| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbexg | Structured version Visualization version GIF version | ||
| Description: The existence of proper substitution into a class. (Contributed by NM, 10-Nov-2005.) (Revised by NM, 17-Aug-2018.) |
| Ref | Expression |
|---|---|
| csbexg | ⊢ (∀𝑥 𝐵 ∈ 𝑊 → ⦋𝐴 / 𝑥⦌𝐵 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-csb 3849 | . . 3 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} | |
| 2 | abid2 2866 | . . . . . . . 8 ⊢ {𝑦 ∣ 𝑦 ∈ 𝐵} = 𝐵 | |
| 3 | elex 3455 | . . . . . . . 8 ⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ V) | |
| 4 | 2, 3 | eqeltrid 2833 | . . . . . . 7 ⊢ (𝐵 ∈ 𝑊 → {𝑦 ∣ 𝑦 ∈ 𝐵} ∈ V) |
| 5 | 4 | alimi 1812 | . . . . . 6 ⊢ (∀𝑥 𝐵 ∈ 𝑊 → ∀𝑥{𝑦 ∣ 𝑦 ∈ 𝐵} ∈ V) |
| 6 | spsbc 3752 | . . . . . 6 ⊢ (𝐴 ∈ V → (∀𝑥{𝑦 ∣ 𝑦 ∈ 𝐵} ∈ V → [𝐴 / 𝑥]{𝑦 ∣ 𝑦 ∈ 𝐵} ∈ V)) | |
| 7 | 5, 6 | syl5 34 | . . . . 5 ⊢ (𝐴 ∈ V → (∀𝑥 𝐵 ∈ 𝑊 → [𝐴 / 𝑥]{𝑦 ∣ 𝑦 ∈ 𝐵} ∈ V)) |
| 8 | nfcv 2892 | . . . . . 6 ⊢ Ⅎ𝑥V | |
| 9 | 8 | sbcabel 3827 | . . . . 5 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥]{𝑦 ∣ 𝑦 ∈ 𝐵} ∈ V ↔ {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} ∈ V)) |
| 10 | 7, 9 | sylibd 239 | . . . 4 ⊢ (𝐴 ∈ V → (∀𝑥 𝐵 ∈ 𝑊 → {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} ∈ V)) |
| 11 | 10 | imp 406 | . . 3 ⊢ ((𝐴 ∈ V ∧ ∀𝑥 𝐵 ∈ 𝑊) → {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} ∈ V) |
| 12 | 1, 11 | eqeltrid 2833 | . 2 ⊢ ((𝐴 ∈ V ∧ ∀𝑥 𝐵 ∈ 𝑊) → ⦋𝐴 / 𝑥⦌𝐵 ∈ V) |
| 13 | csbprc 4357 | . . . 4 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐵 = ∅) | |
| 14 | 0ex 5243 | . . . 4 ⊢ ∅ ∈ V | |
| 15 | 13, 14 | eqeltrdi 2837 | . . 3 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐵 ∈ V) |
| 16 | 15 | adantr 480 | . 2 ⊢ ((¬ 𝐴 ∈ V ∧ ∀𝑥 𝐵 ∈ 𝑊) → ⦋𝐴 / 𝑥⦌𝐵 ∈ V) |
| 17 | 12, 16 | pm2.61ian 811 | 1 ⊢ (∀𝑥 𝐵 ∈ 𝑊 → ⦋𝐴 / 𝑥⦌𝐵 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∀wal 1539 ∈ wcel 2110 {cab 2708 Vcvv 3434 [wsbc 3739 ⦋csb 3848 ∅c0 4281 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-nul 5242 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-nul 4282 |
| This theorem is referenced by: csbex 5247 abfmpeld 32626 |
| Copyright terms: Public domain | W3C validator |