Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isdmn3 Structured version   Visualization version   GIF version

Theorem isdmn3 37245
Description: The predicate "is a domain", alternate expression. (Contributed by Jeff Madsen, 19-Jun-2010.)
Hypotheses
Ref Expression
isdmn3.1 𝐺 = (1st β€˜π‘…)
isdmn3.2 𝐻 = (2nd β€˜π‘…)
isdmn3.3 𝑋 = ran 𝐺
isdmn3.4 𝑍 = (GIdβ€˜πΊ)
isdmn3.5 π‘ˆ = (GIdβ€˜π»)
Assertion
Ref Expression
isdmn3 (𝑅 ∈ Dmn ↔ (𝑅 ∈ CRingOps ∧ π‘ˆ β‰  𝑍 ∧ βˆ€π‘Ž ∈ 𝑋 βˆ€π‘ ∈ 𝑋 ((π‘Žπ»π‘) = 𝑍 β†’ (π‘Ž = 𝑍 ∨ 𝑏 = 𝑍))))
Distinct variable groups:   𝑅,π‘Ž,𝑏   𝑍,π‘Ž,𝑏   𝐻,π‘Ž,𝑏   𝑋,π‘Ž,𝑏
Allowed substitution hints:   π‘ˆ(π‘Ž,𝑏)   𝐺(π‘Ž,𝑏)

Proof of Theorem isdmn3
StepHypRef Expression
1 isdmn2 37226 . 2 (𝑅 ∈ Dmn ↔ (𝑅 ∈ PrRing ∧ 𝑅 ∈ CRingOps))
2 isdmn3.1 . . . . . 6 𝐺 = (1st β€˜π‘…)
3 isdmn3.4 . . . . . 6 𝑍 = (GIdβ€˜πΊ)
42, 3isprrngo 37221 . . . . 5 (𝑅 ∈ PrRing ↔ (𝑅 ∈ RingOps ∧ {𝑍} ∈ (PrIdlβ€˜π‘…)))
5 isdmn3.2 . . . . . . 7 𝐻 = (2nd β€˜π‘…)
6 isdmn3.3 . . . . . . 7 𝑋 = ran 𝐺
72, 5, 6ispridlc 37241 . . . . . 6 (𝑅 ∈ CRingOps β†’ ({𝑍} ∈ (PrIdlβ€˜π‘…) ↔ ({𝑍} ∈ (Idlβ€˜π‘…) ∧ {𝑍} β‰  𝑋 ∧ βˆ€π‘Ž ∈ 𝑋 βˆ€π‘ ∈ 𝑋 ((π‘Žπ»π‘) ∈ {𝑍} β†’ (π‘Ž ∈ {𝑍} ∨ 𝑏 ∈ {𝑍})))))
8 crngorngo 37171 . . . . . . 7 (𝑅 ∈ CRingOps β†’ 𝑅 ∈ RingOps)
98biantrurd 531 . . . . . 6 (𝑅 ∈ CRingOps β†’ ({𝑍} ∈ (PrIdlβ€˜π‘…) ↔ (𝑅 ∈ RingOps ∧ {𝑍} ∈ (PrIdlβ€˜π‘…))))
10 3anass 1093 . . . . . . 7 (({𝑍} ∈ (Idlβ€˜π‘…) ∧ {𝑍} β‰  𝑋 ∧ βˆ€π‘Ž ∈ 𝑋 βˆ€π‘ ∈ 𝑋 ((π‘Žπ»π‘) ∈ {𝑍} β†’ (π‘Ž ∈ {𝑍} ∨ 𝑏 ∈ {𝑍}))) ↔ ({𝑍} ∈ (Idlβ€˜π‘…) ∧ ({𝑍} β‰  𝑋 ∧ βˆ€π‘Ž ∈ 𝑋 βˆ€π‘ ∈ 𝑋 ((π‘Žπ»π‘) ∈ {𝑍} β†’ (π‘Ž ∈ {𝑍} ∨ 𝑏 ∈ {𝑍})))))
112, 30idl 37196 . . . . . . . . . 10 (𝑅 ∈ RingOps β†’ {𝑍} ∈ (Idlβ€˜π‘…))
128, 11syl 17 . . . . . . . . 9 (𝑅 ∈ CRingOps β†’ {𝑍} ∈ (Idlβ€˜π‘…))
1312biantrurd 531 . . . . . . . 8 (𝑅 ∈ CRingOps β†’ (({𝑍} β‰  𝑋 ∧ βˆ€π‘Ž ∈ 𝑋 βˆ€π‘ ∈ 𝑋 ((π‘Žπ»π‘) ∈ {𝑍} β†’ (π‘Ž ∈ {𝑍} ∨ 𝑏 ∈ {𝑍}))) ↔ ({𝑍} ∈ (Idlβ€˜π‘…) ∧ ({𝑍} β‰  𝑋 ∧ βˆ€π‘Ž ∈ 𝑋 βˆ€π‘ ∈ 𝑋 ((π‘Žπ»π‘) ∈ {𝑍} β†’ (π‘Ž ∈ {𝑍} ∨ 𝑏 ∈ {𝑍}))))))
142rneqi 5935 . . . . . . . . . . . . . . 15 ran 𝐺 = ran (1st β€˜π‘…)
156, 14eqtri 2758 . . . . . . . . . . . . . 14 𝑋 = ran (1st β€˜π‘…)
16 isdmn3.5 . . . . . . . . . . . . . 14 π‘ˆ = (GIdβ€˜π»)
1715, 5, 16rngo1cl 37110 . . . . . . . . . . . . 13 (𝑅 ∈ RingOps β†’ π‘ˆ ∈ 𝑋)
18 eleq2 2820 . . . . . . . . . . . . . 14 ({𝑍} = 𝑋 β†’ (π‘ˆ ∈ {𝑍} ↔ π‘ˆ ∈ 𝑋))
19 elsni 4644 . . . . . . . . . . . . . 14 (π‘ˆ ∈ {𝑍} β†’ π‘ˆ = 𝑍)
2018, 19syl6bir 253 . . . . . . . . . . . . 13 ({𝑍} = 𝑋 β†’ (π‘ˆ ∈ 𝑋 β†’ π‘ˆ = 𝑍))
2117, 20syl5com 31 . . . . . . . . . . . 12 (𝑅 ∈ RingOps β†’ ({𝑍} = 𝑋 β†’ π‘ˆ = 𝑍))
222, 5, 3, 16, 6rngoueqz 37111 . . . . . . . . . . . . 13 (𝑅 ∈ RingOps β†’ (𝑋 β‰ˆ 1o ↔ π‘ˆ = 𝑍))
232, 6, 3rngo0cl 37090 . . . . . . . . . . . . . 14 (𝑅 ∈ RingOps β†’ 𝑍 ∈ 𝑋)
24 en1eqsn 9276 . . . . . . . . . . . . . . . 16 ((𝑍 ∈ 𝑋 ∧ 𝑋 β‰ˆ 1o) β†’ 𝑋 = {𝑍})
2524eqcomd 2736 . . . . . . . . . . . . . . 15 ((𝑍 ∈ 𝑋 ∧ 𝑋 β‰ˆ 1o) β†’ {𝑍} = 𝑋)
2625ex 411 . . . . . . . . . . . . . 14 (𝑍 ∈ 𝑋 β†’ (𝑋 β‰ˆ 1o β†’ {𝑍} = 𝑋))
2723, 26syl 17 . . . . . . . . . . . . 13 (𝑅 ∈ RingOps β†’ (𝑋 β‰ˆ 1o β†’ {𝑍} = 𝑋))
2822, 27sylbird 259 . . . . . . . . . . . 12 (𝑅 ∈ RingOps β†’ (π‘ˆ = 𝑍 β†’ {𝑍} = 𝑋))
2921, 28impbid 211 . . . . . . . . . . 11 (𝑅 ∈ RingOps β†’ ({𝑍} = 𝑋 ↔ π‘ˆ = 𝑍))
308, 29syl 17 . . . . . . . . . 10 (𝑅 ∈ CRingOps β†’ ({𝑍} = 𝑋 ↔ π‘ˆ = 𝑍))
3130necon3bid 2983 . . . . . . . . 9 (𝑅 ∈ CRingOps β†’ ({𝑍} β‰  𝑋 ↔ π‘ˆ β‰  𝑍))
32 ovex 7444 . . . . . . . . . . . . 13 (π‘Žπ»π‘) ∈ V
3332elsn 4642 . . . . . . . . . . . 12 ((π‘Žπ»π‘) ∈ {𝑍} ↔ (π‘Žπ»π‘) = 𝑍)
34 velsn 4643 . . . . . . . . . . . . 13 (π‘Ž ∈ {𝑍} ↔ π‘Ž = 𝑍)
35 velsn 4643 . . . . . . . . . . . . 13 (𝑏 ∈ {𝑍} ↔ 𝑏 = 𝑍)
3634, 35orbi12i 911 . . . . . . . . . . . 12 ((π‘Ž ∈ {𝑍} ∨ 𝑏 ∈ {𝑍}) ↔ (π‘Ž = 𝑍 ∨ 𝑏 = 𝑍))
3733, 36imbi12i 349 . . . . . . . . . . 11 (((π‘Žπ»π‘) ∈ {𝑍} β†’ (π‘Ž ∈ {𝑍} ∨ 𝑏 ∈ {𝑍})) ↔ ((π‘Žπ»π‘) = 𝑍 β†’ (π‘Ž = 𝑍 ∨ 𝑏 = 𝑍)))
3837a1i 11 . . . . . . . . . 10 (𝑅 ∈ CRingOps β†’ (((π‘Žπ»π‘) ∈ {𝑍} β†’ (π‘Ž ∈ {𝑍} ∨ 𝑏 ∈ {𝑍})) ↔ ((π‘Žπ»π‘) = 𝑍 β†’ (π‘Ž = 𝑍 ∨ 𝑏 = 𝑍))))
39382ralbidv 3216 . . . . . . . . 9 (𝑅 ∈ CRingOps β†’ (βˆ€π‘Ž ∈ 𝑋 βˆ€π‘ ∈ 𝑋 ((π‘Žπ»π‘) ∈ {𝑍} β†’ (π‘Ž ∈ {𝑍} ∨ 𝑏 ∈ {𝑍})) ↔ βˆ€π‘Ž ∈ 𝑋 βˆ€π‘ ∈ 𝑋 ((π‘Žπ»π‘) = 𝑍 β†’ (π‘Ž = 𝑍 ∨ 𝑏 = 𝑍))))
4031, 39anbi12d 629 . . . . . . . 8 (𝑅 ∈ CRingOps β†’ (({𝑍} β‰  𝑋 ∧ βˆ€π‘Ž ∈ 𝑋 βˆ€π‘ ∈ 𝑋 ((π‘Žπ»π‘) ∈ {𝑍} β†’ (π‘Ž ∈ {𝑍} ∨ 𝑏 ∈ {𝑍}))) ↔ (π‘ˆ β‰  𝑍 ∧ βˆ€π‘Ž ∈ 𝑋 βˆ€π‘ ∈ 𝑋 ((π‘Žπ»π‘) = 𝑍 β†’ (π‘Ž = 𝑍 ∨ 𝑏 = 𝑍)))))
4113, 40bitr3d 280 . . . . . . 7 (𝑅 ∈ CRingOps β†’ (({𝑍} ∈ (Idlβ€˜π‘…) ∧ ({𝑍} β‰  𝑋 ∧ βˆ€π‘Ž ∈ 𝑋 βˆ€π‘ ∈ 𝑋 ((π‘Žπ»π‘) ∈ {𝑍} β†’ (π‘Ž ∈ {𝑍} ∨ 𝑏 ∈ {𝑍})))) ↔ (π‘ˆ β‰  𝑍 ∧ βˆ€π‘Ž ∈ 𝑋 βˆ€π‘ ∈ 𝑋 ((π‘Žπ»π‘) = 𝑍 β†’ (π‘Ž = 𝑍 ∨ 𝑏 = 𝑍)))))
4210, 41bitrid 282 . . . . . 6 (𝑅 ∈ CRingOps β†’ (({𝑍} ∈ (Idlβ€˜π‘…) ∧ {𝑍} β‰  𝑋 ∧ βˆ€π‘Ž ∈ 𝑋 βˆ€π‘ ∈ 𝑋 ((π‘Žπ»π‘) ∈ {𝑍} β†’ (π‘Ž ∈ {𝑍} ∨ 𝑏 ∈ {𝑍}))) ↔ (π‘ˆ β‰  𝑍 ∧ βˆ€π‘Ž ∈ 𝑋 βˆ€π‘ ∈ 𝑋 ((π‘Žπ»π‘) = 𝑍 β†’ (π‘Ž = 𝑍 ∨ 𝑏 = 𝑍)))))
437, 9, 423bitr3d 308 . . . . 5 (𝑅 ∈ CRingOps β†’ ((𝑅 ∈ RingOps ∧ {𝑍} ∈ (PrIdlβ€˜π‘…)) ↔ (π‘ˆ β‰  𝑍 ∧ βˆ€π‘Ž ∈ 𝑋 βˆ€π‘ ∈ 𝑋 ((π‘Žπ»π‘) = 𝑍 β†’ (π‘Ž = 𝑍 ∨ 𝑏 = 𝑍)))))
