Proof of Theorem isidlc
Step | Hyp | Ref
| Expression |
1 | | crngorngo 35895 |
. . 3
⊢ (𝑅 ∈ CRingOps → 𝑅 ∈
RingOps) |
2 | | idlval.1 |
. . . 4
⊢ 𝐺 = (1st ‘𝑅) |
3 | | idlval.2 |
. . . 4
⊢ 𝐻 = (2nd ‘𝑅) |
4 | | idlval.3 |
. . . 4
⊢ 𝑋 = ran 𝐺 |
5 | | idlval.4 |
. . . 4
⊢ 𝑍 = (GId‘𝐺) |
6 | 2, 3, 4, 5 | isidl 35909 |
. . 3
⊢ (𝑅 ∈ RingOps → (𝐼 ∈ (Idl‘𝑅) ↔ (𝐼 ⊆ 𝑋 ∧ 𝑍 ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ 𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼))))) |
7 | 1, 6 | syl 17 |
. 2
⊢ (𝑅 ∈ CRingOps → (𝐼 ∈ (Idl‘𝑅) ↔ (𝐼 ⊆ 𝑋 ∧ 𝑍 ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ 𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼))))) |
8 | | ssel2 3895 |
. . . . . . . 8
⊢ ((𝐼 ⊆ 𝑋 ∧ 𝑥 ∈ 𝐼) → 𝑥 ∈ 𝑋) |
9 | 2, 3, 4 | crngocom 35896 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ CRingOps ∧ 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → (𝑥𝐻𝑧) = (𝑧𝐻𝑥)) |
10 | 9 | eleq1d 2822 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ CRingOps ∧ 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → ((𝑥𝐻𝑧) ∈ 𝐼 ↔ (𝑧𝐻𝑥) ∈ 𝐼)) |
11 | 10 | biimprd 251 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ CRingOps ∧ 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → ((𝑧𝐻𝑥) ∈ 𝐼 → (𝑥𝐻𝑧) ∈ 𝐼)) |
12 | 11 | 3expa 1120 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ CRingOps ∧ 𝑥 ∈ 𝑋) ∧ 𝑧 ∈ 𝑋) → ((𝑧𝐻𝑥) ∈ 𝐼 → (𝑥𝐻𝑧) ∈ 𝐼)) |
13 | 12 | pm4.71d 565 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ CRingOps ∧ 𝑥 ∈ 𝑋) ∧ 𝑧 ∈ 𝑋) → ((𝑧𝐻𝑥) ∈ 𝐼 ↔ ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼))) |
14 | 13 | bicomd 226 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ CRingOps ∧ 𝑥 ∈ 𝑋) ∧ 𝑧 ∈ 𝑋) → (((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼) ↔ (𝑧𝐻𝑥) ∈ 𝐼)) |
15 | 14 | ralbidva 3117 |
. . . . . . . . 9
⊢ ((𝑅 ∈ CRingOps ∧ 𝑥 ∈ 𝑋) → (∀𝑧 ∈ 𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼) ↔ ∀𝑧 ∈ 𝑋 (𝑧𝐻𝑥) ∈ 𝐼)) |
16 | 15 | anbi2d 632 |
. . . . . . . 8
⊢ ((𝑅 ∈ CRingOps ∧ 𝑥 ∈ 𝑋) → ((∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ 𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼)) ↔ (∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ 𝑋 (𝑧𝐻𝑥) ∈ 𝐼))) |
17 | 8, 16 | sylan2 596 |
. . . . . . 7
⊢ ((𝑅 ∈ CRingOps ∧ (𝐼 ⊆ 𝑋 ∧ 𝑥 ∈ 𝐼)) → ((∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ 𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼)) ↔ (∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ 𝑋 (𝑧𝐻𝑥) ∈ 𝐼))) |
18 | 17 | anassrs 471 |
. . . . . 6
⊢ (((𝑅 ∈ CRingOps ∧ 𝐼 ⊆ 𝑋) ∧ 𝑥 ∈ 𝐼) → ((∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ 𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼)) ↔ (∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ 𝑋 (𝑧𝐻𝑥) ∈ 𝐼))) |
19 | 18 | ralbidva 3117 |
. . . . 5
⊢ ((𝑅 ∈ CRingOps ∧ 𝐼 ⊆ 𝑋) → (∀𝑥 ∈ 𝐼 (∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ 𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼)) ↔ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ 𝑋 (𝑧𝐻𝑥) ∈ 𝐼))) |
20 | 19 | adantrr 717 |
. . . 4
⊢ ((𝑅 ∈ CRingOps ∧ (𝐼 ⊆ 𝑋 ∧ 𝑍 ∈ 𝐼)) → (∀𝑥 ∈ 𝐼 (∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ 𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼)) ↔ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ 𝑋 (𝑧𝐻𝑥) ∈ 𝐼))) |
21 | 20 | pm5.32da 582 |
. . 3
⊢ (𝑅 ∈ CRingOps → (((𝐼 ⊆ 𝑋 ∧ 𝑍 ∈ 𝐼) ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ 𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼))) ↔ ((𝐼 ⊆ 𝑋 ∧ 𝑍 ∈ 𝐼) ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ 𝑋 (𝑧𝐻𝑥) ∈ 𝐼)))) |
22 | | df-3an 1091 |
. . 3
⊢ ((𝐼 ⊆ 𝑋 ∧ 𝑍 ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ 𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼))) ↔ ((𝐼 ⊆ 𝑋 ∧ 𝑍 ∈ 𝐼) ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ 𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼)))) |
23 | | df-3an 1091 |
. . 3
⊢ ((𝐼 ⊆ 𝑋 ∧ 𝑍 ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ 𝑋 (𝑧𝐻𝑥) ∈ 𝐼)) ↔ ((𝐼 ⊆ 𝑋 ∧ 𝑍 ∈ 𝐼) ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ 𝑋 (𝑧𝐻𝑥) ∈ 𝐼))) |
24 | 21, 22, 23 | 3bitr4g 317 |
. 2
⊢ (𝑅 ∈ CRingOps → ((𝐼 ⊆ 𝑋 ∧ 𝑍 ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ 𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼))) ↔ (𝐼 ⊆ 𝑋 ∧ 𝑍 ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ 𝑋 (𝑧𝐻𝑥) ∈ 𝐼)))) |
25 | 7, 24 | bitrd 282 |
1
⊢ (𝑅 ∈ CRingOps → (𝐼 ∈ (Idl‘𝑅) ↔ (𝐼 ⊆ 𝑋 ∧ 𝑍 ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ 𝑋 (𝑧𝐻𝑥) ∈ 𝐼)))) |