![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dmnrngo | Structured version Visualization version GIF version |
Description: A domain is a ring. (Contributed by Jeff Madsen, 6-Jan-2011.) |
Ref | Expression |
---|---|
dmnrngo | ⊢ (𝑅 ∈ Dmn → 𝑅 ∈ RingOps) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmncrng 38003 | . 2 ⊢ (𝑅 ∈ Dmn → 𝑅 ∈ CRingOps) | |
2 | crngorngo 37947 | . 2 ⊢ (𝑅 ∈ CRingOps → 𝑅 ∈ RingOps) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝑅 ∈ Dmn → 𝑅 ∈ RingOps) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2104 RingOpscrngo 37841 CRingOpsccring 37940 Dmncdmn 37994 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1963 ax-7 2003 ax-8 2106 ax-9 2114 ax-ext 2704 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1087 df-tru 1538 df-fal 1548 df-ex 1775 df-sb 2061 df-clab 2711 df-cleq 2725 df-clel 2812 df-rab 3433 df-v 3479 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4915 df-br 5150 df-iota 6510 df-fv 6566 df-crngo 37941 df-prrngo 37995 df-dmn 37996 |
This theorem is referenced by: dmncan1 38023 |
Copyright terms: Public domain | W3C validator |