Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pridlc3 Structured version   Visualization version   GIF version

Theorem pridlc3 38043
Description: Property of a prime ideal in a commutative ring. (Contributed by Jeff Madsen, 17-Jun-2011.)
Hypotheses
Ref Expression
ispridlc.1 𝐺 = (1st𝑅)
ispridlc.2 𝐻 = (2nd𝑅)
ispridlc.3 𝑋 = ran 𝐺
Assertion
Ref Expression
pridlc3 (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋𝑃) ∧ 𝐵 ∈ (𝑋𝑃))) → (𝐴𝐻𝐵) ∈ (𝑋𝑃))

Proof of Theorem pridlc3
StepHypRef Expression
1 crngorngo 37970 . . . 4 (𝑅 ∈ CRingOps → 𝑅 ∈ RingOps)
2 eldifi 4106 . . . . 5 (𝐴 ∈ (𝑋𝑃) → 𝐴𝑋)
3 eldifi 4106 . . . . 5 (𝐵 ∈ (𝑋𝑃) → 𝐵𝑋)
42, 3anim12i 613 . . . 4 ((𝐴 ∈ (𝑋𝑃) ∧ 𝐵 ∈ (𝑋𝑃)) → (𝐴𝑋𝐵𝑋))
5 ispridlc.1 . . . . . 6 𝐺 = (1st𝑅)
6 ispridlc.2 . . . . . 6 𝐻 = (2nd𝑅)
7 ispridlc.3 . . . . . 6 𝑋 = ran 𝐺
85, 6, 7rngocl 37871 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐻𝐵) ∈ 𝑋)
983expb 1120 . . . 4 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝐻𝐵) ∈ 𝑋)
101, 4, 9syl2an 596 . . 3 ((𝑅 ∈ CRingOps ∧ (𝐴 ∈ (𝑋𝑃) ∧ 𝐵 ∈ (𝑋𝑃))) → (𝐴𝐻𝐵) ∈ 𝑋)
1110adantlr 715 . 2 (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋𝑃) ∧ 𝐵 ∈ (𝑋𝑃))) → (𝐴𝐻𝐵) ∈ 𝑋)
12 eldifn 4107 . . . 4 (𝐵 ∈ (𝑋𝑃) → ¬ 𝐵𝑃)
1312ad2antll 729 . . 3 (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋𝑃) ∧ 𝐵 ∈ (𝑋𝑃))) → ¬ 𝐵𝑃)
145, 6, 7pridlc2 38042 . . . . . . 7 (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋𝑃) ∧ 𝐵𝑋 ∧ (𝐴𝐻𝐵) ∈ 𝑃)) → 𝐵𝑃)
15143exp2 1355 . . . . . 6 ((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) → (𝐴 ∈ (𝑋𝑃) → (𝐵𝑋 → ((𝐴𝐻𝐵) ∈ 𝑃𝐵𝑃))))
1615imp32 418 . . . . 5 (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋𝑃) ∧ 𝐵𝑋)) → ((𝐴𝐻𝐵) ∈ 𝑃𝐵𝑃))
1716con3d 152 . . . 4 (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋𝑃) ∧ 𝐵𝑋)) → (¬ 𝐵𝑃 → ¬ (𝐴𝐻𝐵) ∈ 𝑃))
183, 17sylanr2 683 . . 3 (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋𝑃) ∧ 𝐵 ∈ (𝑋𝑃))) → (¬ 𝐵𝑃 → ¬ (𝐴𝐻𝐵) ∈ 𝑃))
1913, 18mpd 15 . 2 (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋𝑃) ∧ 𝐵 ∈ (𝑋𝑃))) → ¬ (𝐴𝐻𝐵) ∈ 𝑃)
2011, 19eldifd 3937 1 (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋𝑃) ∧ 𝐵 ∈ (𝑋𝑃))) → (𝐴𝐻𝐵) ∈ (𝑋𝑃))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  cdif 3923  ran crn 5655  cfv 6530  (class class class)co 7403  1st c1st 7984  2nd c2nd 7985  RingOpscrngo 37864  CRingOpsccring 37963  PrIdlcpridl 37978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-1st 7986  df-2nd 7987  df-grpo 30420  df-gid 30421  df-ginv 30422  df-ablo 30472  df-ass 37813  df-exid 37815  df-mgmOLD 37819  df-sgrOLD 37831  df-mndo 37837  df-rngo 37865  df-com2 37960  df-crngo 37964  df-idl 37980  df-pridl 37981  df-igen 38030
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator