| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > crngocom | Structured version Visualization version GIF version | ||
| Description: The multiplication operation of a commutative ring is commutative. (Contributed by Jeff Madsen, 8-Jun-2010.) |
| Ref | Expression |
|---|---|
| crngocom.1 | ⊢ 𝐺 = (1st ‘𝑅) |
| crngocom.2 | ⊢ 𝐻 = (2nd ‘𝑅) |
| crngocom.3 | ⊢ 𝑋 = ran 𝐺 |
| Ref | Expression |
|---|---|
| crngocom | ⊢ ((𝑅 ∈ CRingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐻𝐵) = (𝐵𝐻𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crngocom.1 | . . . . 5 ⊢ 𝐺 = (1st ‘𝑅) | |
| 2 | crngocom.2 | . . . . 5 ⊢ 𝐻 = (2nd ‘𝑅) | |
| 3 | crngocom.3 | . . . . 5 ⊢ 𝑋 = ran 𝐺 | |
| 4 | 1, 2, 3 | iscrngo2 37998 | . . . 4 ⊢ (𝑅 ∈ CRingOps ↔ (𝑅 ∈ RingOps ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝐻𝑦) = (𝑦𝐻𝑥))) |
| 5 | 4 | simprbi 496 | . . 3 ⊢ (𝑅 ∈ CRingOps → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝐻𝑦) = (𝑦𝐻𝑥)) |
| 6 | oveq1 7397 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥𝐻𝑦) = (𝐴𝐻𝑦)) | |
| 7 | oveq2 7398 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑦𝐻𝑥) = (𝑦𝐻𝐴)) | |
| 8 | 6, 7 | eqeq12d 2746 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥𝐻𝑦) = (𝑦𝐻𝑥) ↔ (𝐴𝐻𝑦) = (𝑦𝐻𝐴))) |
| 9 | oveq2 7398 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝐴𝐻𝑦) = (𝐴𝐻𝐵)) | |
| 10 | oveq1 7397 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑦𝐻𝐴) = (𝐵𝐻𝐴)) | |
| 11 | 9, 10 | eqeq12d 2746 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝐴𝐻𝑦) = (𝑦𝐻𝐴) ↔ (𝐴𝐻𝐵) = (𝐵𝐻𝐴))) |
| 12 | 8, 11 | rspc2v 3602 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝐻𝑦) = (𝑦𝐻𝑥) → (𝐴𝐻𝐵) = (𝐵𝐻𝐴))) |
| 13 | 5, 12 | mpan9 506 | . 2 ⊢ ((𝑅 ∈ CRingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐻𝐵) = (𝐵𝐻𝐴)) |
| 14 | 13 | 3impb 1114 | 1 ⊢ ((𝑅 ∈ CRingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐻𝐵) = (𝐵𝐻𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ran crn 5642 ‘cfv 6514 (class class class)co 7390 1st c1st 7969 2nd c2nd 7970 RingOpscrngo 37895 CRingOpsccring 37994 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-1st 7971 df-2nd 7972 df-rngo 37896 df-com2 37991 df-crngo 37995 |
| This theorem is referenced by: crngm23 38003 crngohomfo 38007 isidlc 38016 dmncan2 38078 |
| Copyright terms: Public domain | W3C validator |