| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbex | Structured version Visualization version GIF version | ||
| Description: The existence of proper substitution into a class. (Contributed by NM, 7-Aug-2007.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Revised by NM, 17-Aug-2018.) |
| Ref | Expression |
|---|---|
| csbex.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| csbex | ⊢ ⦋𝐴 / 𝑥⦌𝐵 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbexg 5252 | . 2 ⊢ (∀𝑥 𝐵 ∈ V → ⦋𝐴 / 𝑥⦌𝐵 ∈ V) | |
| 2 | csbex.1 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | 1, 2 | mpg 1797 | 1 ⊢ ⦋𝐴 / 𝑥⦌𝐵 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3438 ⦋csb 3853 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-nul 5248 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-nul 4287 |
| This theorem is referenced by: iunopeqop 5468 dfmpo 8042 cantnfdm 9579 cantnff 9589 bpolylem 15973 ruclem1 16158 pcmpt 16822 cidffn 17602 issubc 17760 natffn 17877 fnxpc 18100 evlfcl 18146 odf 19434 rnghmfn 20342 selvval 22038 itgfsum 25744 itgparts 25970 vmaf 27045 mulsval 28035 precsexlem3 28134 ttgval 28838 abfmpel 32612 msrf 35514 rdgssun 37351 finxpreclem2 37363 poimirlem17 37616 poimirlem23 37622 poimirlem24 37623 unirep 37693 cdlemk40 40896 aomclem6 43032 rngchomrnghmresALTV 48251 idfurcl 49071 fucofn2 49297 dfinito4 49474 dftermo4 49475 lanfn 49582 ranfn 49583 |
| Copyright terms: Public domain | W3C validator |