Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pridlc3 Structured version   Visualization version   GIF version

Theorem pridlc3 36158
Description: Property of a prime ideal in a commutative ring. (Contributed by Jeff Madsen, 17-Jun-2011.)
Hypotheses
Ref Expression
ispridlc.1 𝐺 = (1st𝑅)
ispridlc.2 𝐻 = (2nd𝑅)
ispridlc.3 𝑋 = ran 𝐺
Assertion
Ref Expression
pridlc3 (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋𝑃) ∧ 𝐵 ∈ (𝑋𝑃))) → (𝐴𝐻𝐵) ∈ (𝑋𝑃))

Proof of Theorem pridlc3
StepHypRef Expression
1 crngorngo 36085 . . . 4 (𝑅 ∈ CRingOps → 𝑅 ∈ RingOps)
2 eldifi 4057 . . . . 5 (𝐴 ∈ (𝑋𝑃) → 𝐴𝑋)
3 eldifi 4057 . . . . 5 (𝐵 ∈ (𝑋𝑃) → 𝐵𝑋)
42, 3anim12i 612 . . . 4 ((𝐴 ∈ (𝑋𝑃) ∧ 𝐵 ∈ (𝑋𝑃)) → (𝐴𝑋𝐵𝑋))
5 ispridlc.1 . . . . . 6 𝐺 = (1st𝑅)
6 ispridlc.2 . . . . . 6 𝐻 = (2nd𝑅)
7 ispridlc.3 . . . . . 6 𝑋 = ran 𝐺
85, 6, 7rngocl 35986 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐻𝐵) ∈ 𝑋)
983expb 1118 . . . 4 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝐻𝐵) ∈ 𝑋)
101, 4, 9syl2an 595 . . 3 ((𝑅 ∈ CRingOps ∧ (𝐴 ∈ (𝑋𝑃) ∧ 𝐵 ∈ (𝑋𝑃))) → (𝐴𝐻𝐵) ∈ 𝑋)
1110adantlr 711 . 2 (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋𝑃) ∧ 𝐵 ∈ (𝑋𝑃))) → (𝐴𝐻𝐵) ∈ 𝑋)
12 eldifn 4058 . . . 4 (𝐵 ∈ (𝑋𝑃) → ¬ 𝐵𝑃)
1312ad2antll 725 . . 3 (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋𝑃) ∧ 𝐵 ∈ (𝑋𝑃))) → ¬ 𝐵𝑃)
145, 6, 7pridlc2 36157 . . . . . . 7 (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋𝑃) ∧ 𝐵𝑋 ∧ (𝐴𝐻𝐵) ∈ 𝑃)) → 𝐵𝑃)
15143exp2 1352 . . . . . 6 ((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) → (𝐴 ∈ (𝑋𝑃) → (𝐵𝑋 → ((𝐴𝐻𝐵) ∈ 𝑃𝐵𝑃))))
1615imp32 418 . . . . 5 (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋𝑃) ∧ 𝐵𝑋)) → ((𝐴𝐻𝐵) ∈ 𝑃𝐵𝑃))
1716con3d 152 . . . 4 (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋𝑃) ∧ 𝐵𝑋)) → (¬ 𝐵𝑃 → ¬ (𝐴𝐻𝐵) ∈ 𝑃))
183, 17sylanr2 679 . . 3 (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋𝑃) ∧ 𝐵 ∈ (𝑋𝑃))) → (¬ 𝐵𝑃 → ¬ (𝐴𝐻𝐵) ∈ 𝑃))
1913, 18mpd 15 . 2 (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋𝑃) ∧ 𝐵 ∈ (𝑋𝑃))) → ¬ (𝐴𝐻𝐵) ∈ 𝑃)
2011, 19eldifd 3894 1 (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋𝑃) ∧ 𝐵 ∈ (𝑋𝑃))) → (𝐴𝐻𝐵) ∈ (𝑋𝑃))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108  cdif 3880  ran crn 5581  cfv 6418  (class class class)co 7255  1st c1st 7802  2nd c2nd 7803  RingOpscrngo 35979  CRingOpsccring 36078  PrIdlcpridl 36093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-grpo 28756  df-gid 28757  df-ginv 28758  df-ablo 28808  df-ass 35928  df-exid 35930  df-mgmOLD 35934  df-sgrOLD 35946  df-mndo 35952  df-rngo 35980  df-com2 36075  df-crngo 36079  df-idl 36095  df-pridl 36096  df-igen 36145
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator