Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  crngocom Structured version   Visualization version   GIF version

Theorem crngocom 35805
Description: The multiplication operation of a commutative ring is commutative. (Contributed by Jeff Madsen, 8-Jun-2010.)
Hypotheses
Ref Expression
crngocom.1 𝐺 = (1st𝑅)
crngocom.2 𝐻 = (2nd𝑅)
crngocom.3 𝑋 = ran 𝐺
Assertion
Ref Expression
crngocom ((𝑅 ∈ CRingOps ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐻𝐵) = (𝐵𝐻𝐴))

Proof of Theorem crngocom
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 crngocom.1 . . . . 5 𝐺 = (1st𝑅)
2 crngocom.2 . . . . 5 𝐻 = (2nd𝑅)
3 crngocom.3 . . . . 5 𝑋 = ran 𝐺
41, 2, 3iscrngo2 35801 . . . 4 (𝑅 ∈ CRingOps ↔ (𝑅 ∈ RingOps ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝐻𝑦) = (𝑦𝐻𝑥)))
54simprbi 500 . . 3 (𝑅 ∈ CRingOps → ∀𝑥𝑋𝑦𝑋 (𝑥𝐻𝑦) = (𝑦𝐻𝑥))
6 oveq1 7180 . . . . 5 (𝑥 = 𝐴 → (𝑥𝐻𝑦) = (𝐴𝐻𝑦))
7 oveq2 7181 . . . . 5 (𝑥 = 𝐴 → (𝑦𝐻𝑥) = (𝑦𝐻𝐴))
86, 7eqeq12d 2755 . . . 4 (𝑥 = 𝐴 → ((𝑥𝐻𝑦) = (𝑦𝐻𝑥) ↔ (𝐴𝐻𝑦) = (𝑦𝐻𝐴)))
9 oveq2 7181 . . . . 5 (𝑦 = 𝐵 → (𝐴𝐻𝑦) = (𝐴𝐻𝐵))
10 oveq1 7180 . . . . 5 (𝑦 = 𝐵 → (𝑦𝐻𝐴) = (𝐵𝐻𝐴))
119, 10eqeq12d 2755 . . . 4 (𝑦 = 𝐵 → ((𝐴𝐻𝑦) = (𝑦𝐻𝐴) ↔ (𝐴𝐻𝐵) = (𝐵𝐻𝐴)))
128, 11rspc2v 3537 . . 3 ((𝐴𝑋𝐵𝑋) → (∀𝑥𝑋𝑦𝑋 (𝑥𝐻𝑦) = (𝑦𝐻𝑥) → (𝐴𝐻𝐵) = (𝐵𝐻𝐴)))
135, 12mpan9 510 . 2 ((𝑅 ∈ CRingOps ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝐻𝐵) = (𝐵𝐻𝐴))
14133impb 1116 1 ((𝑅 ∈ CRingOps ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐻𝐵) = (𝐵𝐻𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1088   = wceq 1542  wcel 2114  wral 3054  ran crn 5527  cfv 6340  (class class class)co 7173  1st c1st 7715  2nd c2nd 7716  RingOpscrngo 35698  CRingOpsccring 35797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-sep 5168  ax-nul 5175  ax-pr 5297  ax-un 7482
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-ral 3059  df-rex 3060  df-rab 3063  df-v 3401  df-sbc 3682  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-nul 4213  df-if 4416  df-sn 4518  df-pr 4520  df-op 4524  df-uni 4798  df-br 5032  df-opab 5094  df-mpt 5112  df-id 5430  df-xp 5532  df-rel 5533  df-cnv 5534  df-co 5535  df-dm 5536  df-rn 5537  df-iota 6298  df-fun 6342  df-fv 6348  df-ov 7176  df-1st 7717  df-2nd 7718  df-rngo 35699  df-com2 35794  df-crngo 35798
This theorem is referenced by:  crngm23  35806  crngohomfo  35810  isidlc  35819  dmncan2  35881
  Copyright terms: Public domain W3C validator