444, 43bitrid 282 . . . 4 (𝑅 ∈ CRingOps β†’ (𝑅 ∈ PrRing ↔ (π‘ˆ β‰  𝑍 ∧ βˆ€π‘Ž ∈ 𝑋 βˆ€π‘ ∈ 𝑋 ((π‘Žπ»π‘) = 𝑍 β†’ (π‘Ž = 𝑍 ∨ 𝑏 = 𝑍)))))
4544pm5.32i 573 . . 3 ((𝑅 ∈ CRingOps ∧ 𝑅 ∈ PrRing) ↔ (𝑅 ∈ CRingOps ∧ (π‘ˆ β‰  𝑍 ∧ βˆ€π‘Ž ∈ 𝑋 βˆ€π‘ ∈ 𝑋 ((π‘Žπ»π‘) = 𝑍 β†’ (π‘Ž = 𝑍 ∨ 𝑏 = 𝑍)))))
46 ancom 459 . . 3 ((𝑅 ∈ PrRing ∧ 𝑅 ∈ CRingOps) ↔ (𝑅 ∈ CRingOps ∧ 𝑅 ∈ PrRing))
47 3anass 1093 . . 3 ((𝑅 ∈ CRingOps ∧ π‘ˆ β‰  𝑍 ∧ βˆ€π‘Ž ∈ 𝑋 βˆ€π‘ ∈ 𝑋 ((π‘Žπ»π‘) = 𝑍 β†’ (π‘Ž = 𝑍 ∨ 𝑏 = 𝑍))) ↔ (𝑅 ∈ CRingOps ∧ (π‘ˆ β‰  𝑍 ∧ βˆ€π‘Ž ∈ 𝑋 βˆ€π‘ ∈ 𝑋 ((π‘Žπ»π‘) = 𝑍 β†’ (π‘Ž = 𝑍 ∨ 𝑏 = 𝑍)))))
4845, 46, 473bitr4i 302 . 2 ((𝑅 ∈ PrRing ∧ 𝑅 ∈ CRingOps) ↔ (𝑅 ∈ CRingOps ∧ π‘ˆ β‰  𝑍 ∧ βˆ€π‘Ž ∈ 𝑋 βˆ€π‘ ∈ 𝑋 ((π‘Žπ»π‘) = 𝑍 β†’ (π‘Ž = 𝑍 ∨ 𝑏 = 𝑍))))
491, 48bitri 274 1 (𝑅 ∈ Dmn ↔ (𝑅 ∈ CRingOps ∧ π‘ˆ β‰  𝑍 ∧ βˆ€π‘Ž ∈ 𝑋 βˆ€π‘ ∈ 𝑋 ((π‘Žπ»π‘) = 𝑍 β†’ (π‘Ž = 𝑍 ∨ 𝑏 = 𝑍))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∨ wo 843   ∧ w3a 1085   = wceq 1539   ∈ wcel 2104   β‰  wne 2938  βˆ€wral 3059  {csn 4627   class class class wbr 5147  ran crn 5676  β€˜cfv 6542  (class class class)co 7411  1st c1st 7975  2nd c2nd 7976  1oc1o 8461   β‰ˆ cen 8938  GIdcgi 30010  RingOpscrngo 37065  CRingOpsccring 37164  Idlcidl 37178  PrIdlcpridl 37179  PrRingcprrng 37217  Dmncdmn 37218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-1st 7977  df-2nd 7978  df-1o 8468  df-en 8942  df-grpo 30013  df-gid 30014  df-ginv 30015  df-ablo 30065  df-ass 37014  df-exid 37016  df-mgmOLD 37020  df-sgrOLD 37032  df-mndo 37038  df-rngo 37066  df-com2 37161  df-crngo 37165  df-idl 37181  df-pridl 37182  df-prrngo 37219  df-dmn 37220  df-igen 37231
This theorem is referenced by:  dmnnzd  37246
  Copyright terms: Public domain W3C validator