![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbex | Structured version Visualization version GIF version |
Description: The existence of proper substitution into a class. (Contributed by NM, 7-Aug-2007.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Revised by NM, 17-Aug-2018.) |
Ref | Expression |
---|---|
csbex.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
csbex | ⊢ ⦋𝐴 / 𝑥⦌𝐵 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbexg 5316 | . 2 ⊢ (∀𝑥 𝐵 ∈ V → ⦋𝐴 / 𝑥⦌𝐵 ∈ V) | |
2 | csbex.1 | . 2 ⊢ 𝐵 ∈ V | |
3 | 1, 2 | mpg 1794 | 1 ⊢ ⦋𝐴 / 𝑥⦌𝐵 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 Vcvv 3478 ⦋csb 3908 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-nul 5312 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-nul 4340 |
This theorem is referenced by: iunopeqop 5531 dfmpo 8126 cantnfdm 9702 cantnff 9712 bpolylem 16081 ruclem1 16264 pcmpt 16926 cidffn 17723 issubc 17886 natffn 18004 fnxpc 18232 evlfcl 18279 odf 19570 rnghmfn 20456 selvval 22157 itgfsum 25877 itgparts 26103 vmaf 27177 mulsval 28150 precsexlem3 28248 ttgval 28898 ttgvalOLD 28899 abfmpel 32672 msrf 35527 rdgssun 37361 finxpreclem2 37373 poimirlem17 37624 poimirlem23 37630 poimirlem24 37631 unirep 37701 cdlemk40 40900 aomclem6 43048 rngchomrnghmresALTV 48123 |
Copyright terms: Public domain | W3C validator |