Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isdmn3 Structured version   Visualization version   GIF version

Theorem isdmn3 38075
Description: The predicate "is a domain", alternate expression. (Contributed by Jeff Madsen, 19-Jun-2010.)
Hypotheses
Ref Expression
isdmn3.1 𝐺 = (1st𝑅)
isdmn3.2 𝐻 = (2nd𝑅)
isdmn3.3 𝑋 = ran 𝐺
isdmn3.4 𝑍 = (GId‘𝐺)
isdmn3.5 𝑈 = (GId‘𝐻)
Assertion
Ref Expression
isdmn3 (𝑅 ∈ Dmn ↔ (𝑅 ∈ CRingOps ∧ 𝑈𝑍 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) = 𝑍 → (𝑎 = 𝑍𝑏 = 𝑍))))
Distinct variable groups:   𝑅,𝑎,𝑏   𝑍,𝑎,𝑏   𝐻,𝑎,𝑏   𝑋,𝑎,𝑏
Allowed substitution hints:   𝑈(𝑎,𝑏)   𝐺(𝑎,𝑏)

Proof of Theorem isdmn3
StepHypRef Expression
1 isdmn2 38056 . 2 (𝑅 ∈ Dmn ↔ (𝑅 ∈ PrRing ∧ 𝑅 ∈ CRingOps))
2 isdmn3.1 . . . . . 6 𝐺 = (1st𝑅)
3 isdmn3.4 . . . . . 6 𝑍 = (GId‘𝐺)
42, 3isprrngo 38051 . . . . 5 (𝑅 ∈ PrRing ↔ (𝑅 ∈ RingOps ∧ {𝑍} ∈ (PrIdl‘𝑅)))
5 isdmn3.2 . . . . . . 7 𝐻 = (2nd𝑅)
6 isdmn3.3 . . . . . . 7 𝑋 = ran 𝐺
72, 5, 6ispridlc 38071 . . . . . 6 (𝑅 ∈ CRingOps → ({𝑍} ∈ (PrIdl‘𝑅) ↔ ({𝑍} ∈ (Idl‘𝑅) ∧ {𝑍} ≠ 𝑋 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ {𝑍} → (𝑎 ∈ {𝑍} ∨ 𝑏 ∈ {𝑍})))))
8 crngorngo 38001 . . . . . . 7 (𝑅 ∈ CRingOps → 𝑅 ∈ RingOps)
98biantrurd 532 . . . . . 6 (𝑅 ∈ CRingOps → ({𝑍} ∈ (PrIdl‘𝑅) ↔ (𝑅 ∈ RingOps ∧ {𝑍} ∈ (PrIdl‘𝑅))))
10 3anass 1094 . . . . . . 7 (({𝑍} ∈ (Idl‘𝑅) ∧ {𝑍} ≠ 𝑋 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ {𝑍} → (𝑎 ∈ {𝑍} ∨ 𝑏 ∈ {𝑍}))) ↔ ({𝑍} ∈ (Idl‘𝑅) ∧ ({𝑍} ≠ 𝑋 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ {𝑍} → (𝑎 ∈ {𝑍} ∨ 𝑏 ∈ {𝑍})))))
112, 30idl 38026 . . . . . . . . . 10 (𝑅 ∈ RingOps → {𝑍} ∈ (Idl‘𝑅))
128, 11syl 17 . . . . . . . . 9 (𝑅 ∈ CRingOps → {𝑍} ∈ (Idl‘𝑅))
1312biantrurd 532 . . . . . . . 8 (𝑅 ∈ CRingOps → (({𝑍} ≠ 𝑋 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ {𝑍} → (𝑎 ∈ {𝑍} ∨ 𝑏 ∈ {𝑍}))) ↔ ({𝑍} ∈ (Idl‘𝑅) ∧ ({𝑍} ≠ 𝑋 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ {𝑍} → (𝑎 ∈ {𝑍} ∨ 𝑏 ∈ {𝑍}))))))
142rneqi 5904 . . . . . . . . . . . . . . 15 ran 𝐺 = ran (1st𝑅)
156, 14eqtri 2753 . . . . . . . . . . . . . 14 𝑋 = ran (1st𝑅)
16 isdmn3.5 . . . . . . . . . . . . . 14 𝑈 = (GId‘𝐻)
1715, 5, 16rngo1cl 37940 . . . . . . . . . . . . 13 (𝑅 ∈ RingOps → 𝑈𝑋)
