Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  crngm23 Structured version   Visualization version   GIF version

Theorem crngm23 38009
Description: Commutative/associative law for commutative rings. (Contributed by Jeff Madsen, 19-Jun-2010.)
Hypotheses
Ref Expression
crngm.1 𝐺 = (1st𝑅)
crngm.2 𝐻 = (2nd𝑅)
crngm.3 𝑋 = ran 𝐺
Assertion
Ref Expression
crngm23 ((𝑅 ∈ CRingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐻𝐵)𝐻𝐶) = ((𝐴𝐻𝐶)𝐻𝐵))

Proof of Theorem crngm23
StepHypRef Expression
1 crngm.1 . . . . 5 𝐺 = (1st𝑅)
2 crngm.2 . . . . 5 𝐻 = (2nd𝑅)
3 crngm.3 . . . . 5 𝑋 = ran 𝐺
41, 2, 3crngocom 38008 . . . 4 ((𝑅 ∈ CRingOps ∧ 𝐵𝑋𝐶𝑋) → (𝐵𝐻𝐶) = (𝐶𝐻𝐵))
543adant3r1 1183 . . 3 ((𝑅 ∈ CRingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐵𝐻𝐶) = (𝐶𝐻𝐵))
65oveq2d 7447 . 2 ((𝑅 ∈ CRingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐻(𝐵𝐻𝐶)) = (𝐴𝐻(𝐶𝐻𝐵)))
7 crngorngo 38007 . . 3 (𝑅 ∈ CRingOps → 𝑅 ∈ RingOps)
81, 2, 3rngoass 37913 . . 3 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐻𝐵)𝐻𝐶) = (𝐴𝐻(𝐵𝐻𝐶)))
97, 8sylan 580 . 2 ((𝑅 ∈ CRingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐻𝐵)𝐻𝐶) = (𝐴𝐻(𝐵𝐻𝐶)))
101, 2, 3rngoass 37913 . . . . . 6 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐶𝑋𝐵𝑋)) → ((𝐴𝐻𝐶)𝐻𝐵) = (𝐴𝐻(𝐶𝐻𝐵)))
11103exp2 1355 . . . . 5 (𝑅 ∈ RingOps → (𝐴𝑋 → (𝐶𝑋 → (𝐵𝑋 → ((𝐴𝐻𝐶)𝐻𝐵) = (𝐴𝐻(𝐶𝐻𝐵))))))
1211com34 91 . . . 4 (𝑅 ∈ RingOps → (𝐴𝑋 → (𝐵𝑋 → (𝐶𝑋 → ((𝐴𝐻𝐶)𝐻𝐵) = (𝐴𝐻(𝐶𝐻𝐵))))))
13123imp2 1350 . . 3 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐻𝐶)𝐻𝐵) = (𝐴𝐻(𝐶𝐻𝐵)))
147, 13sylan 580 . 2 ((𝑅 ∈ CRingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐻𝐶)𝐻𝐵) = (𝐴𝐻(𝐶𝐻𝐵)))
156, 9, 143eqtr4d 2787 1 ((𝑅 ∈ CRingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐻𝐵)𝐻𝐶) = ((𝐴𝐻𝐶)𝐻𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  ran crn 5686  cfv 6561  (class class class)co 7431  1st c1st 8012  2nd c2nd 8013  RingOpscrngo 37901  CRingOpsccring 38000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-fv 6569  df-ov 7434  df-1st 8014  df-2nd 8015  df-rngo 37902  df-com2 37997  df-crngo 38001
This theorem is referenced by:  crngm4  38010
  Copyright terms: Public domain W3C validator