Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  crngocom Structured version   Visualization version   GIF version

Theorem crngocom 37971
Description: The multiplication operation of a commutative ring is commutative. (Contributed by Jeff Madsen, 8-Jun-2010.)
Hypotheses
Ref Expression
crngocom.1 𝐺 = (1st𝑅)
crngocom.2 𝐻 = (2nd𝑅)
crngocom.3 𝑋 = ran 𝐺
Assertion
Ref Expression
crngocom ((𝑅 ∈ CRingOps ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐻𝐵) = (𝐵𝐻𝐴))

Proof of Theorem crngocom
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 crngocom.1 . . . . 5 𝐺 = (1st𝑅)
2 crngocom.2 . . . . 5 𝐻 = (2nd𝑅)
3 crngocom.3 . . . . 5 𝑋 = ran 𝐺
41, 2, 3iscrngo2 37967 . . . 4 (𝑅 ∈ CRingOps ↔ (𝑅 ∈ RingOps ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝐻𝑦) = (𝑦𝐻𝑥)))
54simprbi 496 . . 3 (𝑅 ∈ CRingOps → ∀𝑥𝑋𝑦𝑋 (𝑥𝐻𝑦) = (𝑦𝐻𝑥))
6 oveq1 7410 . . . . 5 (𝑥 = 𝐴 → (𝑥𝐻𝑦) = (𝐴𝐻𝑦))
7 oveq2 7411 . . . . 5 (𝑥 = 𝐴 → (𝑦𝐻𝑥) = (𝑦𝐻𝐴))
86, 7eqeq12d 2751 . . . 4 (𝑥 = 𝐴 → ((𝑥𝐻𝑦) = (𝑦𝐻𝑥) ↔ (𝐴𝐻𝑦) = (𝑦𝐻𝐴)))
9 oveq2 7411 . . . . 5 (𝑦 = 𝐵 → (𝐴𝐻𝑦) = (𝐴𝐻𝐵))
10 oveq1 7410 . . . . 5 (𝑦 = 𝐵 → (𝑦𝐻𝐴) = (𝐵𝐻𝐴))
119, 10eqeq12d 2751 . . . 4 (𝑦 = 𝐵 → ((𝐴𝐻𝑦) = (𝑦𝐻𝐴) ↔ (𝐴𝐻𝐵) = (𝐵𝐻𝐴)))
128, 11rspc2v 3612 . . 3 ((𝐴𝑋𝐵𝑋) → (∀𝑥𝑋𝑦𝑋 (𝑥𝐻𝑦) = (𝑦𝐻𝑥) → (𝐴𝐻𝐵) = (𝐵𝐻𝐴)))
135, 12mpan9 506 . 2 ((𝑅 ∈ CRingOps ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝐻𝐵) = (𝐵𝐻𝐴))
14133impb 1114 1 ((𝑅 ∈ CRingOps ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐻𝐵) = (𝐵𝐻𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051  ran crn 5655  cfv 6530  (class class class)co 7403  1st c1st 7984  2nd c2nd 7985  RingOpscrngo 37864  CRingOpsccring 37963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-iota 6483  df-fun 6532  df-fv 6538  df-ov 7406  df-1st 7986  df-2nd 7987  df-rngo 37865  df-com2 37960  df-crngo 37964
This theorem is referenced by:  crngm23  37972  crngohomfo  37976  isidlc  37985  dmncan2  38047
  Copyright terms: Public domain W3C validator