![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbexg | Structured version Visualization version GIF version |
Description: The existence of proper substitution into a class. (Contributed by NM, 10-Nov-2005.) (Revised by NM, 17-Aug-2018.) |
Ref | Expression |
---|---|
csbexg | ⊢ (∀𝑥 𝐵 ∈ 𝑊 → ⦋𝐴 / 𝑥⦌𝐵 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-csb 3909 | . . 3 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} | |
2 | abid2 2877 | . . . . . . . 8 ⊢ {𝑦 ∣ 𝑦 ∈ 𝐵} = 𝐵 | |
3 | elex 3499 | . . . . . . . 8 ⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ V) | |
4 | 2, 3 | eqeltrid 2843 | . . . . . . 7 ⊢ (𝐵 ∈ 𝑊 → {𝑦 ∣ 𝑦 ∈ 𝐵} ∈ V) |
5 | 4 | alimi 1808 | . . . . . 6 ⊢ (∀𝑥 𝐵 ∈ 𝑊 → ∀𝑥{𝑦 ∣ 𝑦 ∈ 𝐵} ∈ V) |
6 | spsbc 3804 | . . . . . 6 ⊢ (𝐴 ∈ V → (∀𝑥{𝑦 ∣ 𝑦 ∈ 𝐵} ∈ V → [𝐴 / 𝑥]{𝑦 ∣ 𝑦 ∈ 𝐵} ∈ V)) | |
7 | 5, 6 | syl5 34 | . . . . 5 ⊢ (𝐴 ∈ V → (∀𝑥 𝐵 ∈ 𝑊 → [𝐴 / 𝑥]{𝑦 ∣ 𝑦 ∈ 𝐵} ∈ V)) |
8 | nfcv 2903 | . . . . . 6 ⊢ Ⅎ𝑥V | |
9 | 8 | sbcabel 3887 | . . . . 5 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥]{𝑦 ∣ 𝑦 ∈ 𝐵} ∈ V ↔ {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} ∈ V)) |
10 | 7, 9 | sylibd 239 | . . . 4 ⊢ (𝐴 ∈ V → (∀𝑥 𝐵 ∈ 𝑊 → {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} ∈ V)) |
11 | 10 | imp 406 | . . 3 ⊢ ((𝐴 ∈ V ∧ ∀𝑥 𝐵 ∈ 𝑊) → {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} ∈ V) |
12 | 1, 11 | eqeltrid 2843 | . 2 ⊢ ((𝐴 ∈ V ∧ ∀𝑥 𝐵 ∈ 𝑊) → ⦋𝐴 / 𝑥⦌𝐵 ∈ V) |
13 | csbprc 4415 | . . . 4 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐵 = ∅) | |
14 | 0ex 5313 | . . . 4 ⊢ ∅ ∈ V | |
15 | 13, 14 | eqeltrdi 2847 | . . 3 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐵 ∈ V) |
16 | 15 | adantr 480 | . 2 ⊢ ((¬ 𝐴 ∈ V ∧ ∀𝑥 𝐵 ∈ 𝑊) → ⦋𝐴 / 𝑥⦌𝐵 ∈ V) |
17 | 12, 16 | pm2.61ian 812 | 1 ⊢ (∀𝑥 𝐵 ∈ 𝑊 → ⦋𝐴 / 𝑥⦌𝐵 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∀wal 1535 ∈ wcel 2106 {cab 2712 Vcvv 3478 [wsbc 3791 ⦋csb 3908 ∅c0 4339 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-nul 5312 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-nul 4340 |
This theorem is referenced by: csbex 5317 abfmpeld 32671 |
Copyright terms: Public domain | W3C validator |