| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbex | Structured version Visualization version GIF version | ||
| Description: The existence of proper substitution into a class. (Contributed by NM, 7-Aug-2007.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Revised by NM, 17-Aug-2018.) |
| Ref | Expression |
|---|---|
| csbex.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| csbex | ⊢ ⦋𝐴 / 𝑥⦌𝐵 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbexg 5246 | . 2 ⊢ (∀𝑥 𝐵 ∈ V → ⦋𝐴 / 𝑥⦌𝐵 ∈ V) | |
| 2 | csbex.1 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | 1, 2 | mpg 1798 | 1 ⊢ ⦋𝐴 / 𝑥⦌𝐵 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2110 Vcvv 3434 ⦋csb 3848 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-nul 5242 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-nul 4282 |
| This theorem is referenced by: iunopeqop 5459 dfmpo 8027 cantnfdm 9549 cantnff 9559 bpolylem 15947 ruclem1 16132 pcmpt 16796 cidffn 17576 issubc 17734 natffn 17851 fnxpc 18074 evlfcl 18120 odf 19442 rnghmfn 20350 selvval 22043 itgfsum 25748 itgparts 25974 vmaf 27049 mulsval 28041 precsexlem3 28140 ttgval 28846 abfmpel 32627 msrf 35554 rdgssun 37391 finxpreclem2 37403 poimirlem17 37656 poimirlem23 37662 poimirlem24 37663 unirep 37733 cdlemk40 40935 aomclem6 43071 rngchomrnghmresALTV 48289 idfurcl 49109 fucofn2 49335 dfinito4 49512 dftermo4 49513 lanfn 49620 ranfn 49621 |
| Copyright terms: Public domain | W3C validator |