| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pridlc3 | Structured version Visualization version GIF version | ||
| Description: Property of a prime ideal in a commutative ring. (Contributed by Jeff Madsen, 17-Jun-2011.) |
| Ref | Expression |
|---|---|
| ispridlc.1 | ⊢ 𝐺 = (1st ‘𝑅) |
| ispridlc.2 | ⊢ 𝐻 = (2nd ‘𝑅) |
| ispridlc.3 | ⊢ 𝑋 = ran 𝐺 |
| Ref | Expression |
|---|---|
| pridlc3 | ⊢ (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋 ∖ 𝑃) ∧ 𝐵 ∈ (𝑋 ∖ 𝑃))) → (𝐴𝐻𝐵) ∈ (𝑋 ∖ 𝑃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crngorngo 37987 | . . . 4 ⊢ (𝑅 ∈ CRingOps → 𝑅 ∈ RingOps) | |
| 2 | eldifi 4090 | . . . . 5 ⊢ (𝐴 ∈ (𝑋 ∖ 𝑃) → 𝐴 ∈ 𝑋) | |
| 3 | eldifi 4090 | . . . . 5 ⊢ (𝐵 ∈ (𝑋 ∖ 𝑃) → 𝐵 ∈ 𝑋) | |
| 4 | 2, 3 | anim12i 613 | . . . 4 ⊢ ((𝐴 ∈ (𝑋 ∖ 𝑃) ∧ 𝐵 ∈ (𝑋 ∖ 𝑃)) → (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) |
| 5 | ispridlc.1 | . . . . . 6 ⊢ 𝐺 = (1st ‘𝑅) | |
| 6 | ispridlc.2 | . . . . . 6 ⊢ 𝐻 = (2nd ‘𝑅) | |
| 7 | ispridlc.3 | . . . . . 6 ⊢ 𝑋 = ran 𝐺 | |
| 8 | 5, 6, 7 | rngocl 37888 | . . . . 5 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐻𝐵) ∈ 𝑋) |
| 9 | 8 | 3expb 1120 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐻𝐵) ∈ 𝑋) |
| 10 | 1, 4, 9 | syl2an 596 | . . 3 ⊢ ((𝑅 ∈ CRingOps ∧ (𝐴 ∈ (𝑋 ∖ 𝑃) ∧ 𝐵 ∈ (𝑋 ∖ 𝑃))) → (𝐴𝐻𝐵) ∈ 𝑋) |
| 11 | 10 | adantlr 715 | . 2 ⊢ (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋 ∖ 𝑃) ∧ 𝐵 ∈ (𝑋 ∖ 𝑃))) → (𝐴𝐻𝐵) ∈ 𝑋) |
| 12 | eldifn 4091 | . . . 4 ⊢ (𝐵 ∈ (𝑋 ∖ 𝑃) → ¬ 𝐵 ∈ 𝑃) | |
| 13 | 12 | ad2antll 729 | . . 3 ⊢ (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋 ∖ 𝑃) ∧ 𝐵 ∈ (𝑋 ∖ 𝑃))) → ¬ 𝐵 ∈ 𝑃) |
| 14 | 5, 6, 7 | pridlc2 38059 | . . . . . . 7 ⊢ (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋 ∖ 𝑃) ∧ 𝐵 ∈ 𝑋 ∧ (𝐴𝐻𝐵) ∈ 𝑃)) → 𝐵 ∈ 𝑃) |
| 15 | 14 | 3exp2 1355 | . . . . . 6 ⊢ ((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) → (𝐴 ∈ (𝑋 ∖ 𝑃) → (𝐵 ∈ 𝑋 → ((𝐴𝐻𝐵) ∈ 𝑃 → 𝐵 ∈ 𝑃)))) |
| 16 | 15 | imp32 418 | . . . . 5 ⊢ (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋 ∖ 𝑃) ∧ 𝐵 ∈ 𝑋)) → ((𝐴𝐻𝐵) ∈ 𝑃 → 𝐵 ∈ 𝑃)) |
| 17 | 16 | con3d 152 | . . . 4 ⊢ (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋 ∖ 𝑃) ∧ 𝐵 ∈ 𝑋)) → (¬ 𝐵 ∈ 𝑃 → ¬ (𝐴𝐻𝐵) ∈ 𝑃)) |
| 18 | 3, 17 | sylanr2 683 | . . 3 ⊢ (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋 ∖ 𝑃) ∧ 𝐵 ∈ (𝑋 ∖ 𝑃))) → (¬ 𝐵 ∈ 𝑃 → ¬ (𝐴𝐻𝐵) ∈ 𝑃)) |
| 19 | 13, 18 | mpd 15 | . 2 ⊢ (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋 ∖ 𝑃) ∧ 𝐵 ∈ (𝑋 ∖ 𝑃))) → ¬ (𝐴𝐻𝐵) ∈ 𝑃) |
| 20 | 11, 19 | eldifd 3922 | 1 ⊢ (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋 ∖ 𝑃) ∧ 𝐵 ∈ (𝑋 ∖ 𝑃))) → (𝐴𝐻𝐵) ∈ (𝑋 ∖ 𝑃)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∖ cdif 3908 ran crn 5632 ‘cfv 6499 (class class class)co 7369 1st c1st 7945 2nd c2nd 7946 RingOpscrngo 37881 CRingOpsccring 37980 PrIdlcpridl 37995 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-grpo 30472 df-gid 30473 df-ginv 30474 df-ablo 30524 df-ass 37830 df-exid 37832 df-mgmOLD 37836 df-sgrOLD 37848 df-mndo 37854 df-rngo 37882 df-com2 37977 df-crngo 37981 df-idl 37997 df-pridl 37998 df-igen 38047 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |