Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > crngm23 | Structured version Visualization version GIF version |
Description: Commutative/associative law for commutative rings. (Contributed by Jeff Madsen, 19-Jun-2010.) |
Ref | Expression |
---|---|
crngm.1 | ⊢ 𝐺 = (1st ‘𝑅) |
crngm.2 | ⊢ 𝐻 = (2nd ‘𝑅) |
crngm.3 | ⊢ 𝑋 = ran 𝐺 |
Ref | Expression |
---|---|
crngm23 | ⊢ ((𝑅 ∈ CRingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐻𝐵)𝐻𝐶) = ((𝐴𝐻𝐶)𝐻𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | crngm.1 | . . . . 5 ⊢ 𝐺 = (1st ‘𝑅) | |
2 | crngm.2 | . . . . 5 ⊢ 𝐻 = (2nd ‘𝑅) | |
3 | crngm.3 | . . . . 5 ⊢ 𝑋 = ran 𝐺 | |
4 | 1, 2, 3 | crngocom 35896 | . . . 4 ⊢ ((𝑅 ∈ CRingOps ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐵𝐻𝐶) = (𝐶𝐻𝐵)) |
5 | 4 | 3adant3r1 1184 | . . 3 ⊢ ((𝑅 ∈ CRingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐵𝐻𝐶) = (𝐶𝐻𝐵)) |
6 | 5 | oveq2d 7229 | . 2 ⊢ ((𝑅 ∈ CRingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐻(𝐵𝐻𝐶)) = (𝐴𝐻(𝐶𝐻𝐵))) |
7 | crngorngo 35895 | . . 3 ⊢ (𝑅 ∈ CRingOps → 𝑅 ∈ RingOps) | |
8 | 1, 2, 3 | rngoass 35801 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐻𝐵)𝐻𝐶) = (𝐴𝐻(𝐵𝐻𝐶))) |
9 | 7, 8 | sylan 583 | . 2 ⊢ ((𝑅 ∈ CRingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐻𝐵)𝐻𝐶) = (𝐴𝐻(𝐵𝐻𝐶))) |
10 | 1, 2, 3 | rngoass 35801 | . . . . . 6 ⊢ ((𝑅 ∈ RingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((𝐴𝐻𝐶)𝐻𝐵) = (𝐴𝐻(𝐶𝐻𝐵))) |
11 | 10 | 3exp2 1356 | . . . . 5 ⊢ (𝑅 ∈ RingOps → (𝐴 ∈ 𝑋 → (𝐶 ∈ 𝑋 → (𝐵 ∈ 𝑋 → ((𝐴𝐻𝐶)𝐻𝐵) = (𝐴𝐻(𝐶𝐻𝐵)))))) |
12 | 11 | com34 91 | . . . 4 ⊢ (𝑅 ∈ RingOps → (𝐴 ∈ 𝑋 → (𝐵 ∈ 𝑋 → (𝐶 ∈ 𝑋 → ((𝐴𝐻𝐶)𝐻𝐵) = (𝐴𝐻(𝐶𝐻𝐵)))))) |
13 | 12 | 3imp2 1351 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐻𝐶)𝐻𝐵) = (𝐴𝐻(𝐶𝐻𝐵))) |
14 | 7, 13 | sylan 583 | . 2 ⊢ ((𝑅 ∈ CRingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐻𝐶)𝐻𝐵) = (𝐴𝐻(𝐶𝐻𝐵))) |
15 | 6, 9, 14 | 3eqtr4d 2787 | 1 ⊢ ((𝑅 ∈ CRingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐻𝐵)𝐻𝐶) = ((𝐴𝐻𝐶)𝐻𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 ran crn 5552 ‘cfv 6380 (class class class)co 7213 1st c1st 7759 2nd c2nd 7760 RingOpscrngo 35789 CRingOpsccring 35888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-fv 6388 df-ov 7216 df-1st 7761 df-2nd 7762 df-rngo 35790 df-com2 35885 df-crngo 35889 |
This theorem is referenced by: crngm4 35898 |
Copyright terms: Public domain | W3C validator |