![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pridlc3 | Structured version Visualization version GIF version |
Description: Property of a prime ideal in a commutative ring. (Contributed by Jeff Madsen, 17-Jun-2011.) |
Ref | Expression |
---|---|
ispridlc.1 | ⊢ 𝐺 = (1st ‘𝑅) |
ispridlc.2 | ⊢ 𝐻 = (2nd ‘𝑅) |
ispridlc.3 | ⊢ 𝑋 = ran 𝐺 |
Ref | Expression |
---|---|
pridlc3 | ⊢ (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋 ∖ 𝑃) ∧ 𝐵 ∈ (𝑋 ∖ 𝑃))) → (𝐴𝐻𝐵) ∈ (𝑋 ∖ 𝑃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | crngorngo 37986 | . . . 4 ⊢ (𝑅 ∈ CRingOps → 𝑅 ∈ RingOps) | |
2 | eldifi 4140 | . . . . 5 ⊢ (𝐴 ∈ (𝑋 ∖ 𝑃) → 𝐴 ∈ 𝑋) | |
3 | eldifi 4140 | . . . . 5 ⊢ (𝐵 ∈ (𝑋 ∖ 𝑃) → 𝐵 ∈ 𝑋) | |
4 | 2, 3 | anim12i 613 | . . . 4 ⊢ ((𝐴 ∈ (𝑋 ∖ 𝑃) ∧ 𝐵 ∈ (𝑋 ∖ 𝑃)) → (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) |
5 | ispridlc.1 | . . . . . 6 ⊢ 𝐺 = (1st ‘𝑅) | |
6 | ispridlc.2 | . . . . . 6 ⊢ 𝐻 = (2nd ‘𝑅) | |
7 | ispridlc.3 | . . . . . 6 ⊢ 𝑋 = ran 𝐺 | |
8 | 5, 6, 7 | rngocl 37887 | . . . . 5 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐻𝐵) ∈ 𝑋) |
9 | 8 | 3expb 1119 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐻𝐵) ∈ 𝑋) |
10 | 1, 4, 9 | syl2an 596 | . . 3 ⊢ ((𝑅 ∈ CRingOps ∧ (𝐴 ∈ (𝑋 ∖ 𝑃) ∧ 𝐵 ∈ (𝑋 ∖ 𝑃))) → (𝐴𝐻𝐵) ∈ 𝑋) |
11 | 10 | adantlr 715 | . 2 ⊢ (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋 ∖ 𝑃) ∧ 𝐵 ∈ (𝑋 ∖ 𝑃))) → (𝐴𝐻𝐵) ∈ 𝑋) |
12 | eldifn 4141 | . . . 4 ⊢ (𝐵 ∈ (𝑋 ∖ 𝑃) → ¬ 𝐵 ∈ 𝑃) | |
13 | 12 | ad2antll 729 | . . 3 ⊢ (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋 ∖ 𝑃) ∧ 𝐵 ∈ (𝑋 ∖ 𝑃))) → ¬ 𝐵 ∈ 𝑃) |
14 | 5, 6, 7 | pridlc2 38058 | . . . . . . 7 ⊢ (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋 ∖ 𝑃) ∧ 𝐵 ∈ 𝑋 ∧ (𝐴𝐻𝐵) ∈ 𝑃)) → 𝐵 ∈ 𝑃) |
15 | 14 | 3exp2 1353 | . . . . . 6 ⊢ ((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) → (𝐴 ∈ (𝑋 ∖ 𝑃) → (𝐵 ∈ 𝑋 → ((𝐴𝐻𝐵) ∈ 𝑃 → 𝐵 ∈ 𝑃)))) |
16 | 15 | imp32 418 | . . . . 5 ⊢ (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋 ∖ 𝑃) ∧ 𝐵 ∈ 𝑋)) → ((𝐴𝐻𝐵) ∈ 𝑃 → 𝐵 ∈ 𝑃)) |
17 | 16 | con3d 152 | . . . 4 ⊢ (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋 ∖ 𝑃) ∧ 𝐵 ∈ 𝑋)) → (¬ 𝐵 ∈ 𝑃 → ¬ (𝐴𝐻𝐵) ∈ 𝑃)) |
18 | 3, 17 | sylanr2 683 | . . 3 ⊢ (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋 ∖ 𝑃) ∧ 𝐵 ∈ (𝑋 ∖ 𝑃))) → (¬ 𝐵 ∈ 𝑃 → ¬ (𝐴𝐻𝐵) ∈ 𝑃)) |
19 | 13, 18 | mpd 15 | . 2 ⊢ (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋 ∖ 𝑃) ∧ 𝐵 ∈ (𝑋 ∖ 𝑃))) → ¬ (𝐴𝐻𝐵) ∈ 𝑃) |
20 | 11, 19 | eldifd 3973 | 1 ⊢ (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋 ∖ 𝑃) ∧ 𝐵 ∈ (𝑋 ∖ 𝑃))) → (𝐴𝐻𝐵) ∈ (𝑋 ∖ 𝑃)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ∖ cdif 3959 ran crn 5689 ‘cfv 6562 (class class class)co 7430 1st c1st 8010 2nd c2nd 8011 RingOpscrngo 37880 CRingOpsccring 37979 PrIdlcpridl 37994 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-int 4951 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-1st 8012 df-2nd 8013 df-grpo 30521 df-gid 30522 df-ginv 30523 df-ablo 30573 df-ass 37829 df-exid 37831 df-mgmOLD 37835 df-sgrOLD 37847 df-mndo 37853 df-rngo 37881 df-com2 37976 df-crngo 37980 df-idl 37996 df-pridl 37997 df-igen 38046 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |