 | . . 3 ⊢ ((𝐾 ∈ CRingOps ∧ 𝑋 ≠ {𝑍} ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) ↔ (𝐾 ∈ CRingOps ∧ (𝑋 ≠ {𝑍} ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}))) | |
17 | 14, 15, 16 | 3bitr4i 302 | . 2 ⊢ ((𝐾 ∈ CRingOps ∧ (GId‘𝐻) ≠ 𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) ↔ (𝐾 ∈ CRingOps ∧ 𝑋 ≠ {𝑍} ∧ (Idl‘𝐾) = {{𝑍}, 𝑋})) |
18 | 6, 17 | bitri 274 | 1 ⊢ (𝐾 ∈ Fld ↔ (𝐾 ∈ CRingOps ∧ 𝑋 ≠ {𝑍} ∧ (Idl‘𝐾) = {{𝑍}, 𝑋})) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ≠ wne 2939 {csn 4629 {cpr 4631 ran crn 5678 ‘cfv 6544 1st c1st 7976 2nd c2nd 7977 GIdcgi 30007 RingOpscrngo 37066 Fldcfld 37163 CRingOpsccring 37165 Idlcidl 37179 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7978 df-2nd 7979 df-1o 8469 df-en 8943 df-grpo 30010 df-gid 30011 df-ginv 30012 df-ablo 30062 df-ass 37015 df-exid 37017 df-mgmOLD 37021 df-sgrOLD 37033 df-mndo 37039 df-rngo 37067 df-drngo 37121 df-com2 37162 df-fld 37164 df-crngo 37166 df-idl 37182 df-igen 37232 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |