Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > csbexg | Structured version Visualization version GIF version |
Description: The existence of proper substitution into a class. (Contributed by NM, 10-Nov-2005.) (Revised by NM, 17-Aug-2018.) |
Ref | Expression |
---|---|
csbexg | ⊢ (∀𝑥 𝐵 ∈ 𝑊 → ⦋𝐴 / 𝑥⦌𝐵 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-csb 3812 | . . 3 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} | |
2 | abid2 2879 | . . . . . . . 8 ⊢ {𝑦 ∣ 𝑦 ∈ 𝐵} = 𝐵 | |
3 | elex 3426 | . . . . . . . 8 ⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ V) | |
4 | 2, 3 | eqeltrid 2842 | . . . . . . 7 ⊢ (𝐵 ∈ 𝑊 → {𝑦 ∣ 𝑦 ∈ 𝐵} ∈ V) |
5 | 4 | alimi 1819 | . . . . . 6 ⊢ (∀𝑥 𝐵 ∈ 𝑊 → ∀𝑥{𝑦 ∣ 𝑦 ∈ 𝐵} ∈ V) |
6 | spsbc 3707 | . . . . . 6 ⊢ (𝐴 ∈ V → (∀𝑥{𝑦 ∣ 𝑦 ∈ 𝐵} ∈ V → [𝐴 / 𝑥]{𝑦 ∣ 𝑦 ∈ 𝐵} ∈ V)) | |
7 | 5, 6 | syl5 34 | . . . . 5 ⊢ (𝐴 ∈ V → (∀𝑥 𝐵 ∈ 𝑊 → [𝐴 / 𝑥]{𝑦 ∣ 𝑦 ∈ 𝐵} ∈ V)) |
8 | nfcv 2904 | . . . . . 6 ⊢ Ⅎ𝑥V | |
9 | 8 | sbcabel 3790 | . . . . 5 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥]{𝑦 ∣ 𝑦 ∈ 𝐵} ∈ V ↔ {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} ∈ V)) |
10 | 7, 9 | sylibd 242 | . . . 4 ⊢ (𝐴 ∈ V → (∀𝑥 𝐵 ∈ 𝑊 → {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} ∈ V)) |
11 | 10 | imp 410 | . . 3 ⊢ ((𝐴 ∈ V ∧ ∀𝑥 𝐵 ∈ 𝑊) → {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} ∈ V) |
12 | 1, 11 | eqeltrid 2842 | . 2 ⊢ ((𝐴 ∈ V ∧ ∀𝑥 𝐵 ∈ 𝑊) → ⦋𝐴 / 𝑥⦌𝐵 ∈ V) |
13 | csbprc 4321 | . . . 4 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐵 = ∅) | |
14 | 0ex 5200 | . . . 4 ⊢ ∅ ∈ V | |
15 | 13, 14 | eqeltrdi 2846 | . . 3 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐵 ∈ V) |
16 | 15 | adantr 484 | . 2 ⊢ ((¬ 𝐴 ∈ V ∧ ∀𝑥 𝐵 ∈ 𝑊) → ⦋𝐴 / 𝑥⦌𝐵 ∈ V) |
17 | 12, 16 | pm2.61ian 812 | 1 ⊢ (∀𝑥 𝐵 ∈ 𝑊 → ⦋𝐴 / 𝑥⦌𝐵 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 ∀wal 1541 ∈ wcel 2110 {cab 2714 Vcvv 3408 [wsbc 3694 ⦋csb 3811 ∅c0 4237 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-nul 5199 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-nul 4238 |
This theorem is referenced by: csbex 5204 abfmpeld 30711 |
Copyright terms: Public domain | W3C validator |