| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbex | Structured version Visualization version GIF version | ||
| Description: The existence of proper substitution into a class. (Contributed by NM, 7-Aug-2007.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Revised by NM, 17-Aug-2018.) |
| Ref | Expression |
|---|---|
| csbex.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| csbex | ⊢ ⦋𝐴 / 𝑥⦌𝐵 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbexg 5267 | . 2 ⊢ (∀𝑥 𝐵 ∈ V → ⦋𝐴 / 𝑥⦌𝐵 ∈ V) | |
| 2 | csbex.1 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | 1, 2 | mpg 1797 | 1 ⊢ ⦋𝐴 / 𝑥⦌𝐵 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3450 ⦋csb 3864 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-nul 5263 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-nul 4299 |
| This theorem is referenced by: iunopeqop 5483 dfmpo 8083 cantnfdm 9623 cantnff 9633 bpolylem 16020 ruclem1 16205 pcmpt 16869 cidffn 17645 issubc 17803 natffn 17920 fnxpc 18143 evlfcl 18189 odf 19473 rnghmfn 20354 selvval 22028 itgfsum 25734 itgparts 25960 vmaf 27035 mulsval 28018 precsexlem3 28117 ttgval 28808 abfmpel 32585 msrf 35529 rdgssun 37361 finxpreclem2 37373 poimirlem17 37626 poimirlem23 37632 poimirlem24 37633 unirep 37703 cdlemk40 40906 aomclem6 43041 rngchomrnghmresALTV 48257 idfurcl 49077 fucofn2 49303 dfinito4 49480 dftermo4 49481 lanfn 49588 ranfn 49589 |
| Copyright terms: Public domain | W3C validator |