![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > crngm23 | Structured version Visualization version GIF version |
Description: Commutative/associative law for commutative rings. (Contributed by Jeff Madsen, 19-Jun-2010.) |
Ref | Expression |
---|---|
crngm.1 | ⊢ 𝐺 = (1st ‘𝑅) |
crngm.2 | ⊢ 𝐻 = (2nd ‘𝑅) |
crngm.3 | ⊢ 𝑋 = ran 𝐺 |
Ref | Expression |
---|---|
crngm23 | ⊢ ((𝑅 ∈ CRingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐻𝐵)𝐻𝐶) = ((𝐴𝐻𝐶)𝐻𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | crngm.1 | . . . . 5 ⊢ 𝐺 = (1st ‘𝑅) | |
2 | crngm.2 | . . . . 5 ⊢ 𝐻 = (2nd ‘𝑅) | |
3 | crngm.3 | . . . . 5 ⊢ 𝑋 = ran 𝐺 | |
4 | 1, 2, 3 | crngocom 37380 | . . . 4 ⊢ ((𝑅 ∈ CRingOps ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐵𝐻𝐶) = (𝐶𝐻𝐵)) |
5 | 4 | 3adant3r1 1179 | . . 3 ⊢ ((𝑅 ∈ CRingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐵𝐻𝐶) = (𝐶𝐻𝐵)) |
6 | 5 | oveq2d 7420 | . 2 ⊢ ((𝑅 ∈ CRingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐻(𝐵𝐻𝐶)) = (𝐴𝐻(𝐶𝐻𝐵))) |
7 | crngorngo 37379 | . . 3 ⊢ (𝑅 ∈ CRingOps → 𝑅 ∈ RingOps) | |
8 | 1, 2, 3 | rngoass 37285 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐻𝐵)𝐻𝐶) = (𝐴𝐻(𝐵𝐻𝐶))) |
9 | 7, 8 | sylan 579 | . 2 ⊢ ((𝑅 ∈ CRingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐻𝐵)𝐻𝐶) = (𝐴𝐻(𝐵𝐻𝐶))) |
10 | 1, 2, 3 | rngoass 37285 | . . . . . 6 ⊢ ((𝑅 ∈ RingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((𝐴𝐻𝐶)𝐻𝐵) = (𝐴𝐻(𝐶𝐻𝐵))) |
11 | 10 | 3exp2 1351 | . . . . 5 ⊢ (𝑅 ∈ RingOps → (𝐴 ∈ 𝑋 → (𝐶 ∈ 𝑋 → (𝐵 ∈ 𝑋 → ((𝐴𝐻𝐶)𝐻𝐵) = (𝐴𝐻(𝐶𝐻𝐵)))))) |
12 | 11 | com34 91 | . . . 4 ⊢ (𝑅 ∈ RingOps → (𝐴 ∈ 𝑋 → (𝐵 ∈ 𝑋 → (𝐶 ∈ 𝑋 → ((𝐴𝐻𝐶)𝐻𝐵) = (𝐴𝐻(𝐶𝐻𝐵)))))) |
13 | 12 | 3imp2 1346 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐻𝐶)𝐻𝐵) = (𝐴𝐻(𝐶𝐻𝐵))) |
14 | 7, 13 | sylan 579 | . 2 ⊢ ((𝑅 ∈ CRingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐻𝐶)𝐻𝐵) = (𝐴𝐻(𝐶𝐻𝐵))) |
15 | 6, 9, 14 | 3eqtr4d 2776 | 1 ⊢ ((𝑅 ∈ CRingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐻𝐵)𝐻𝐶) = ((𝐴𝐻𝐶)𝐻𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ran crn 5670 ‘cfv 6536 (class class class)co 7404 1st c1st 7969 2nd c2nd 7970 RingOpscrngo 37273 CRingOpsccring 37372 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-ov 7407 df-1st 7971 df-2nd 7972 df-rngo 37274 df-com2 37369 df-crngo 37373 |
This theorem is referenced by: crngm4 37382 |
Copyright terms: Public domain | W3C validator |