18 eleq2 2818 . . . . . . . . . . . . . 14 ({𝑍} = 𝑋 → (𝑈 ∈ {𝑍} ↔ 𝑈𝑋))
19 elsni 4609 . . . . . . . . . . . . . 14 (𝑈 ∈ {𝑍} → 𝑈 = 𝑍)
2018, 19biimtrrdi 254 . . . . . . . . . . . . 13 ({𝑍} = 𝑋 → (𝑈𝑋𝑈 = 𝑍))
2117, 20syl5com 31 . . . . . . . . . . . 12 (𝑅 ∈ RingOps → ({𝑍} = 𝑋𝑈 = 𝑍))
222, 5, 3, 16, 6rngoueqz 37941 . . . . . . . . . . . . 13 (𝑅 ∈ RingOps → (𝑋 ≈ 1o𝑈 = 𝑍))
232, 6, 3rngo0cl 37920 . . . . . . . . . . . . . 14 (𝑅 ∈ RingOps → 𝑍𝑋)
24 en1eqsn 9226 . . . . . . . . . . . . . . . 16 ((𝑍𝑋𝑋 ≈ 1o) → 𝑋 = {𝑍})
2524eqcomd 2736 . . . . . . . . . . . . . . 15 ((𝑍𝑋𝑋 ≈ 1o) → {𝑍} = 𝑋)
2625ex 412 . . . . . . . . . . . . . 14 (𝑍𝑋 → (𝑋 ≈ 1o → {𝑍} = 𝑋))
2723, 26syl 17 . . . . . . . . . . . . 13 (𝑅 ∈ RingOps → (𝑋 ≈ 1o → {𝑍} = 𝑋))
2822, 27sylbird 260 . . . . . . . . . . . 12 (𝑅 ∈ RingOps → (𝑈 = 𝑍 → {𝑍} = 𝑋))
2921, 28impbid 212 . . . . . . . . . . 11 (𝑅 ∈ RingOps → ({𝑍} = 𝑋𝑈 = 𝑍))
308, 29syl 17 . . . . . . . . . 10 (𝑅 ∈ CRingOps → ({𝑍} = 𝑋𝑈 = 𝑍))
3130necon3bid 2970 . . . . . . . . 9 (𝑅 ∈ CRingOps → ({𝑍} ≠ 𝑋𝑈𝑍))
32 ovex 7423 . . . . . . . . . . . . 13 (𝑎𝐻𝑏) ∈ V
3332elsn 4607 . . . . . . . . . . . 12 ((𝑎𝐻𝑏) ∈ {𝑍} ↔ (𝑎𝐻𝑏) = 𝑍)
34 velsn 4608 . . . . . . . . . . . . 13 (𝑎 ∈ {𝑍} ↔ 𝑎 = 𝑍)
35 velsn 4608 . . . . . . . . . . . . 13 (𝑏 ∈ {𝑍} ↔ 𝑏 = 𝑍)
3634, 35orbi12i 914 . . . . . . . . . . . 12 ((𝑎 ∈ {𝑍} ∨ 𝑏 ∈ {𝑍}) ↔ (𝑎 = 𝑍𝑏 = 𝑍))
3733, 36imbi12i 350 . . . . . . . . . . 11 (((𝑎𝐻𝑏) ∈ {𝑍} → (𝑎 ∈ {𝑍} ∨ 𝑏 ∈ {𝑍})) ↔ ((𝑎𝐻𝑏) = 𝑍 → (𝑎 = 𝑍𝑏 = 𝑍)))
3837a1i 11 . . . . . . . . . 10 (𝑅 ∈ CRingOps → (((𝑎𝐻𝑏) ∈ {𝑍} → (𝑎 ∈ {𝑍} ∨ 𝑏 ∈ {𝑍})) ↔ ((𝑎𝐻𝑏) = 𝑍 → (𝑎 = 𝑍𝑏 = 𝑍))))
39382ralbidv 3202 . . . . . . . . 9 (𝑅 ∈ CRingOps → (∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ {𝑍} → (𝑎 ∈ {𝑍} ∨ 𝑏 ∈ {𝑍})) ↔ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) = 𝑍 → (𝑎 = 𝑍𝑏 = 𝑍))))
4031, 39anbi12d 632 . . . . . . . 8 (𝑅 ∈ CRingOps → (({𝑍} ≠ 𝑋 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ {𝑍} → (𝑎 ∈ {𝑍} ∨ 𝑏 ∈ {𝑍}))) ↔ (𝑈𝑍 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) = 𝑍 → (𝑎 = 𝑍𝑏 = 𝑍)))))
4113, 40bitr3d 281 . . . . . . 7 (𝑅 ∈ CRingOps → (({𝑍} ∈ (Idl‘𝑅) ∧ ({𝑍} ≠ 𝑋 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ {𝑍} → (𝑎 ∈ {𝑍} ∨ 𝑏 ∈ {𝑍})))) ↔ (𝑈𝑍 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) = 𝑍 → (𝑎 = 𝑍𝑏 = 𝑍)))))
