Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iundisj2fi Structured version   Visualization version   GIF version

Theorem iundisj2fi 30433
Description: A disjoint union is disjoint, finite version. Cf. iundisj2 24065. (Contributed by Thierry Arnoux, 16-Feb-2017.)
Hypotheses
Ref Expression
iundisj2fi.0 𝑛𝐵
iundisj2fi.1 (𝑛 = 𝑘𝐴 = 𝐵)
Assertion
Ref Expression
iundisj2fi Disj 𝑛 ∈ (1..^𝑁)(𝐴 𝑘 ∈ (1..^𝑛)𝐵)
Distinct variable groups:   𝑘,𝑛,𝑁   𝐴,𝑘
Allowed substitution hints:   𝐴(𝑛)   𝐵(𝑘,𝑛)

Proof of Theorem iundisj2fi
Dummy variables 𝑎 𝑏 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tru 1534 . . . 4
2 eqeq12 2840 . . . . . 6 ((𝑎 = 𝑥𝑏 = 𝑦) → (𝑎 = 𝑏𝑥 = 𝑦))
3 csbeq1 3890 . . . . . . . 8 (𝑎 = 𝑥𝑎 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) = 𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵))
4 csbeq1 3890 . . . . . . . 8 (𝑏 = 𝑦𝑏 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) = 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵))
53, 4ineqan12d 4195 . . . . . . 7 ((𝑎 = 𝑥𝑏 = 𝑦) → (𝑎 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑏 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)))
65eqeq1d 2828 . . . . . 6 ((𝑎 = 𝑥𝑏 = 𝑦) → ((𝑎 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑏 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅ ↔ (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅))
72, 6orbi12d 914 . . . . 5 ((𝑎 = 𝑥𝑏 = 𝑦) → ((𝑎 = 𝑏 ∨ (𝑎 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑏 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅) ↔ (𝑥 = 𝑦 ∨ (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅)))
8 eqeq12 2840 . . . . . . 7 ((𝑎 = 𝑦𝑏 = 𝑥) → (𝑎 = 𝑏𝑦 = 𝑥))
9 equcom 2018 . . . . . . 7 (𝑦 = 𝑥𝑥 = 𝑦)
108, 9syl6bb 288 . . . . . 6 ((𝑎 = 𝑦𝑏 = 𝑥) → (𝑎 = 𝑏𝑥 = 𝑦))
11 csbeq1 3890 . . . . . . . . 9 (𝑎 = 𝑦𝑎 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) = 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵))
12 csbeq1 3890 . . . . . . . . 9 (𝑏 = 𝑥𝑏 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) = 𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵))
1311, 12ineqan12d 4195 . . . . . . . 8 ((𝑎 = 𝑦𝑏 = 𝑥) → (𝑎 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑏 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = (𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)))
14 incom 4182 . . . . . . . 8 (𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵))
1513, 14syl6eq 2877 . . . . . . 7 ((𝑎 = 𝑦𝑏 = 𝑥) → (𝑎 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑏 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)))
1615eqeq1d 2828 . . . . . 6 ((𝑎 = 𝑦𝑏 = 𝑥) → ((𝑎 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑏 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅ ↔ (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅))
1710, 16orbi12d 914 . . . . 5 ((𝑎 = 𝑦𝑏 = 𝑥) → ((𝑎 = 𝑏 ∨ (𝑎 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑏 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅) ↔ (𝑥 = 𝑦 ∨ (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅)))
18 fzossnn 13076 . . . . . . 7 (1..^𝑁) ⊆ ℕ
19 nnssre 11631 . . . . . . 7 ℕ ⊆ ℝ
2018, 19sstri 3980 . . . . . 6 (1..^𝑁) ⊆ ℝ
2120a1i 11 . . . . 5 (⊤ → (1..^𝑁) ⊆ ℝ)
22 biidd 263 . . . . 5 ((⊤ ∧ (𝑥 ∈ (1..^𝑁) ∧ 𝑦 ∈ (1..^𝑁))) → ((𝑥 = 𝑦 ∨ (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅) ↔ (𝑥 = 𝑦 ∨ (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅)))
23 nesym 3077 . . . . . . . 8 (𝑦𝑥 ↔ ¬ 𝑥 = 𝑦)
2420sseli 3967 . . . . . . . . . 10 (𝑥 ∈ (1..^𝑁) → 𝑥 ∈ ℝ)
2520sseli 3967 . . . . . . . . . 10 (𝑦 ∈ (1..^𝑁) → 𝑦 ∈ ℝ)
26 id 22 . . . . . . . . . 10 (𝑥𝑦𝑥𝑦)
27 leltne 10719 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥𝑦) → (𝑥 < 𝑦𝑦𝑥))
2824, 25, 26, 27syl3an 1154 . . . . . . . . 9 ((𝑥 ∈ (1..^𝑁) ∧ 𝑦 ∈ (1..^𝑁) ∧ 𝑥𝑦) → (𝑥 < 𝑦𝑦𝑥))
29 vex 3503 . . . . . . . . . . . . . . 15 𝑥 ∈ V
30 nfcsb1v 3911 . . . . . . . . . . . . . . . 16 𝑛𝑥 / 𝑛𝐴
31 nfcv 2982 . . . . . . . . . . . . . . . . 17 𝑛(1..^𝑥)
32 iundisj2fi.0 . . . . . . . . . . . . . . . . 17 𝑛𝐵
3331, 32nfiun 4946 . . . . . . . . . . . . . . . 16 𝑛 𝑘 ∈ (1..^𝑥)𝐵
3430, 33nfdif 4106 . . . . . . . . . . . . . . 15 𝑛(𝑥 / 𝑛𝐴 𝑘 ∈ (1..^𝑥)𝐵)
35 csbeq1a 3901 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑥𝐴 = 𝑥 / 𝑛𝐴)
36 oveq2 7156 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑥 → (1..^𝑛) = (1..^𝑥))
3736iuneq1d 4943 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑥 𝑘 ∈ (1..^𝑛)𝐵 = 𝑘 ∈ (1..^𝑥)𝐵)
3835, 37difeq12d 4104 . . . . . . . . . . . . . . 15 (𝑛 = 𝑥 → (𝐴 𝑘 ∈ (1..^𝑛)𝐵) = (𝑥 / 𝑛𝐴 𝑘 ∈ (1..^𝑥)𝐵))
3929, 34, 38csbief 3921 . . . . . . . . . . . . . 14 𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) = (𝑥 / 𝑛𝐴 𝑘 ∈ (1..^𝑥)𝐵)
