![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pridlc3 | Structured version Visualization version GIF version |
Description: Property of a prime ideal in a commutative ring. (Contributed by Jeff Madsen, 17-Jun-2011.) |
Ref | Expression |
---|---|
ispridlc.1 | ⊢ 𝐺 = (1st ‘𝑅) |
ispridlc.2 | ⊢ 𝐻 = (2nd ‘𝑅) |
ispridlc.3 | ⊢ 𝑋 = ran 𝐺 |
Ref | Expression |
---|---|
pridlc3 | ⊢ (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋 ∖ 𝑃) ∧ 𝐵 ∈ (𝑋 ∖ 𝑃))) → (𝐴𝐻𝐵) ∈ (𝑋 ∖ 𝑃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | crngorngo 36774 | . . . 4 ⊢ (𝑅 ∈ CRingOps → 𝑅 ∈ RingOps) | |
2 | eldifi 4124 | . . . . 5 ⊢ (𝐴 ∈ (𝑋 ∖ 𝑃) → 𝐴 ∈ 𝑋) | |
3 | eldifi 4124 | . . . . 5 ⊢ (𝐵 ∈ (𝑋 ∖ 𝑃) → 𝐵 ∈ 𝑋) | |
4 | 2, 3 | anim12i 614 | . . . 4 ⊢ ((𝐴 ∈ (𝑋 ∖ 𝑃) ∧ 𝐵 ∈ (𝑋 ∖ 𝑃)) → (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) |
5 | ispridlc.1 | . . . . . 6 ⊢ 𝐺 = (1st ‘𝑅) | |
6 | ispridlc.2 | . . . . . 6 ⊢ 𝐻 = (2nd ‘𝑅) | |
7 | ispridlc.3 | . . . . . 6 ⊢ 𝑋 = ran 𝐺 | |
8 | 5, 6, 7 | rngocl 36675 | . . . . 5 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐻𝐵) ∈ 𝑋) |
9 | 8 | 3expb 1121 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐻𝐵) ∈ 𝑋) |
10 | 1, 4, 9 | syl2an 597 | . . 3 ⊢ ((𝑅 ∈ CRingOps ∧ (𝐴 ∈ (𝑋 ∖ 𝑃) ∧ 𝐵 ∈ (𝑋 ∖ 𝑃))) → (𝐴𝐻𝐵) ∈ 𝑋) |
11 | 10 | adantlr 714 | . 2 ⊢ (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋 ∖ 𝑃) ∧ 𝐵 ∈ (𝑋 ∖ 𝑃))) → (𝐴𝐻𝐵) ∈ 𝑋) |
12 | eldifn 4125 | . . . 4 ⊢ (𝐵 ∈ (𝑋 ∖ 𝑃) → ¬ 𝐵 ∈ 𝑃) | |
13 | 12 | ad2antll 728 | . . 3 ⊢ (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋 ∖ 𝑃) ∧ 𝐵 ∈ (𝑋 ∖ 𝑃))) → ¬ 𝐵 ∈ 𝑃) |
14 | 5, 6, 7 | pridlc2 36846 | . . . . . . 7 ⊢ (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋 ∖ 𝑃) ∧ 𝐵 ∈ 𝑋 ∧ (𝐴𝐻𝐵) ∈ 𝑃)) → 𝐵 ∈ 𝑃) |
15 | 14 | 3exp2 1355 | . . . . . 6 ⊢ ((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) → (𝐴 ∈ (𝑋 ∖ 𝑃) → (𝐵 ∈ 𝑋 → ((𝐴𝐻𝐵) ∈ 𝑃 → 𝐵 ∈ 𝑃)))) |
16 | 15 | imp32 420 | . . . . 5 ⊢ (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋 ∖ 𝑃) ∧ 𝐵 ∈ 𝑋)) → ((𝐴𝐻𝐵) ∈ 𝑃 → 𝐵 ∈ 𝑃)) |
17 | 16 | con3d 152 | . . . 4 ⊢ (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋 ∖ 𝑃) ∧ 𝐵 ∈ 𝑋)) → (¬ 𝐵 ∈ 𝑃 → ¬ (𝐴𝐻𝐵) ∈ 𝑃)) |
18 | 3, 17 | sylanr2 682 | . . 3 ⊢ (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋 ∖ 𝑃) ∧ 𝐵 ∈ (𝑋 ∖ 𝑃))) → (¬ 𝐵 ∈ 𝑃 → ¬ (𝐴𝐻𝐵) ∈ 𝑃)) |
19 | 13, 18 | mpd 15 | . 2 ⊢ (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋 ∖ 𝑃) ∧ 𝐵 ∈ (𝑋 ∖ 𝑃))) → ¬ (𝐴𝐻𝐵) ∈ 𝑃) |
20 | 11, 19 | eldifd 3957 | 1 ⊢ (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋 ∖ 𝑃) ∧ 𝐵 ∈ (𝑋 ∖ 𝑃))) → (𝐴𝐻𝐵) ∈ (𝑋 ∖ 𝑃)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∖ cdif 3943 ran crn 5673 ‘cfv 6535 (class class class)co 7396 1st c1st 7960 2nd c2nd 7961 RingOpscrngo 36668 CRingOpsccring 36767 PrIdlcpridl 36782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5359 ax-pr 5423 ax-un 7712 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4321 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4905 df-int 4947 df-iun 4995 df-br 5145 df-opab 5207 df-mpt 5228 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6487 df-fun 6537 df-fn 6538 df-f 6539 df-f1 6540 df-fo 6541 df-f1o 6542 df-fv 6543 df-riota 7352 df-ov 7399 df-oprab 7400 df-mpo 7401 df-1st 7962 df-2nd 7963 df-grpo 29711 df-gid 29712 df-ginv 29713 df-ablo 29763 df-ass 36617 df-exid 36619 df-mgmOLD 36623 df-sgrOLD 36635 df-mndo 36641 df-rngo 36669 df-com2 36764 df-crngo 36768 df-idl 36784 df-pridl 36785 df-igen 36834 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |