Mathbox for Jeff Madsen < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isidlc Structured version   Visualization version   GIF version

Theorem isidlc 35469
 Description: The predicate "is an ideal of the commutative ring 𝑅". (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
idlval.1 𝐺 = (1st𝑅)
idlval.2 𝐻 = (2nd𝑅)
idlval.3 𝑋 = ran 𝐺
idlval.4 𝑍 = (GId‘𝐺)
Assertion
Ref Expression
isidlc (𝑅 ∈ CRingOps → (𝐼 ∈ (Idl‘𝑅) ↔ (𝐼𝑋𝑍𝐼 ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 (𝑧𝐻𝑥) ∈ 𝐼))))
Distinct variable groups:   𝑥,𝑅,𝑦,𝑧   𝑧,𝑋   𝑥,𝐼,𝑦,𝑧   𝑥,𝑋
Allowed substitution hints:   𝐺(𝑥,𝑦,𝑧)   𝐻(𝑥,𝑦,𝑧)   𝑋(𝑦)   𝑍(𝑥,𝑦,𝑧)

Proof of Theorem isidlc
StepHypRef Expression
1 crngorngo 35454 . . 3 (𝑅 ∈ CRingOps → 𝑅 ∈ RingOps)
2 idlval.1 . . . 4 𝐺 = (1st𝑅)
3 idlval.2 . . . 4 𝐻 = (2nd𝑅)
4 idlval.3 . . . 4 𝑋 = ran 𝐺
5 idlval.4 . . . 4 𝑍 = (GId‘𝐺)
62, 3, 4, 5isidl 35468 . . 3 (𝑅 ∈ RingOps → (𝐼 ∈ (Idl‘𝑅) ↔ (𝐼𝑋𝑍𝐼 ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼)))))
71, 6syl 17 . 2 (𝑅 ∈ CRingOps → (𝐼 ∈ (Idl‘𝑅) ↔ (𝐼𝑋𝑍𝐼 ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼)))))
8 ssel2 3910 . . . . . . . 8 ((𝐼𝑋𝑥𝐼) → 𝑥𝑋)
92, 3, 4crngocom 35455 . . . . . . . . . . . . . . 15 ((𝑅 ∈ CRingOps ∧ 𝑥𝑋𝑧𝑋) → (𝑥𝐻𝑧) = (𝑧𝐻𝑥))
109eleq1d 2874 . . . . . . . . . . . . . 14 ((𝑅 ∈ CRingOps ∧ 𝑥𝑋𝑧𝑋) → ((𝑥𝐻𝑧) ∈ 𝐼 ↔ (𝑧𝐻𝑥) ∈ 𝐼))
1110biimprd 251 . . . . . . . . . . . . 13 ((𝑅 ∈ CRingOps ∧ 𝑥𝑋𝑧𝑋) → ((𝑧𝐻𝑥) ∈ 𝐼 → (𝑥𝐻𝑧) ∈ 𝐼))
12113expa 1115 . . . . . . . . . . . 12 (((𝑅 ∈ CRingOps ∧ 𝑥𝑋) ∧ 𝑧𝑋) → ((𝑧𝐻𝑥) ∈ 𝐼 → (𝑥𝐻𝑧) ∈ 𝐼))
1312pm4.71d 565 . . . . . . . . . . 11 (((𝑅 ∈ CRingOps ∧ 𝑥𝑋) ∧ 𝑧𝑋) → ((𝑧𝐻𝑥) ∈ 𝐼 ↔ ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼)))
1413bicomd 226 . . . . . . . . . 10 (((𝑅 ∈ CRingOps ∧ 𝑥𝑋) ∧ 𝑧𝑋) → (((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼) ↔ (𝑧𝐻𝑥) ∈ 𝐼))
1514ralbidva 3161 . . . . . . . . 9 ((𝑅 ∈ CRingOps ∧ 𝑥𝑋) → (∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼) ↔ ∀𝑧𝑋 (𝑧𝐻𝑥) ∈ 𝐼))
1615anbi2d 631 . . . . . . . 8 ((𝑅 ∈ CRingOps ∧ 𝑥𝑋) → ((∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼)) ↔ (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 (𝑧𝐻𝑥) ∈ 𝐼)))
178, 16sylan2 595 . . . . . . 7 ((𝑅 ∈ CRingOps ∧ (𝐼𝑋𝑥𝐼)) → ((∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼)) ↔ (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 (𝑧𝐻𝑥) ∈ 𝐼)))
1817anassrs 471 . . . . . 6 (((𝑅 ∈ CRingOps ∧ 𝐼𝑋) ∧ 𝑥𝐼) → ((∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼)) ↔ (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 (𝑧𝐻𝑥) ∈ 𝐼)))
1918ralbidva 3161 . . . . 5 ((𝑅 ∈ CRingOps ∧ 𝐼𝑋) → (∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼)) ↔ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 (𝑧𝐻𝑥) ∈ 𝐼)))
2019adantrr 716 . . . 4 ((𝑅 ∈ CRingOps ∧ (𝐼𝑋𝑍𝐼)) → (∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼)) ↔ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 (𝑧𝐻𝑥) ∈ 𝐼)))
2120pm5.32da 582 . . 3 (𝑅 ∈ CRingOps → (((𝐼𝑋𝑍𝐼) ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼))) ↔ ((𝐼𝑋𝑍𝐼) ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 (𝑧𝐻𝑥) ∈ 𝐼))))
22 df-3an 1086 . . 3 ((𝐼𝑋𝑍𝐼 ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼))) ↔ ((𝐼𝑋𝑍𝐼) ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼))))
23 df-3an 1086 . . 3 ((𝐼𝑋𝑍𝐼 ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 (𝑧𝐻𝑥) ∈ 𝐼)) ↔ ((𝐼𝑋𝑍𝐼) ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 (𝑧𝐻𝑥) ∈ 𝐼)))
2421, 22, 233bitr4g 317 . 2 (𝑅 ∈ CRingOps → ((𝐼𝑋𝑍𝐼 ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼))) ↔ (𝐼𝑋𝑍𝐼 ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 (𝑧𝐻𝑥) ∈ 𝐼))))
257, 24bitrd 282 1 (𝑅 ∈ CRingOps → (𝐼 ∈ (Idl‘𝑅) ↔ (𝐼𝑋𝑍𝐼 ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 (𝑧𝐻𝑥) ∈ 𝐼))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  ∀wral 3106   ⊆ wss 3881  ran crn 5520  ‘cfv 6324  (class class class)co 7135  1st c1st 7671  2nd c2nd 7672  GIdcgi 28280  RingOpscrngo 35348  CRingOpsccring 35447  Idlcidl 35461 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7443 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-iota 6283  df-fun 6326  df-fv 6332  df-ov 7138  df-1st 7673  df-2nd 7674  df-rngo 35349  df-com2 35444  df-crngo 35448  df-idl 35464 This theorem is referenced by:  prnc  35521
 Copyright terms: Public domain W3C validator