40 vex 3503 . . . . . . . . . . . . . . 15 𝑦 ∈ V
41 nfcsb1v 3911 . . . . . . . . . . . . . . . 16 𝑛𝑦 / 𝑛𝐴
42 nfcv 2982 . . . . . . . . . . . . . . . . 17 𝑛(1..^𝑦)
4342, 32nfiun 4946 . . . . . . . . . . . . . . . 16 𝑛 𝑘 ∈ (1..^𝑦)𝐵
4441, 43nfdif 4106 . . . . . . . . . . . . . . 15 𝑛(𝑦 / 𝑛𝐴 𝑘 ∈ (1..^𝑦)𝐵)
45 csbeq1a 3901 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑦𝐴 = 𝑦 / 𝑛𝐴)
46 oveq2 7156 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑦 → (1..^𝑛) = (1..^𝑦))
4746iuneq1d 4943 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑦 𝑘 ∈ (1..^𝑛)𝐵 = 𝑘 ∈ (1..^𝑦)𝐵)
4845, 47difeq12d 4104 . . . . . . . . . . . . . . 15 (𝑛 = 𝑦 → (𝐴 𝑘 ∈ (1..^𝑛)𝐵) = (𝑦 / 𝑛𝐴 𝑘 ∈ (1..^𝑦)𝐵))
4940, 44, 48csbief 3921 . . . . . . . . . . . . . 14 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) = (𝑦 / 𝑛𝐴 𝑘 ∈ (1..^𝑦)𝐵)
5039, 49ineq12i 4191 . . . . . . . . . . . . 13 (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ((𝑥 / 𝑛𝐴 𝑘 ∈ (1..^𝑥)𝐵) ∩ (𝑦 / 𝑛𝐴 𝑘 ∈ (1..^𝑦)𝐵))
51 simp1 1130 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (1..^𝑁) ∧ 𝑦 ∈ (1..^𝑁) ∧ 𝑥 < 𝑦) → 𝑥 ∈ (1..^𝑁))
5218, 51sseldi 3969 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ (1..^𝑁) ∧ 𝑦 ∈ (1..^𝑁) ∧ 𝑥 < 𝑦) → 𝑥 ∈ ℕ)
53 nnuz 12270 . . . . . . . . . . . . . . . . . 18 ℕ = (ℤ‘1)
5452, 53syl6eleq 2928 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ (1..^𝑁) ∧ 𝑦 ∈ (1..^𝑁) ∧ 𝑥 < 𝑦) → 𝑥 ∈ (ℤ‘1))
55 simp2 1131 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (1..^𝑁) ∧ 𝑦 ∈ (1..^𝑁) ∧ 𝑥 < 𝑦) → 𝑦 ∈ (1..^𝑁))
5618, 55sseldi 3969 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ (1..^𝑁) ∧ 𝑦 ∈ (1..^𝑁) ∧ 𝑥 < 𝑦) → 𝑦 ∈ ℕ)
5756nnzd 12075 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ (1..^𝑁) ∧ 𝑦 ∈ (1..^𝑁) ∧ 𝑥 < 𝑦) → 𝑦 ∈ ℤ)
58 simp3 1132 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ (1..^𝑁) ∧ 𝑦 ∈ (1..^𝑁) ∧ 𝑥 < 𝑦) → 𝑥 < 𝑦)
59 elfzo2 13031 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (1..^𝑦) ↔ (𝑥 ∈ (ℤ‘1) ∧ 𝑦 ∈ ℤ ∧ 𝑥 < 𝑦))
6054, 57, 58, 59syl3anbrc 1337 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (1..^𝑁) ∧ 𝑦 ∈ (1..^𝑁) ∧ 𝑥 < 𝑦) → 𝑥 ∈ (1..^𝑦))
61 nfcv 2982 . . . . . . . . . . . . . . . . . . . 20 𝑛𝑘
62 iundisj2fi.1 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑘𝐴 = 𝐵)
6361, 32, 62csbhypf 3915 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑘𝑥 / 𝑛𝐴 = 𝐵)
