| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > crngocom | Structured version Visualization version GIF version | ||
| Description: The multiplication operation of a commutative ring is commutative. (Contributed by Jeff Madsen, 8-Jun-2010.) |
| Ref | Expression |
|---|---|
| crngocom.1 | ⊢ 𝐺 = (1st ‘𝑅) |
| crngocom.2 | ⊢ 𝐻 = (2nd ‘𝑅) |
| crngocom.3 | ⊢ 𝑋 = ran 𝐺 |
| Ref | Expression |
|---|---|
| crngocom | ⊢ ((𝑅 ∈ CRingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐻𝐵) = (𝐵𝐻𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crngocom.1 | . . . . 5 ⊢ 𝐺 = (1st ‘𝑅) | |
| 2 | crngocom.2 | . . . . 5 ⊢ 𝐻 = (2nd ‘𝑅) | |
| 3 | crngocom.3 | . . . . 5 ⊢ 𝑋 = ran 𝐺 | |
| 4 | 1, 2, 3 | iscrngo2 37967 | . . . 4 ⊢ (𝑅 ∈ CRingOps ↔ (𝑅 ∈ RingOps ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝐻𝑦) = (𝑦𝐻𝑥))) |
| 5 | 4 | simprbi 496 | . . 3 ⊢ (𝑅 ∈ CRingOps → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝐻𝑦) = (𝑦𝐻𝑥)) |
| 6 | oveq1 7410 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥𝐻𝑦) = (𝐴𝐻𝑦)) | |
| 7 | oveq2 7411 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑦𝐻𝑥) = (𝑦𝐻𝐴)) | |
| 8 | 6, 7 | eqeq12d 2751 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥𝐻𝑦) = (𝑦𝐻𝑥) ↔ (𝐴𝐻𝑦) = (𝑦𝐻𝐴))) |
| 9 | oveq2 7411 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝐴𝐻𝑦) = (𝐴𝐻𝐵)) | |
| 10 | oveq1 7410 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑦𝐻𝐴) = (𝐵𝐻𝐴)) | |
| 11 | 9, 10 | eqeq12d 2751 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝐴𝐻𝑦) = (𝑦𝐻𝐴) ↔ (𝐴𝐻𝐵) = (𝐵𝐻𝐴))) |
| 12 | 8, 11 | rspc2v 3612 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝐻𝑦) = (𝑦𝐻𝑥) → (𝐴𝐻𝐵) = (𝐵𝐻𝐴))) |
| 13 | 5, 12 | mpan9 506 | . 2 ⊢ ((𝑅 ∈ CRingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐻𝐵) = (𝐵𝐻𝐴)) |
| 14 | 13 | 3impb 1114 | 1 ⊢ ((𝑅 ∈ CRingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐻𝐵) = (𝐵𝐻𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ran crn 5655 ‘cfv 6530 (class class class)co 7403 1st c1st 7984 2nd c2nd 7985 RingOpscrngo 37864 CRingOpsccring 37963 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-iota 6483 df-fun 6532 df-fv 6538 df-ov 7406 df-1st 7986 df-2nd 7987 df-rngo 37865 df-com2 37960 df-crngo 37964 |
| This theorem is referenced by: crngm23 37972 crngohomfo 37976 isidlc 37985 dmncan2 38047 |
| Copyright terms: Public domain | W3C validator |