| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbex | Structured version Visualization version GIF version | ||
| Description: The existence of proper substitution into a class. (Contributed by NM, 7-Aug-2007.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Revised by NM, 17-Aug-2018.) |
| Ref | Expression |
|---|---|
| csbex.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| csbex | ⊢ ⦋𝐴 / 𝑥⦌𝐵 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbexg 5280 | . 2 ⊢ (∀𝑥 𝐵 ∈ V → ⦋𝐴 / 𝑥⦌𝐵 ∈ V) | |
| 2 | csbex.1 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | 1, 2 | mpg 1797 | 1 ⊢ ⦋𝐴 / 𝑥⦌𝐵 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 Vcvv 3459 ⦋csb 3874 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-nul 5276 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-nul 4309 |
| This theorem is referenced by: iunopeqop 5496 dfmpo 8101 cantnfdm 9678 cantnff 9688 bpolylem 16064 ruclem1 16249 pcmpt 16912 cidffn 17690 issubc 17848 natffn 17965 fnxpc 18188 evlfcl 18234 odf 19518 rnghmfn 20399 selvval 22073 itgfsum 25780 itgparts 26006 vmaf 27081 mulsval 28064 precsexlem3 28163 ttgval 28854 abfmpel 32633 msrf 35564 rdgssun 37396 finxpreclem2 37408 poimirlem17 37661 poimirlem23 37667 poimirlem24 37668 unirep 37738 cdlemk40 40936 aomclem6 43083 rngchomrnghmresALTV 48254 idfurcl 49058 fucofn2 49235 dfinito4 49386 dftermo4 49387 lanfn 49486 ranfn 49487 |
| Copyright terms: Public domain | W3C validator |