Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pridlc3 Structured version   Visualization version   GIF version

Theorem pridlc3 35968
Description: Property of a prime ideal in a commutative ring. (Contributed by Jeff Madsen, 17-Jun-2011.)
Hypotheses
Ref Expression
ispridlc.1 𝐺 = (1st𝑅)
ispridlc.2 𝐻 = (2nd𝑅)
ispridlc.3 𝑋 = ran 𝐺
Assertion
Ref Expression
pridlc3 (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋𝑃) ∧ 𝐵 ∈ (𝑋𝑃))) → (𝐴𝐻𝐵) ∈ (𝑋𝑃))

Proof of Theorem pridlc3
StepHypRef Expression
1 crngorngo 35895 . . . 4 (𝑅 ∈ CRingOps → 𝑅 ∈ RingOps)
2 eldifi 4041 . . . . 5 (𝐴 ∈ (𝑋𝑃) → 𝐴𝑋)
3 eldifi 4041 . . . . 5 (𝐵 ∈ (𝑋𝑃) → 𝐵𝑋)
42, 3anim12i 616 . . . 4 ((𝐴 ∈ (𝑋𝑃) ∧ 𝐵 ∈ (𝑋𝑃)) → (𝐴𝑋𝐵𝑋))
5 ispridlc.1 . . . . . 6 𝐺 = (1st𝑅)
6 ispridlc.2 . . . . . 6 𝐻 = (2nd𝑅)
7 ispridlc.3 . . . . . 6 𝑋 = ran 𝐺
85, 6, 7rngocl 35796 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐻𝐵) ∈ 𝑋)
983expb 1122 . . . 4 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝐻𝐵) ∈ 𝑋)
101, 4, 9syl2an 599 . . 3 ((𝑅 ∈ CRingOps ∧ (𝐴 ∈ (𝑋𝑃) ∧ 𝐵 ∈ (𝑋𝑃))) → (𝐴𝐻𝐵) ∈ 𝑋)
1110adantlr 715 . 2 (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋𝑃) ∧ 𝐵 ∈ (𝑋𝑃))) → (𝐴𝐻𝐵) ∈ 𝑋)
12 eldifn 4042 . . . 4 (𝐵 ∈ (𝑋𝑃) → ¬ 𝐵𝑃)
1312ad2antll 729 . . 3 (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋𝑃) ∧ 𝐵 ∈ (𝑋𝑃))) → ¬ 𝐵𝑃)
145, 6, 7pridlc2 35967 . . . . . . 7 (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋𝑃) ∧ 𝐵𝑋 ∧ (𝐴𝐻𝐵) ∈ 𝑃)) → 𝐵𝑃)
15143exp2 1356 . . . . . 6 ((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) → (𝐴 ∈ (𝑋𝑃) → (𝐵𝑋 → ((𝐴𝐻𝐵) ∈ 𝑃𝐵𝑃))))
1615imp32 422 . . . . 5 (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋𝑃) ∧ 𝐵𝑋)) → ((𝐴𝐻𝐵) ∈ 𝑃𝐵𝑃))
1716con3d 155 . . . 4 (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋𝑃) ∧ 𝐵𝑋)) → (¬ 𝐵𝑃 → ¬ (𝐴𝐻𝐵) ∈ 𝑃))
183, 17sylanr2 683 . . 3 (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋𝑃) ∧ 𝐵 ∈ (𝑋𝑃))) → (¬ 𝐵𝑃 → ¬ (𝐴𝐻𝐵) ∈ 𝑃))
1913, 18mpd 15 . 2 (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋𝑃) ∧ 𝐵 ∈ (𝑋𝑃))) → ¬ (𝐴𝐻𝐵) ∈ 𝑃)
2011, 19eldifd 3877 1 (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋𝑃) ∧ 𝐵 ∈ (𝑋𝑃))) → (𝐴𝐻𝐵) ∈ (𝑋𝑃))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1543  wcel 2110  cdif 3863  ran crn 5552  cfv 6380  (class class class)co 7213  1st c1st 7759  2nd c2nd 7760  RingOpscrngo 35789  CRingOpsccring 35888  PrIdlcpridl 35903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-1st 7761  df-2nd 7762  df-grpo 28574  df-gid 28575  df-ginv 28576  df-ablo 28626  df-ass 35738  df-exid 35740  df-mgmOLD 35744  df-sgrOLD 35756  df-mndo 35762  df-rngo 35790  df-com2 35885  df-crngo 35889  df-idl 35905  df-pridl 35906  df-igen 35955
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator