![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbex | Structured version Visualization version GIF version |
Description: The existence of proper substitution into a class. (Contributed by NM, 7-Aug-2007.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Revised by NM, 17-Aug-2018.) |
Ref | Expression |
---|---|
csbex.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
csbex | ⊢ ⦋𝐴 / 𝑥⦌𝐵 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbexg 5310 | . 2 ⊢ (∀𝑥 𝐵 ∈ V → ⦋𝐴 / 𝑥⦌𝐵 ∈ V) | |
2 | csbex.1 | . 2 ⊢ 𝐵 ∈ V | |
3 | 1, 2 | mpg 1798 | 1 ⊢ ⦋𝐴 / 𝑥⦌𝐵 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 Vcvv 3473 ⦋csb 3893 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-nul 5306 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-nul 4323 |
This theorem is referenced by: iunopeqop 5521 dfmpo 8093 cantnfdm 9665 cantnff 9675 bpolylem 15999 ruclem1 16181 pcmpt 16832 cidffn 17629 issubc 17792 natffn 17910 fnxpc 18138 evlfcl 18185 odf 19453 rnghmfn 20337 selvval 21989 itgfsum 25676 itgparts 25902 vmaf 26964 mulsval 27922 precsexlem3 28020 ttgval 28559 ttgvalOLD 28560 abfmpel 32313 msrf 34997 rdgssun 36723 finxpreclem2 36735 poimirlem17 36969 poimirlem23 36975 poimirlem24 36976 unirep 37046 cdlemk40 40252 aomclem6 42264 rngchomrnghmresALTV 47116 |
Copyright terms: Public domain | W3C validator |