Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  crngocom Structured version   Visualization version   GIF version

Theorem crngocom 37995
Description: The multiplication operation of a commutative ring is commutative. (Contributed by Jeff Madsen, 8-Jun-2010.)
Hypotheses
Ref Expression
crngocom.1 𝐺 = (1st𝑅)
crngocom.2 𝐻 = (2nd𝑅)
crngocom.3 𝑋 = ran 𝐺
Assertion
Ref Expression
crngocom ((𝑅 ∈ CRingOps ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐻𝐵) = (𝐵𝐻𝐴))

Proof of Theorem crngocom
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 crngocom.1 . . . . 5 𝐺 = (1st𝑅)
2 crngocom.2 . . . . 5 𝐻 = (2nd𝑅)
3 crngocom.3 . . . . 5 𝑋 = ran 𝐺
41, 2, 3iscrngo2 37991 . . . 4 (𝑅 ∈ CRingOps ↔ (𝑅 ∈ RingOps ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝐻𝑦) = (𝑦𝐻𝑥)))
54simprbi 496 . . 3 (𝑅 ∈ CRingOps → ∀𝑥𝑋𝑦𝑋 (𝑥𝐻𝑦) = (𝑦𝐻𝑥))
6 oveq1 7394 . . . . 5 (𝑥 = 𝐴 → (𝑥𝐻𝑦) = (𝐴𝐻𝑦))
7 oveq2 7395 . . . . 5 (𝑥 = 𝐴 → (𝑦𝐻𝑥) = (𝑦𝐻𝐴))
86, 7eqeq12d 2745 . . . 4 (𝑥 = 𝐴 → ((𝑥𝐻𝑦) = (𝑦𝐻𝑥) ↔ (𝐴𝐻𝑦) = (𝑦𝐻𝐴)))
9 oveq2 7395 . . . . 5 (𝑦 = 𝐵 → (𝐴𝐻𝑦) = (𝐴𝐻𝐵))
10 oveq1 7394 . . . . 5 (𝑦 = 𝐵 → (𝑦𝐻𝐴) = (𝐵𝐻𝐴))
119, 10eqeq12d 2745 . . . 4 (𝑦 = 𝐵 → ((𝐴𝐻𝑦) = (𝑦𝐻𝐴) ↔ (𝐴𝐻𝐵) = (𝐵𝐻𝐴)))
128, 11rspc2v 3599 . . 3 ((𝐴𝑋𝐵𝑋) → (∀𝑥𝑋𝑦𝑋 (𝑥𝐻𝑦) = (𝑦𝐻𝑥) → (𝐴𝐻𝐵) = (𝐵𝐻𝐴)))
135, 12mpan9 506 . 2 ((𝑅 ∈ CRingOps ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝐻𝐵) = (𝐵𝐻𝐴))
14133impb 1114 1 ((𝑅 ∈ CRingOps ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐻𝐵) = (𝐵𝐻𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  ran crn 5639  cfv 6511  (class class class)co 7387  1st c1st 7966  2nd c2nd 7967  RingOpscrngo 37888  CRingOpsccring 37987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-1st 7968  df-2nd 7969  df-rngo 37889  df-com2 37984  df-crngo 37988
This theorem is referenced by:  crngm23  37996  crngohomfo  38000  isidlc  38009  dmncan2  38071
  Copyright terms: Public domain W3C validator