Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isidlc Structured version   Visualization version   GIF version

Theorem isidlc 38002
Description: The predicate "is an ideal of the commutative ring 𝑅". (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
idlval.1 𝐺 = (1st𝑅)
idlval.2 𝐻 = (2nd𝑅)
idlval.3 𝑋 = ran 𝐺
idlval.4 𝑍 = (GId‘𝐺)
Assertion
Ref Expression
isidlc (𝑅 ∈ CRingOps → (𝐼 ∈ (Idl‘𝑅) ↔ (𝐼𝑋𝑍𝐼 ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 (𝑧𝐻𝑥) ∈ 𝐼))))
Distinct variable groups:   𝑥,𝑅,𝑦,𝑧   𝑧,𝑋   𝑥,𝐼,𝑦,𝑧   𝑥,𝑋
Allowed substitution hints:   𝐺(𝑥,𝑦,𝑧)   𝐻(𝑥,𝑦,𝑧)   𝑋(𝑦)   𝑍(𝑥,𝑦,𝑧)

Proof of Theorem isidlc
StepHypRef Expression
1 crngorngo 37987 . . 3 (𝑅 ∈ CRingOps → 𝑅 ∈ RingOps)
2 idlval.1 . . . 4 𝐺 = (1st𝑅)
3 idlval.2 . . . 4 𝐻 = (2nd𝑅)
4 idlval.3 . . . 4 𝑋 = ran 𝐺
5 idlval.4 . . . 4 𝑍 = (GId‘𝐺)
62, 3, 4, 5isidl 38001 . . 3 (𝑅 ∈ RingOps → (𝐼 ∈ (Idl‘𝑅) ↔ (𝐼𝑋𝑍𝐼 ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼)))))
71, 6syl 17 . 2 (𝑅 ∈ CRingOps → (𝐼 ∈ (Idl‘𝑅) ↔ (𝐼𝑋𝑍𝐼 ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼)))))
8 ssel2 3990 . . . . . . . 8 ((𝐼𝑋𝑥𝐼) → 𝑥𝑋)
92, 3, 4crngocom 37988 . . . . . . . . . . . . . . 15 ((𝑅 ∈ CRingOps ∧ 𝑥𝑋𝑧𝑋) → (𝑥𝐻𝑧) = (𝑧𝐻𝑥))
109eleq1d 2824 . . . . . . . . . . . . . 14 ((𝑅 ∈ CRingOps ∧ 𝑥𝑋𝑧𝑋) → ((𝑥𝐻𝑧) ∈ 𝐼 ↔ (𝑧𝐻𝑥) ∈ 𝐼))
1110biimprd 248 . . . . . . . . . . . . 13 ((𝑅 ∈ CRingOps ∧ 𝑥𝑋𝑧𝑋) → ((𝑧𝐻𝑥) ∈ 𝐼 → (𝑥𝐻𝑧) ∈ 𝐼))
12113expa 1117 . . . . . . . . . . . 12 (((𝑅 ∈ CRingOps ∧ 𝑥𝑋) ∧ 𝑧𝑋) → ((𝑧𝐻𝑥) ∈ 𝐼 → (𝑥𝐻𝑧) ∈ 𝐼))
1312pm4.71d 561 . . . . . . . . . . 11 (((𝑅 ∈ CRingOps ∧ 𝑥𝑋) ∧ 𝑧𝑋) → ((𝑧𝐻𝑥) ∈ 𝐼 ↔ ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼)))
1413bicomd 223 . . . . . . . . . 10 (((𝑅 ∈ CRingOps ∧ 𝑥𝑋) ∧ 𝑧𝑋) → (((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼) ↔ (𝑧𝐻𝑥) ∈ 𝐼))
1514ralbidva 3174 . . . . . . . . 9 ((𝑅 ∈ CRingOps ∧ 𝑥𝑋) → (∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼) ↔ ∀𝑧𝑋 (𝑧𝐻𝑥) ∈ 𝐼))
1615anbi2d 630 . . . . . . . 8 ((𝑅 ∈ CRingOps ∧ 𝑥𝑋) → ((∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼)) ↔ (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 (𝑧𝐻𝑥) ∈ 𝐼)))
178, 16sylan2 593 . . . . . . 7 ((𝑅 ∈ CRingOps ∧ (𝐼𝑋𝑥𝐼)) → ((∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼)) ↔ (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 (𝑧𝐻𝑥) ∈ 𝐼)))
1817anassrs 467 . . . . . 6 (((𝑅 ∈ CRingOps ∧ 𝐼𝑋) ∧ 𝑥𝐼) → ((∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼)) ↔ (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 (𝑧𝐻𝑥) ∈ 𝐼)))
1918ralbidva 3174 . . . . 5 ((𝑅 ∈ CRingOps ∧ 𝐼𝑋) → (∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼)) ↔ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 (𝑧𝐻𝑥) ∈ 𝐼)))
2019adantrr 717 . . . 4 ((𝑅 ∈ CRingOps ∧ (𝐼𝑋𝑍𝐼)) → (∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼)) ↔ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 (𝑧𝐻𝑥) ∈ 𝐼)))
2120pm5.32da 579 . . 3 (𝑅 ∈ CRingOps → (((𝐼𝑋𝑍𝐼) ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼))) ↔ ((𝐼𝑋𝑍𝐼) ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 (𝑧𝐻𝑥) ∈ 𝐼))))
22 df-3an 1088 . . 3 ((𝐼𝑋𝑍𝐼 ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼))) ↔ ((𝐼𝑋𝑍𝐼) ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼))))
23 df-3an 1088 . . 3 ((𝐼𝑋𝑍𝐼 ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 (𝑧𝐻𝑥) ∈ 𝐼)) ↔ ((𝐼𝑋𝑍𝐼) ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 (𝑧𝐻𝑥) ∈ 𝐼)))
2421, 22, 233bitr4g 314 . 2 (𝑅 ∈ CRingOps → ((𝐼𝑋𝑍𝐼 ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼))) ↔ (𝐼𝑋𝑍𝐼 ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 (𝑧𝐻𝑥) ∈ 𝐼))))
257, 24bitrd 279 1 (𝑅 ∈ CRingOps → (𝐼 ∈ (Idl‘𝑅) ↔ (𝐼𝑋𝑍𝐼 ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 (𝑧𝐻𝑥) ∈ 𝐼))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  wss 3963  ran crn 5690  cfv 6563  (class class class)co 7431  1st c1st 8011  2nd c2nd 8012  GIdcgi 30519  RingOpscrngo 37881  CRingOpsccring 37980  Idlcidl 37994
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-iota 6516  df-fun 6565  df-fv 6571  df-ov 7434  df-1st 8013  df-2nd 8014  df-rngo 37882  df-com2 37977  df-crngo 37981  df-idl 37997
This theorem is referenced by:  prnc  38054
  Copyright terms: Public domain W3C validator