| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > crngm23 | Structured version Visualization version GIF version | ||
| Description: Commutative/associative law for commutative rings. (Contributed by Jeff Madsen, 19-Jun-2010.) |
| Ref | Expression |
|---|---|
| crngm.1 | ⊢ 𝐺 = (1st ‘𝑅) |
| crngm.2 | ⊢ 𝐻 = (2nd ‘𝑅) |
| crngm.3 | ⊢ 𝑋 = ran 𝐺 |
| Ref | Expression |
|---|---|
| crngm23 | ⊢ ((𝑅 ∈ CRingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐻𝐵)𝐻𝐶) = ((𝐴𝐻𝐶)𝐻𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crngm.1 | . . . . 5 ⊢ 𝐺 = (1st ‘𝑅) | |
| 2 | crngm.2 | . . . . 5 ⊢ 𝐻 = (2nd ‘𝑅) | |
| 3 | crngm.3 | . . . . 5 ⊢ 𝑋 = ran 𝐺 | |
| 4 | 1, 2, 3 | crngocom 38025 | . . . 4 ⊢ ((𝑅 ∈ CRingOps ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐵𝐻𝐶) = (𝐶𝐻𝐵)) |
| 5 | 4 | 3adant3r1 1183 | . . 3 ⊢ ((𝑅 ∈ CRingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐵𝐻𝐶) = (𝐶𝐻𝐵)) |
| 6 | 5 | oveq2d 7421 | . 2 ⊢ ((𝑅 ∈ CRingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐻(𝐵𝐻𝐶)) = (𝐴𝐻(𝐶𝐻𝐵))) |
| 7 | crngorngo 38024 | . . 3 ⊢ (𝑅 ∈ CRingOps → 𝑅 ∈ RingOps) | |
| 8 | 1, 2, 3 | rngoass 37930 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐻𝐵)𝐻𝐶) = (𝐴𝐻(𝐵𝐻𝐶))) |
| 9 | 7, 8 | sylan 580 | . 2 ⊢ ((𝑅 ∈ CRingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐻𝐵)𝐻𝐶) = (𝐴𝐻(𝐵𝐻𝐶))) |
| 10 | 1, 2, 3 | rngoass 37930 | . . . . . 6 ⊢ ((𝑅 ∈ RingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((𝐴𝐻𝐶)𝐻𝐵) = (𝐴𝐻(𝐶𝐻𝐵))) |
| 11 | 10 | 3exp2 1355 | . . . . 5 ⊢ (𝑅 ∈ RingOps → (𝐴 ∈ 𝑋 → (𝐶 ∈ 𝑋 → (𝐵 ∈ 𝑋 → ((𝐴𝐻𝐶)𝐻𝐵) = (𝐴𝐻(𝐶𝐻𝐵)))))) |
| 12 | 11 | com34 91 | . . . 4 ⊢ (𝑅 ∈ RingOps → (𝐴 ∈ 𝑋 → (𝐵 ∈ 𝑋 → (𝐶 ∈ 𝑋 → ((𝐴𝐻𝐶)𝐻𝐵) = (𝐴𝐻(𝐶𝐻𝐵)))))) |
| 13 | 12 | 3imp2 1350 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐻𝐶)𝐻𝐵) = (𝐴𝐻(𝐶𝐻𝐵))) |
| 14 | 7, 13 | sylan 580 | . 2 ⊢ ((𝑅 ∈ CRingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐻𝐶)𝐻𝐵) = (𝐴𝐻(𝐶𝐻𝐵))) |
| 15 | 6, 9, 14 | 3eqtr4d 2780 | 1 ⊢ ((𝑅 ∈ CRingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐻𝐵)𝐻𝐶) = ((𝐴𝐻𝐶)𝐻𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ran crn 5655 ‘cfv 6531 (class class class)co 7405 1st c1st 7986 2nd c2nd 7987 RingOpscrngo 37918 CRingOpsccring 38017 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 df-ov 7408 df-1st 7988 df-2nd 7989 df-rngo 37919 df-com2 38014 df-crngo 38018 |
| This theorem is referenced by: crngm4 38027 |
| Copyright terms: Public domain | W3C validator |