Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pridlc3 Structured version   Visualization version   GIF version

Theorem pridlc3 38123
Description: Property of a prime ideal in a commutative ring. (Contributed by Jeff Madsen, 17-Jun-2011.)
Hypotheses
Ref Expression
ispridlc.1 𝐺 = (1st𝑅)
ispridlc.2 𝐻 = (2nd𝑅)
ispridlc.3 𝑋 = ran 𝐺
Assertion
Ref Expression
pridlc3 (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋𝑃) ∧ 𝐵 ∈ (𝑋𝑃))) → (𝐴𝐻𝐵) ∈ (𝑋𝑃))

Proof of Theorem pridlc3
StepHypRef Expression
1 crngorngo 38050 . . . 4 (𝑅 ∈ CRingOps → 𝑅 ∈ RingOps)
2 eldifi 4078 . . . . 5 (𝐴 ∈ (𝑋𝑃) → 𝐴𝑋)
3 eldifi 4078 . . . . 5 (𝐵 ∈ (𝑋𝑃) → 𝐵𝑋)
42, 3anim12i 613 . . . 4 ((𝐴 ∈ (𝑋𝑃) ∧ 𝐵 ∈ (𝑋𝑃)) → (𝐴𝑋𝐵𝑋))
5 ispridlc.1 . . . . . 6 𝐺 = (1st𝑅)
6 ispridlc.2 . . . . . 6 𝐻 = (2nd𝑅)
7 ispridlc.3 . . . . . 6 𝑋 = ran 𝐺
85, 6, 7rngocl 37951 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐻𝐵) ∈ 𝑋)
983expb 1120 . . . 4 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝐻𝐵) ∈ 𝑋)
101, 4, 9syl2an 596 . . 3 ((𝑅 ∈ CRingOps ∧ (𝐴 ∈ (𝑋𝑃) ∧ 𝐵 ∈ (𝑋𝑃))) → (𝐴𝐻𝐵) ∈ 𝑋)
1110adantlr 715 . 2 (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋𝑃) ∧ 𝐵 ∈ (𝑋𝑃))) → (𝐴𝐻𝐵) ∈ 𝑋)
12 eldifn 4079 . . . 4 (𝐵 ∈ (𝑋𝑃) → ¬ 𝐵𝑃)
1312ad2antll 729 . . 3 (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋𝑃) ∧ 𝐵 ∈ (𝑋𝑃))) → ¬ 𝐵𝑃)
145, 6, 7pridlc2 38122 . . . . . . 7 (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋𝑃) ∧ 𝐵𝑋 ∧ (𝐴𝐻𝐵) ∈ 𝑃)) → 𝐵𝑃)
15143exp2 1355 . . . . . 6 ((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) → (𝐴 ∈ (𝑋𝑃) → (𝐵𝑋 → ((𝐴𝐻𝐵) ∈ 𝑃𝐵𝑃))))
1615imp32 418 . . . . 5 (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋𝑃) ∧ 𝐵𝑋)) → ((𝐴𝐻𝐵) ∈ 𝑃𝐵𝑃))
1716con3d 152 . . . 4 (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋𝑃) ∧ 𝐵𝑋)) → (¬ 𝐵𝑃 → ¬ (𝐴𝐻𝐵) ∈ 𝑃))
183, 17sylanr2 683 . . 3 (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋𝑃) ∧ 𝐵 ∈ (𝑋𝑃))) → (¬ 𝐵𝑃 → ¬ (𝐴𝐻𝐵) ∈ 𝑃))
1913, 18mpd 15 . 2 (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋𝑃) ∧ 𝐵 ∈ (𝑋𝑃))) → ¬ (𝐴𝐻𝐵) ∈ 𝑃)
2011, 19eldifd 3908 1 (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋𝑃) ∧ 𝐵 ∈ (𝑋𝑃))) → (𝐴𝐻𝐵) ∈ (𝑋𝑃))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  cdif 3894  ran crn 5615  cfv 6481  (class class class)co 7346  1st c1st 7919  2nd c2nd 7920  RingOpscrngo 37944  CRingOpsccring 38043  PrIdlcpridl 38058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-grpo 30473  df-gid 30474  df-ginv 30475  df-ablo 30525  df-ass 37893  df-exid 37895  df-mgmOLD 37899  df-sgrOLD 37911  df-mndo 37917  df-rngo 37945  df-com2 38040  df-crngo 38044  df-idl 38060  df-pridl 38061  df-igen 38110
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator