Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  crngocom Structured version   Visualization version   GIF version

Theorem crngocom 37172
Description: The multiplication operation of a commutative ring is commutative. (Contributed by Jeff Madsen, 8-Jun-2010.)
Hypotheses
Ref Expression
crngocom.1 𝐺 = (1st𝑅)
crngocom.2 𝐻 = (2nd𝑅)
crngocom.3 𝑋 = ran 𝐺
Assertion
Ref Expression
crngocom ((𝑅 ∈ CRingOps ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐻𝐵) = (𝐵𝐻𝐴))

Proof of Theorem crngocom
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 crngocom.1 . . . . 5 𝐺 = (1st𝑅)
2 crngocom.2 . . . . 5 𝐻 = (2nd𝑅)
3 crngocom.3 . . . . 5 𝑋 = ran 𝐺
41, 2, 3iscrngo2 37168 . . . 4 (𝑅 ∈ CRingOps ↔ (𝑅 ∈ RingOps ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝐻𝑦) = (𝑦𝐻𝑥)))
54simprbi 495 . . 3 (𝑅 ∈ CRingOps → ∀𝑥𝑋𝑦𝑋 (𝑥𝐻𝑦) = (𝑦𝐻𝑥))
6 oveq1 7418 . . . . 5 (𝑥 = 𝐴 → (𝑥𝐻𝑦) = (𝐴𝐻𝑦))
7 oveq2 7419 . . . . 5 (𝑥 = 𝐴 → (𝑦𝐻𝑥) = (𝑦𝐻𝐴))
86, 7eqeq12d 2746 . . . 4 (𝑥 = 𝐴 → ((𝑥𝐻𝑦) = (𝑦𝐻𝑥) ↔ (𝐴𝐻𝑦) = (𝑦𝐻𝐴)))
9 oveq2 7419 . . . . 5 (𝑦 = 𝐵 → (𝐴𝐻𝑦) = (𝐴𝐻𝐵))
10 oveq1 7418 . . . . 5 (𝑦 = 𝐵 → (𝑦𝐻𝐴) = (𝐵𝐻𝐴))
119, 10eqeq12d 2746 . . . 4 (𝑦 = 𝐵 → ((𝐴𝐻𝑦) = (𝑦𝐻𝐴) ↔ (𝐴𝐻𝐵) = (𝐵𝐻𝐴)))
128, 11rspc2v 3621 . . 3 ((𝐴𝑋𝐵𝑋) → (∀𝑥𝑋𝑦𝑋 (𝑥𝐻𝑦) = (𝑦𝐻𝑥) → (𝐴𝐻𝐵) = (𝐵𝐻𝐴)))
135, 12mpan9 505 . 2 ((𝑅 ∈ CRingOps ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝐻𝐵) = (𝐵𝐻𝐴))
14133impb 1113 1 ((𝑅 ∈ CRingOps ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐻𝐵) = (𝐵𝐻𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1085   = wceq 1539  wcel 2104  wral 3059  ran crn 5676  cfv 6542  (class class class)co 7411  1st c1st 7975  2nd c2nd 7976  RingOpscrngo 37065  CRingOpsccring 37164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-iota 6494  df-fun 6544  df-fv 6550  df-ov 7414  df-1st 7977  df-2nd 7978  df-rngo 37066  df-com2 37161  df-crngo 37165
This theorem is referenced by:  crngm23  37173  crngohomfo  37177  isidlc  37186  dmncan2  37248
  Copyright terms: Public domain W3C validator