| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbex | Structured version Visualization version GIF version | ||
| Description: The existence of proper substitution into a class. (Contributed by NM, 7-Aug-2007.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Revised by NM, 17-Aug-2018.) |
| Ref | Expression |
|---|---|
| csbex.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| csbex | ⊢ ⦋𝐴 / 𝑥⦌𝐵 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbexg 5265 | . 2 ⊢ (∀𝑥 𝐵 ∈ V → ⦋𝐴 / 𝑥⦌𝐵 ∈ V) | |
| 2 | csbex.1 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | 1, 2 | mpg 1797 | 1 ⊢ ⦋𝐴 / 𝑥⦌𝐵 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3447 ⦋csb 3862 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-nul 5261 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-nul 4297 |
| This theorem is referenced by: iunopeqop 5481 dfmpo 8081 cantnfdm 9617 cantnff 9627 bpolylem 16014 ruclem1 16199 pcmpt 16863 cidffn 17639 issubc 17797 natffn 17914 fnxpc 18137 evlfcl 18183 odf 19467 rnghmfn 20348 selvval 22022 itgfsum 25728 itgparts 25954 vmaf 27029 mulsval 28012 precsexlem3 28111 ttgval 28802 abfmpel 32579 msrf 35529 rdgssun 37366 finxpreclem2 37378 poimirlem17 37631 poimirlem23 37637 poimirlem24 37638 unirep 37708 cdlemk40 40911 aomclem6 43048 rngchomrnghmresALTV 48267 idfurcl 49087 fucofn2 49313 dfinito4 49490 dftermo4 49491 lanfn 49598 ranfn 49599 |
| Copyright terms: Public domain | W3C validator |