![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbex | Structured version Visualization version GIF version |
Description: The existence of proper substitution into a class. (Contributed by NM, 7-Aug-2007.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Revised by NM, 17-Aug-2018.) |
Ref | Expression |
---|---|
csbex.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
csbex | ⊢ ⦋𝐴 / 𝑥⦌𝐵 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbexg 5310 | . 2 ⊢ (∀𝑥 𝐵 ∈ V → ⦋𝐴 / 𝑥⦌𝐵 ∈ V) | |
2 | csbex.1 | . 2 ⊢ 𝐵 ∈ V | |
3 | 1, 2 | mpg 1799 | 1 ⊢ ⦋𝐴 / 𝑥⦌𝐵 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 Vcvv 3474 ⦋csb 3893 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-nul 5306 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-nul 4323 |
This theorem is referenced by: iunopeqop 5521 dfmpo 8087 cantnfdm 9658 cantnff 9668 bpolylem 15991 ruclem1 16173 pcmpt 16824 cidffn 17621 issubc 17784 natffn 17899 fnxpc 18127 evlfcl 18174 odf 19404 selvval 21680 itgfsum 25343 itgparts 25563 vmaf 26620 mulsval 27562 precsexlem3 27652 ttgval 28123 ttgvalOLD 28124 abfmpel 31875 msrf 34528 rdgssun 36254 finxpreclem2 36266 poimirlem17 36500 poimirlem23 36506 poimirlem24 36507 unirep 36577 cdlemk40 39783 aomclem6 41791 rnghmfn 46678 rngchomrnghmresALTV 46884 |
Copyright terms: Public domain | W3C validator |