| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbex | Structured version Visualization version GIF version | ||
| Description: The existence of proper substitution into a class. (Contributed by NM, 7-Aug-2007.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Revised by NM, 17-Aug-2018.) |
| Ref | Expression |
|---|---|
| csbex.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| csbex | ⊢ ⦋𝐴 / 𝑥⦌𝐵 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbexg 5250 | . 2 ⊢ (∀𝑥 𝐵 ∈ V → ⦋𝐴 / 𝑥⦌𝐵 ∈ V) | |
| 2 | csbex.1 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | 1, 2 | mpg 1798 | 1 ⊢ ⦋𝐴 / 𝑥⦌𝐵 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 Vcvv 3436 ⦋csb 3845 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-nul 5246 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-nul 4283 |
| This theorem is referenced by: iunopeqop 5464 dfmpo 8038 cantnfdm 9560 cantnff 9570 bpolylem 15961 ruclem1 16146 pcmpt 16810 cidffn 17590 issubc 17748 natffn 17865 fnxpc 18088 evlfcl 18134 odf 19455 rnghmfn 20363 selvval 22056 itgfsum 25761 itgparts 25987 vmaf 27062 mulsval 28054 precsexlem3 28153 ttgval 28859 abfmpel 32644 msrf 35593 rdgssun 37429 finxpreclem2 37441 poimirlem17 37683 poimirlem23 37689 poimirlem24 37690 unirep 37760 cdlemk40 41022 aomclem6 43157 rngchomrnghmresALTV 48384 idfurcl 49204 fucofn2 49430 dfinito4 49607 dftermo4 49608 lanfn 49715 ranfn 49716 |
| Copyright terms: Public domain | W3C validator |