Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isidlc Structured version   Visualization version   GIF version

Theorem isidlc 37394
Description: The predicate "is an ideal of the commutative ring 𝑅". (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
idlval.1 𝐺 = (1st𝑅)
idlval.2 𝐻 = (2nd𝑅)
idlval.3 𝑋 = ran 𝐺
idlval.4 𝑍 = (GId‘𝐺)
Assertion
Ref Expression
isidlc (𝑅 ∈ CRingOps → (𝐼 ∈ (Idl‘𝑅) ↔ (𝐼𝑋𝑍𝐼 ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 (𝑧𝐻𝑥) ∈ 𝐼))))
Distinct variable groups:   𝑥,𝑅,𝑦,𝑧   𝑧,𝑋   𝑥,𝐼,𝑦,𝑧   𝑥,𝑋
Allowed substitution hints:   𝐺(𝑥,𝑦,𝑧)   𝐻(𝑥,𝑦,𝑧)   𝑋(𝑦)   𝑍(𝑥,𝑦,𝑧)

Proof of Theorem isidlc
StepHypRef Expression
1 crngorngo 37379 . . 3 (𝑅 ∈ CRingOps → 𝑅 ∈ RingOps)
2 idlval.1 . . . 4 𝐺 = (1st𝑅)
3 idlval.2 . . . 4 𝐻 = (2nd𝑅)
4 idlval.3 . . . 4 𝑋 = ran 𝐺
5 idlval.4 . . . 4 𝑍 = (GId‘𝐺)
62, 3, 4, 5isidl 37393 . . 3 (𝑅 ∈ RingOps → (𝐼 ∈ (Idl‘𝑅) ↔ (𝐼𝑋𝑍𝐼 ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼)))))
71, 6syl 17 . 2 (𝑅 ∈ CRingOps → (𝐼 ∈ (Idl‘𝑅) ↔ (𝐼𝑋𝑍𝐼 ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼)))))
8 ssel2 3972 . . . . . . . 8 ((𝐼𝑋𝑥𝐼) → 𝑥𝑋)
92, 3, 4crngocom 37380 . . . . . . . . . . . . . . 15 ((𝑅 ∈ CRingOps ∧ 𝑥𝑋𝑧𝑋) → (𝑥𝐻𝑧) = (𝑧𝐻𝑥))
109eleq1d 2812 . . . . . . . . . . . . . 14 ((𝑅 ∈ CRingOps ∧ 𝑥𝑋𝑧𝑋) → ((𝑥𝐻𝑧) ∈ 𝐼 ↔ (𝑧𝐻𝑥) ∈ 𝐼))
1110biimprd 247 . . . . . . . . . . . . 13 ((𝑅 ∈ CRingOps ∧ 𝑥𝑋𝑧𝑋) → ((𝑧𝐻𝑥) ∈ 𝐼 → (𝑥𝐻𝑧) ∈ 𝐼))
12113expa 1115 . . . . . . . . . . . 12 (((𝑅 ∈ CRingOps ∧ 𝑥𝑋) ∧ 𝑧𝑋) → ((𝑧𝐻𝑥) ∈ 𝐼 → (𝑥𝐻𝑧) ∈ 𝐼))
1312pm4.71d 561 . . . . . . . . . . 11 (((𝑅 ∈ CRingOps ∧ 𝑥𝑋) ∧ 𝑧𝑋) → ((𝑧𝐻𝑥) ∈ 𝐼 ↔ ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼)))
1413bicomd 222 . . . . . . . . . 10 (((𝑅 ∈ CRingOps ∧ 𝑥𝑋) ∧ 𝑧𝑋) → (((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼) ↔ (𝑧𝐻𝑥) ∈ 𝐼))
1514ralbidva 3169 . . . . . . . . 9 ((𝑅 ∈ CRingOps ∧ 𝑥𝑋) → (∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼) ↔ ∀𝑧𝑋 (𝑧𝐻𝑥) ∈ 𝐼))
1615anbi2d 628 . . . . . . . 8 ((𝑅 ∈ CRingOps ∧ 𝑥𝑋) → ((∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼)) ↔ (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 (𝑧𝐻𝑥) ∈ 𝐼)))
178, 16sylan2 592 . . . . . . 7 ((𝑅 ∈ CRingOps ∧ (𝐼𝑋𝑥𝐼)) → ((∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼)) ↔ (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 (𝑧𝐻𝑥) ∈ 𝐼)))
1817anassrs 467 . . . . . 6 (((𝑅 ∈ CRingOps ∧ 𝐼𝑋) ∧ 𝑥𝐼) → ((∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼)) ↔ (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 (𝑧𝐻𝑥) ∈ 𝐼)))
1918ralbidva 3169 . . . . 5 ((𝑅 ∈ CRingOps ∧ 𝐼𝑋) → (∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼)) ↔ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 (𝑧𝐻𝑥) ∈ 𝐼)))
2019adantrr 714 . . . 4 ((𝑅 ∈ CRingOps ∧ (𝐼𝑋𝑍𝐼)) → (∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼)) ↔ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 (𝑧𝐻𝑥) ∈ 𝐼)))
2120pm5.32da 578 . . 3 (𝑅 ∈ CRingOps → (((𝐼𝑋𝑍𝐼) ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼))) ↔ ((𝐼𝑋𝑍𝐼) ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 (𝑧𝐻𝑥) ∈ 𝐼))))
22 df-3an 1086 . . 3 ((𝐼𝑋𝑍𝐼 ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼))) ↔ ((𝐼𝑋𝑍𝐼) ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼))))
23 df-3an 1086 . . 3 ((𝐼𝑋𝑍𝐼 ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 (𝑧𝐻𝑥) ∈ 𝐼)) ↔ ((𝐼𝑋𝑍𝐼) ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 (𝑧𝐻𝑥) ∈ 𝐼)))
2421, 22, 233bitr4g 314 . 2 (𝑅 ∈ CRingOps → ((𝐼𝑋𝑍𝐼 ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼))) ↔ (𝐼𝑋𝑍𝐼 ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 (𝑧𝐻𝑥) ∈ 𝐼))))
257, 24bitrd 279 1 (𝑅 ∈ CRingOps → (𝐼 ∈ (Idl‘𝑅) ↔ (𝐼𝑋𝑍𝐼 ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 (𝑧𝐻𝑥) ∈ 𝐼))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1084   = wceq 1533  wcel 2098  wral 3055  wss 3943  ran crn 5670  cfv 6536  (class class class)co 7404  1st c1st 7969  2nd c2nd 7970  GIdcgi 30248  RingOpscrngo 37273  CRingOpsccring 37372  Idlcidl 37386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-iota 6488  df-fun 6538  df-fv 6544  df-ov 7407  df-1st 7971  df-2nd 7972  df-rngo 37274  df-com2 37369  df-crngo 37373  df-idl 37389
This theorem is referenced by:  prnc  37446
  Copyright terms: Public domain W3C validator