4210, 41bitrid 283 . . . . . 6 (𝑅 ∈ CRingOps → (({𝑍} ∈ (Idl‘𝑅) ∧ {𝑍} ≠ 𝑋 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ {𝑍} → (𝑎 ∈ {𝑍} ∨ 𝑏 ∈ {𝑍}))) ↔ (𝑈𝑍 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) = 𝑍 → (𝑎 = 𝑍𝑏 = 𝑍)))))
437, 9, 423bitr3d 309 . . . . 5 (𝑅 ∈ CRingOps → ((𝑅 ∈ RingOps ∧ {𝑍} ∈ (PrIdl‘𝑅)) ↔ (𝑈𝑍 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) = 𝑍 → (𝑎 = 𝑍𝑏 = 𝑍)))))
444, 43bitrid 283 . . . 4 (𝑅 ∈ CRingOps → (𝑅 ∈ PrRing ↔ (𝑈𝑍 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) = 𝑍 → (𝑎 = 𝑍𝑏 = 𝑍)))))
4544pm5.32i 574 . . 3 ((𝑅 ∈ CRingOps ∧ 𝑅 ∈ PrRing) ↔ (𝑅 ∈ CRingOps ∧ (𝑈𝑍 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) = 𝑍 → (𝑎 = 𝑍𝑏 = 𝑍)))))
46 ancom 460 . . 3 ((𝑅 ∈ PrRing ∧ 𝑅 ∈ CRingOps) ↔ (𝑅 ∈ CRingOps ∧ 𝑅 ∈ PrRing))
47 3anass 1094 . . 3 ((𝑅 ∈ CRingOps ∧ 𝑈𝑍 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) = 𝑍 → (𝑎 = 𝑍𝑏 = 𝑍))) ↔ (𝑅 ∈ CRingOps ∧ (𝑈𝑍 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) = 𝑍 → (𝑎 = 𝑍𝑏 = 𝑍)))))
4845, 46, 473bitr4i 303 . 2 ((𝑅 ∈ PrRing ∧ 𝑅 ∈ CRingOps) ↔ (𝑅 ∈ CRingOps ∧ 𝑈𝑍 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) = 𝑍 → (𝑎 = 𝑍𝑏 = 𝑍))))
491, 48bitri 275 1 (𝑅 ∈ Dmn ↔ (𝑅 ∈ CRingOps ∧ 𝑈𝑍 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) = 𝑍 → (𝑎 = 𝑍𝑏 = 𝑍))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  {csn 4592   class class class wbr 5110  ran crn 5642  cfv 6514  (class class class)co 7390  1st c1st 7969  2nd c2nd 7970  1oc1o 8430  cen 8918  GIdcgi 30426  RingOpscrngo 37895  CRingOpsccring 37994  Idlcidl 38008  PrIdlcpridl 38009  PrRingcprrng 38047  Dmncdmn 38048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-1o 8437  df-en 8922  df-grpo 30429  df-gid 30430  df-ginv 30431  df-ablo 30481  df-ass 37844  df-exid 37846  df-mgmOLD 37850  df-sgrOLD 37862  df-mndo 37868  df-rngo 37896  df-com2 37991  df-crngo 37995  df-idl 38011  df-pridl 38012  df-prrngo 38049  df-dmn 38050  df-igen 38061
This theorem is referenced by:  dmnnzd  38076
  Copyright terms: Public domain W3C validator