![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > crngocom | Structured version Visualization version GIF version |
Description: The multiplication operation of a commutative ring is commutative. (Contributed by Jeff Madsen, 8-Jun-2010.) |
Ref | Expression |
---|---|
crngocom.1 | ⊢ 𝐺 = (1st ‘𝑅) |
crngocom.2 | ⊢ 𝐻 = (2nd ‘𝑅) |
crngocom.3 | ⊢ 𝑋 = ran 𝐺 |
Ref | Expression |
---|---|
crngocom | ⊢ ((𝑅 ∈ CRingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐻𝐵) = (𝐵𝐻𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | crngocom.1 | . . . . 5 ⊢ 𝐺 = (1st ‘𝑅) | |
2 | crngocom.2 | . . . . 5 ⊢ 𝐻 = (2nd ‘𝑅) | |
3 | crngocom.3 | . . . . 5 ⊢ 𝑋 = ran 𝐺 | |
4 | 1, 2, 3 | iscrngo2 37329 | . . . 4 ⊢ (𝑅 ∈ CRingOps ↔ (𝑅 ∈ RingOps ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝐻𝑦) = (𝑦𝐻𝑥))) |
5 | 4 | simprbi 496 | . . 3 ⊢ (𝑅 ∈ CRingOps → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝐻𝑦) = (𝑦𝐻𝑥)) |
6 | oveq1 7419 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥𝐻𝑦) = (𝐴𝐻𝑦)) | |
7 | oveq2 7420 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑦𝐻𝑥) = (𝑦𝐻𝐴)) | |
8 | 6, 7 | eqeq12d 2747 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥𝐻𝑦) = (𝑦𝐻𝑥) ↔ (𝐴𝐻𝑦) = (𝑦𝐻𝐴))) |
9 | oveq2 7420 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝐴𝐻𝑦) = (𝐴𝐻𝐵)) | |
10 | oveq1 7419 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑦𝐻𝐴) = (𝐵𝐻𝐴)) | |
11 | 9, 10 | eqeq12d 2747 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝐴𝐻𝑦) = (𝑦𝐻𝐴) ↔ (𝐴𝐻𝐵) = (𝐵𝐻𝐴))) |
12 | 8, 11 | rspc2v 3622 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝐻𝑦) = (𝑦𝐻𝑥) → (𝐴𝐻𝐵) = (𝐵𝐻𝐴))) |
13 | 5, 12 | mpan9 506 | . 2 ⊢ ((𝑅 ∈ CRingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐻𝐵) = (𝐵𝐻𝐴)) |
14 | 13 | 3impb 1114 | 1 ⊢ ((𝑅 ∈ CRingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐻𝐵) = (𝐵𝐻𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ∀wral 3060 ran crn 5677 ‘cfv 6543 (class class class)co 7412 1st c1st 7977 2nd c2nd 7978 RingOpscrngo 37226 CRingOpsccring 37325 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7415 df-1st 7979 df-2nd 7980 df-rngo 37227 df-com2 37322 df-crngo 37326 |
This theorem is referenced by: crngm23 37334 crngohomfo 37338 isidlc 37347 dmncan2 37409 |
Copyright terms: Public domain | W3C validator |