Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > crngocom | Structured version Visualization version GIF version |
Description: The multiplication operation of a commutative ring is commutative. (Contributed by Jeff Madsen, 8-Jun-2010.) |
Ref | Expression |
---|---|
crngocom.1 | ⊢ 𝐺 = (1st ‘𝑅) |
crngocom.2 | ⊢ 𝐻 = (2nd ‘𝑅) |
crngocom.3 | ⊢ 𝑋 = ran 𝐺 |
Ref | Expression |
---|---|
crngocom | ⊢ ((𝑅 ∈ CRingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐻𝐵) = (𝐵𝐻𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | crngocom.1 | . . . . 5 ⊢ 𝐺 = (1st ‘𝑅) | |
2 | crngocom.2 | . . . . 5 ⊢ 𝐻 = (2nd ‘𝑅) | |
3 | crngocom.3 | . . . . 5 ⊢ 𝑋 = ran 𝐺 | |
4 | 1, 2, 3 | iscrngo2 36203 | . . . 4 ⊢ (𝑅 ∈ CRingOps ↔ (𝑅 ∈ RingOps ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝐻𝑦) = (𝑦𝐻𝑥))) |
5 | 4 | simprbi 498 | . . 3 ⊢ (𝑅 ∈ CRingOps → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝐻𝑦) = (𝑦𝐻𝑥)) |
6 | oveq1 7314 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥𝐻𝑦) = (𝐴𝐻𝑦)) | |
7 | oveq2 7315 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑦𝐻𝑥) = (𝑦𝐻𝐴)) | |
8 | 6, 7 | eqeq12d 2752 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥𝐻𝑦) = (𝑦𝐻𝑥) ↔ (𝐴𝐻𝑦) = (𝑦𝐻𝐴))) |
9 | oveq2 7315 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝐴𝐻𝑦) = (𝐴𝐻𝐵)) | |
10 | oveq1 7314 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑦𝐻𝐴) = (𝐵𝐻𝐴)) | |
11 | 9, 10 | eqeq12d 2752 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝐴𝐻𝑦) = (𝑦𝐻𝐴) ↔ (𝐴𝐻𝐵) = (𝐵𝐻𝐴))) |
12 | 8, 11 | rspc2v 3575 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝐻𝑦) = (𝑦𝐻𝑥) → (𝐴𝐻𝐵) = (𝐵𝐻𝐴))) |
13 | 5, 12 | mpan9 508 | . 2 ⊢ ((𝑅 ∈ CRingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐻𝐵) = (𝐵𝐻𝐴)) |
14 | 13 | 3impb 1115 | 1 ⊢ ((𝑅 ∈ CRingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐻𝐵) = (𝐵𝐻𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 = wceq 1539 ∈ wcel 2104 ∀wral 3062 ran crn 5601 ‘cfv 6458 (class class class)co 7307 1st c1st 7861 2nd c2nd 7862 RingOpscrngo 36100 CRingOpsccring 36199 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3306 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-iota 6410 df-fun 6460 df-fv 6466 df-ov 7310 df-1st 7863 df-2nd 7864 df-rngo 36101 df-com2 36196 df-crngo 36200 |
This theorem is referenced by: crngm23 36208 crngohomfo 36212 isidlc 36221 dmncan2 36283 |
Copyright terms: Public domain | W3C validator |