Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmnrngo Structured version   Visualization version   GIF version

Theorem dmnrngo 38009
Description: A domain is a ring. (Contributed by Jeff Madsen, 6-Jan-2011.)
Assertion
Ref Expression
dmnrngo (𝑅 ∈ Dmn → 𝑅 ∈ RingOps)

Proof of Theorem dmnrngo
StepHypRef Expression
1 dmncrng 38008 . 2 (𝑅 ∈ Dmn → 𝑅 ∈ CRingOps)
2 crngorngo 37952 . 2 (𝑅 ∈ CRingOps → 𝑅 ∈ RingOps)
31, 2syl 17 1 (𝑅 ∈ Dmn → 𝑅 ∈ RingOps)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  RingOpscrngo 37846  CRingOpsccring 37945  Dmncdmn 37999
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6520  df-fv 6576  df-crngo 37946  df-prrngo 38000  df-dmn 38001
This theorem is referenced by:  dmncan1  38028
  Copyright terms: Public domain W3C validator