Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isidlc Structured version   Visualization version   GIF version

Theorem isidlc 38022
Description: The predicate "is an ideal of the commutative ring 𝑅". (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
idlval.1 𝐺 = (1st𝑅)
idlval.2 𝐻 = (2nd𝑅)
idlval.3 𝑋 = ran 𝐺
idlval.4 𝑍 = (GId‘𝐺)
Assertion
Ref Expression
isidlc (𝑅 ∈ CRingOps → (𝐼 ∈ (Idl‘𝑅) ↔ (𝐼𝑋𝑍𝐼 ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 (𝑧𝐻𝑥) ∈ 𝐼))))
Distinct variable groups:   𝑥,𝑅,𝑦,𝑧   𝑧,𝑋   𝑥,𝐼,𝑦,𝑧   𝑥,𝑋
Allowed substitution hints:   𝐺(𝑥,𝑦,𝑧)   𝐻(𝑥,𝑦,𝑧)   𝑋(𝑦)   𝑍(𝑥,𝑦,𝑧)

Proof of Theorem isidlc
StepHypRef Expression
1 crngorngo 38007 . . 3 (𝑅 ∈ CRingOps → 𝑅 ∈ RingOps)
2 idlval.1 . . . 4 𝐺 = (1st𝑅)
3 idlval.2 . . . 4 𝐻 = (2nd𝑅)
4 idlval.3 . . . 4 𝑋 = ran 𝐺
5 idlval.4 . . . 4 𝑍 = (GId‘𝐺)
62, 3, 4, 5isidl 38021 . . 3 (𝑅 ∈ RingOps → (𝐼 ∈ (Idl‘𝑅) ↔ (𝐼𝑋𝑍𝐼 ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼)))))
71, 6syl 17 . 2 (𝑅 ∈ CRingOps → (𝐼 ∈ (Idl‘𝑅) ↔ (𝐼𝑋𝑍𝐼 ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼)))))
8 ssel2 3978 . . . . . . . 8 ((𝐼𝑋𝑥𝐼) → 𝑥𝑋)
92, 3, 4crngocom 38008 . . . . . . . . . . . . . . 15 ((𝑅 ∈ CRingOps ∧ 𝑥𝑋𝑧𝑋) → (𝑥𝐻𝑧) = (𝑧𝐻𝑥))
109eleq1d 2826 . . . . . . . . . . . . . 14 ((𝑅 ∈ CRingOps ∧ 𝑥𝑋𝑧𝑋) → ((𝑥𝐻𝑧) ∈ 𝐼 ↔ (𝑧𝐻𝑥) ∈ 𝐼))
1110biimprd 248 . . . . . . . . . . . . 13 ((𝑅 ∈ CRingOps ∧ 𝑥𝑋𝑧𝑋) → ((𝑧𝐻𝑥) ∈ 𝐼 → (𝑥𝐻𝑧) ∈ 𝐼))
12113expa 1119 . . . . . . . . . . . 12 (((𝑅 ∈ CRingOps ∧ 𝑥𝑋) ∧ 𝑧𝑋) → ((𝑧𝐻𝑥) ∈ 𝐼 → (𝑥𝐻𝑧) ∈ 𝐼))
1312pm4.71d 561 . . . . . . . . . . 11 (((𝑅 ∈ CRingOps ∧ 𝑥𝑋) ∧ 𝑧𝑋) → ((𝑧𝐻𝑥) ∈ 𝐼 ↔ ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼)))
1413bicomd 223 . . . . . . . . . 10 (((𝑅 ∈ CRingOps ∧ 𝑥𝑋) ∧ 𝑧𝑋) → (((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼) ↔ (𝑧𝐻𝑥) ∈ 𝐼))
1514ralbidva 3176 . . . . . . . . 9 ((𝑅 ∈ CRingOps ∧ 𝑥𝑋) → (∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼) ↔ ∀𝑧𝑋 (𝑧𝐻𝑥) ∈ 𝐼))
1615anbi2d 630 . . . . . . . 8 ((𝑅 ∈ CRingOps ∧ 𝑥𝑋) → ((∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼)) ↔ (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 (𝑧𝐻𝑥) ∈ 𝐼)))
178, 16sylan2 593 . . . . . . 7 ((𝑅 ∈ CRingOps ∧ (𝐼𝑋𝑥𝐼)) → ((∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼)) ↔ (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 (𝑧𝐻𝑥) ∈ 𝐼)))
1817anassrs 467 . . . . . 6 (((𝑅 ∈ CRingOps ∧ 𝐼𝑋) ∧ 𝑥𝐼) → ((∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼)) ↔ (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 (𝑧𝐻𝑥) ∈ 𝐼)))
1918ralbidva 3176 . . . . 5 ((𝑅 ∈ CRingOps ∧ 𝐼𝑋) → (∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼)) ↔ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 (𝑧𝐻𝑥) ∈ 𝐼)))
2019adantrr 717 . . . 4 ((𝑅 ∈ CRingOps ∧ (𝐼𝑋𝑍𝐼)) → (∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼)) ↔ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 (𝑧𝐻𝑥) ∈ 𝐼)))
2120pm5.32da 579 . . 3 (𝑅 ∈ CRingOps → (((𝐼𝑋𝑍𝐼) ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼))) ↔ ((𝐼𝑋𝑍𝐼) ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 (𝑧𝐻𝑥) ∈ 𝐼))))
22 df-3an 1089 . . 3 ((𝐼𝑋𝑍𝐼 ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼))) ↔ ((𝐼𝑋𝑍𝐼) ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼))))
23 df-3an 1089 . . 3 ((𝐼𝑋𝑍𝐼 ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 (𝑧𝐻𝑥) ∈ 𝐼)) ↔ ((𝐼𝑋𝑍𝐼) ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 (𝑧𝐻𝑥) ∈ 𝐼)))
2421, 22, 233bitr4g 314 . 2 (𝑅 ∈ CRingOps → ((𝐼𝑋𝑍𝐼 ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼))) ↔ (𝐼𝑋𝑍𝐼 ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 (𝑧𝐻𝑥) ∈ 𝐼))))
257, 24bitrd 279 1 (𝑅 ∈ CRingOps → (𝐼 ∈ (Idl‘𝑅) ↔ (𝐼𝑋𝑍𝐼 ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 (𝑧𝐻𝑥) ∈ 𝐼))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  wss 3951  ran crn 5686  cfv 6561  (class class class)co 7431  1st c1st 8012  2nd c2nd 8013  GIdcgi 30509  RingOpscrngo 37901  CRingOpsccring 38000  Idlcidl 38014
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-iota 6514  df-fun 6563  df-fv 6569  df-ov 7434  df-1st 8014  df-2nd 8015  df-rngo 37902  df-com2 37997  df-crngo 38001  df-idl 38017
This theorem is referenced by:  prnc  38074
  Copyright terms: Public domain W3C validator