| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pridlc3 | Structured version Visualization version GIF version | ||
| Description: Property of a prime ideal in a commutative ring. (Contributed by Jeff Madsen, 17-Jun-2011.) |
| Ref | Expression |
|---|---|
| ispridlc.1 | ⊢ 𝐺 = (1st ‘𝑅) |
| ispridlc.2 | ⊢ 𝐻 = (2nd ‘𝑅) |
| ispridlc.3 | ⊢ 𝑋 = ran 𝐺 |
| Ref | Expression |
|---|---|
| pridlc3 | ⊢ (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋 ∖ 𝑃) ∧ 𝐵 ∈ (𝑋 ∖ 𝑃))) → (𝐴𝐻𝐵) ∈ (𝑋 ∖ 𝑃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crngorngo 37970 | . . . 4 ⊢ (𝑅 ∈ CRingOps → 𝑅 ∈ RingOps) | |
| 2 | eldifi 4106 | . . . . 5 ⊢ (𝐴 ∈ (𝑋 ∖ 𝑃) → 𝐴 ∈ 𝑋) | |
| 3 | eldifi 4106 | . . . . 5 ⊢ (𝐵 ∈ (𝑋 ∖ 𝑃) → 𝐵 ∈ 𝑋) | |
| 4 | 2, 3 | anim12i 613 | . . . 4 ⊢ ((𝐴 ∈ (𝑋 ∖ 𝑃) ∧ 𝐵 ∈ (𝑋 ∖ 𝑃)) → (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) |
| 5 | ispridlc.1 | . . . . . 6 ⊢ 𝐺 = (1st ‘𝑅) | |
| 6 | ispridlc.2 | . . . . . 6 ⊢ 𝐻 = (2nd ‘𝑅) | |
| 7 | ispridlc.3 | . . . . . 6 ⊢ 𝑋 = ran 𝐺 | |
| 8 | 5, 6, 7 | rngocl 37871 | . . . . 5 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐻𝐵) ∈ 𝑋) |
| 9 | 8 | 3expb 1120 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐻𝐵) ∈ 𝑋) |
| 10 | 1, 4, 9 | syl2an 596 | . . 3 ⊢ ((𝑅 ∈ CRingOps ∧ (𝐴 ∈ (𝑋 ∖ 𝑃) ∧ 𝐵 ∈ (𝑋 ∖ 𝑃))) → (𝐴𝐻𝐵) ∈ 𝑋) |
| 11 | 10 | adantlr 715 | . 2 ⊢ (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋 ∖ 𝑃) ∧ 𝐵 ∈ (𝑋 ∖ 𝑃))) → (𝐴𝐻𝐵) ∈ 𝑋) |
| 12 | eldifn 4107 | . . . 4 ⊢ (𝐵 ∈ (𝑋 ∖ 𝑃) → ¬ 𝐵 ∈ 𝑃) | |
| 13 | 12 | ad2antll 729 | . . 3 ⊢ (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋 ∖ 𝑃) ∧ 𝐵 ∈ (𝑋 ∖ 𝑃))) → ¬ 𝐵 ∈ 𝑃) |
| 14 | 5, 6, 7 | pridlc2 38042 | . . . . . . 7 ⊢ (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋 ∖ 𝑃) ∧ 𝐵 ∈ 𝑋 ∧ (𝐴𝐻𝐵) ∈ 𝑃)) → 𝐵 ∈ 𝑃) |
| 15 | 14 | 3exp2 1355 | . . . . . 6 ⊢ ((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) → (𝐴 ∈ (𝑋 ∖ 𝑃) → (𝐵 ∈ 𝑋 → ((𝐴𝐻𝐵) ∈ 𝑃 → 𝐵 ∈ 𝑃)))) |
| 16 | 15 | imp32 418 | . . . . 5 ⊢ (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋 ∖ 𝑃) ∧ 𝐵 ∈ 𝑋)) → ((𝐴𝐻𝐵) ∈ 𝑃 → 𝐵 ∈ 𝑃)) |
| 17 | 16 | con3d 152 | . . . 4 ⊢ (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋 ∖ 𝑃) ∧ 𝐵 ∈ 𝑋)) → (¬ 𝐵 ∈ 𝑃 → ¬ (𝐴𝐻𝐵) ∈ 𝑃)) |
| 18 | 3, 17 | sylanr2 683 | . . 3 ⊢ (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋 ∖ 𝑃) ∧ 𝐵 ∈ (𝑋 ∖ 𝑃))) → (¬ 𝐵 ∈ 𝑃 → ¬ (𝐴𝐻𝐵) ∈ 𝑃)) |
| 19 | 13, 18 | mpd 15 | . 2 ⊢ (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋 ∖ 𝑃) ∧ 𝐵 ∈ (𝑋 ∖ 𝑃))) → ¬ (𝐴𝐻𝐵) ∈ 𝑃) |
| 20 | 11, 19 | eldifd 3937 | 1 ⊢ (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋 ∖ 𝑃) ∧ 𝐵 ∈ (𝑋 ∖ 𝑃))) → (𝐴𝐻𝐵) ∈ (𝑋 ∖ 𝑃)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∖ cdif 3923 ran crn 5655 ‘cfv 6530 (class class class)co 7403 1st c1st 7984 2nd c2nd 7985 RingOpscrngo 37864 CRingOpsccring 37963 PrIdlcpridl 37978 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-1st 7986 df-2nd 7987 df-grpo 30420 df-gid 30421 df-ginv 30422 df-ablo 30472 df-ass 37813 df-exid 37815 df-mgmOLD 37819 df-sgrOLD 37831 df-mndo 37837 df-rngo 37865 df-com2 37960 df-crngo 37964 df-idl 37980 df-pridl 37981 df-igen 38030 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |