Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  crngocom Structured version   Visualization version   GIF version

Theorem crngocom 36869
Description: The multiplication operation of a commutative ring is commutative. (Contributed by Jeff Madsen, 8-Jun-2010.)
Hypotheses
Ref Expression
crngocom.1 𝐺 = (1st𝑅)
crngocom.2 𝐻 = (2nd𝑅)
crngocom.3 𝑋 = ran 𝐺
Assertion
Ref Expression
crngocom ((𝑅 ∈ CRingOps ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐻𝐵) = (𝐵𝐻𝐴))

Proof of Theorem crngocom
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 crngocom.1 . . . . 5 𝐺 = (1st𝑅)
2 crngocom.2 . . . . 5 𝐻 = (2nd𝑅)
3 crngocom.3 . . . . 5 𝑋 = ran 𝐺
41, 2, 3iscrngo2 36865 . . . 4 (𝑅 ∈ CRingOps ↔ (𝑅 ∈ RingOps ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝐻𝑦) = (𝑦𝐻𝑥)))
54simprbi 498 . . 3 (𝑅 ∈ CRingOps → ∀𝑥𝑋𝑦𝑋 (𝑥𝐻𝑦) = (𝑦𝐻𝑥))
6 oveq1 7416 . . . . 5 (𝑥 = 𝐴 → (𝑥𝐻𝑦) = (𝐴𝐻𝑦))
7 oveq2 7417 . . . . 5 (𝑥 = 𝐴 → (𝑦𝐻𝑥) = (𝑦𝐻𝐴))
86, 7eqeq12d 2749 . . . 4 (𝑥 = 𝐴 → ((𝑥𝐻𝑦) = (𝑦𝐻𝑥) ↔ (𝐴𝐻𝑦) = (𝑦𝐻𝐴)))
9 oveq2 7417 . . . . 5 (𝑦 = 𝐵 → (𝐴𝐻𝑦) = (𝐴𝐻𝐵))
10 oveq1 7416 . . . . 5 (𝑦 = 𝐵 → (𝑦𝐻𝐴) = (𝐵𝐻𝐴))
119, 10eqeq12d 2749 . . . 4 (𝑦 = 𝐵 → ((𝐴𝐻𝑦) = (𝑦𝐻𝐴) ↔ (𝐴𝐻𝐵) = (𝐵𝐻𝐴)))
128, 11rspc2v 3623 . . 3 ((𝐴𝑋𝐵𝑋) → (∀𝑥𝑋𝑦𝑋 (𝑥𝐻𝑦) = (𝑦𝐻𝑥) → (𝐴𝐻𝐵) = (𝐵𝐻𝐴)))
135, 12mpan9 508 . 2 ((𝑅 ∈ CRingOps ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝐻𝐵) = (𝐵𝐻𝐴))
14133impb 1116 1 ((𝑅 ∈ CRingOps ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐻𝐵) = (𝐵𝐻𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  wral 3062  ran crn 5678  cfv 6544  (class class class)co 7409  1st c1st 7973  2nd c2nd 7974  RingOpscrngo 36762  CRingOpsccring 36861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-iota 6496  df-fun 6546  df-fv 6552  df-ov 7412  df-1st 7975  df-2nd 7976  df-rngo 36763  df-com2 36858  df-crngo 36862
This theorem is referenced by:  crngm23  36870  crngohomfo  36874  isidlc  36883  dmncan2  36945
  Copyright terms: Public domain W3C validator