![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > crngocom | Structured version Visualization version GIF version |
Description: The multiplication operation of a commutative ring is commutative. (Contributed by Jeff Madsen, 8-Jun-2010.) |
Ref | Expression |
---|---|
crngocom.1 | ⊢ 𝐺 = (1st ‘𝑅) |
crngocom.2 | ⊢ 𝐻 = (2nd ‘𝑅) |
crngocom.3 | ⊢ 𝑋 = ran 𝐺 |
Ref | Expression |
---|---|
crngocom | ⊢ ((𝑅 ∈ CRingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐻𝐵) = (𝐵𝐻𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | crngocom.1 | . . . . 5 ⊢ 𝐺 = (1st ‘𝑅) | |
2 | crngocom.2 | . . . . 5 ⊢ 𝐻 = (2nd ‘𝑅) | |
3 | crngocom.3 | . . . . 5 ⊢ 𝑋 = ran 𝐺 | |
4 | 1, 2, 3 | iscrngo2 34275 | . . . 4 ⊢ (𝑅 ∈ CRingOps ↔ (𝑅 ∈ RingOps ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝐻𝑦) = (𝑦𝐻𝑥))) |
5 | 4 | simprbi 491 | . . 3 ⊢ (𝑅 ∈ CRingOps → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝐻𝑦) = (𝑦𝐻𝑥)) |
6 | oveq1 6883 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥𝐻𝑦) = (𝐴𝐻𝑦)) | |
7 | oveq2 6884 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑦𝐻𝑥) = (𝑦𝐻𝐴)) | |
8 | 6, 7 | eqeq12d 2812 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥𝐻𝑦) = (𝑦𝐻𝑥) ↔ (𝐴𝐻𝑦) = (𝑦𝐻𝐴))) |
9 | oveq2 6884 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝐴𝐻𝑦) = (𝐴𝐻𝐵)) | |
10 | oveq1 6883 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑦𝐻𝐴) = (𝐵𝐻𝐴)) | |
11 | 9, 10 | eqeq12d 2812 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝐴𝐻𝑦) = (𝑦𝐻𝐴) ↔ (𝐴𝐻𝐵) = (𝐵𝐻𝐴))) |
12 | 8, 11 | rspc2v 3508 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝐻𝑦) = (𝑦𝐻𝑥) → (𝐴𝐻𝐵) = (𝐵𝐻𝐴))) |
13 | 5, 12 | mpan9 503 | . 2 ⊢ ((𝑅 ∈ CRingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐻𝐵) = (𝐵𝐻𝐴)) |
14 | 13 | 3impb 1144 | 1 ⊢ ((𝑅 ∈ CRingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐻𝐵) = (𝐵𝐻𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 ∀wral 3087 ran crn 5311 ‘cfv 6099 (class class class)co 6876 1st c1st 7397 2nd c2nd 7398 RingOpscrngo 34172 CRingOpsccring 34271 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ral 3092 df-rex 3093 df-rab 3096 df-v 3385 df-sbc 3632 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-nul 4114 df-if 4276 df-sn 4367 df-pr 4369 df-op 4373 df-uni 4627 df-br 4842 df-opab 4904 df-mpt 4921 df-id 5218 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-iota 6062 df-fun 6101 df-fv 6107 df-ov 6879 df-1st 7399 df-2nd 7400 df-rngo 34173 df-com2 34268 df-crngo 34272 |
This theorem is referenced by: crngm23 34280 crngohomfo 34284 isidlc 34293 dmncan2 34355 |
Copyright terms: Public domain | W3C validator |