6463equcoms 2020 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑥𝑥 / 𝑛𝐴 = 𝐵)
6564eqcomd 2832 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑥𝐵 = 𝑥 / 𝑛𝐴)
6665ssiun2s 4969 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (1..^𝑦) → 𝑥 / 𝑛𝐴 𝑘 ∈ (1..^𝑦)𝐵)
6760, 66syl 17 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (1..^𝑁) ∧ 𝑦 ∈ (1..^𝑁) ∧ 𝑥 < 𝑦) → 𝑥 / 𝑛𝐴 𝑘 ∈ (1..^𝑦)𝐵)
6867ssdifssd 4123 . . . . . . . . . . . . . 14 ((𝑥 ∈ (1..^𝑁) ∧ 𝑦 ∈ (1..^𝑁) ∧ 𝑥 < 𝑦) → (𝑥 / 𝑛𝐴 𝑘 ∈ (1..^𝑥)𝐵) ⊆ 𝑘 ∈ (1..^𝑦)𝐵)
6968ssrind 4216 . . . . . . . . . . . . 13 ((𝑥 ∈ (1..^𝑁) ∧ 𝑦 ∈ (1..^𝑁) ∧ 𝑥 < 𝑦) → ((𝑥 / 𝑛𝐴 𝑘 ∈ (1..^𝑥)𝐵) ∩ (𝑦 / 𝑛𝐴 𝑘 ∈ (1..^𝑦)𝐵)) ⊆ ( 𝑘 ∈ (1..^𝑦)𝐵 ∩ (𝑦 / 𝑛𝐴 𝑘 ∈ (1..^𝑦)𝐵)))
7050, 69eqsstrid 4019 . . . . . . . . . . . 12 ((𝑥 ∈ (1..^𝑁) ∧ 𝑦 ∈ (1..^𝑁) ∧ 𝑥 < 𝑦) → (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) ⊆ ( 𝑘 ∈ (1..^𝑦)𝐵 ∩ (𝑦 / 𝑛𝐴 𝑘 ∈ (1..^𝑦)𝐵)))
71 disjdif 4424 . . . . . . . . . . . 12 ( 𝑘 ∈ (1..^𝑦)𝐵 ∩ (𝑦 / 𝑛𝐴 𝑘 ∈ (1..^𝑦)𝐵)) = ∅
72 sseq0 4357 . . . . . . . . . . . 12 (((𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) ⊆ ( 𝑘 ∈ (1..^𝑦)𝐵 ∩ (𝑦 / 𝑛𝐴 𝑘 ∈ (1..^𝑦)𝐵)) ∧ ( 𝑘 ∈ (1..^𝑦)𝐵 ∩ (𝑦 / 𝑛𝐴 𝑘 ∈ (1..^𝑦)𝐵)) = ∅) → (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅)
7370, 71, 72sylancl 586 . . . . . . . . . . 11 ((𝑥 ∈ (1..^𝑁) ∧ 𝑦 ∈ (1..^𝑁) ∧ 𝑥 < 𝑦) → (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅)
74733expia 1115 . . . . . . . . . 10 ((𝑥 ∈ (1..^𝑁) ∧ 𝑦 ∈ (1..^𝑁)) → (𝑥 < 𝑦 → (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅))
75743adant3 1126 . . . . . . . . 9 ((𝑥 ∈ (1..^𝑁) ∧ 𝑦 ∈ (1..^𝑁) ∧ 𝑥𝑦) → (𝑥 < 𝑦 → (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅))
7628, 75sylbird 261 . . . . . . . 8 ((𝑥 ∈ (1..^𝑁) ∧ 𝑦 ∈ (1..^𝑁) ∧ 𝑥𝑦) → (𝑦𝑥 → (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅))
7723, 76syl5bir 244 . . . . . . 7 ((𝑥 ∈ (1..^𝑁) ∧ 𝑦 ∈ (1..^𝑁) ∧ 𝑥𝑦) → (¬ 𝑥 = 𝑦 → (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅))
7877orrd 859 . . . . . 6 ((𝑥 ∈ (1..^𝑁) ∧ 𝑦 ∈ (1..^𝑁) ∧ 𝑥𝑦) → (𝑥 = 𝑦 ∨ (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅))
7978adantl 482 . . . . 5 ((⊤ ∧ (𝑥 ∈ (1..^𝑁) ∧ 𝑦 ∈ (1..^𝑁) ∧ 𝑥𝑦)) → (𝑥 = 𝑦 ∨ (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅))
807, 17, 21, 22, 79wlogle 11162 . . . 4 ((⊤ ∧ (𝑥 ∈ (1..^𝑁) ∧ 𝑦 ∈ (1..^𝑁))) → (𝑥 = 𝑦 ∨ (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅))
811, 80mpan 686 . . 3 ((𝑥 ∈ (1..^𝑁) ∧ 𝑦 ∈ (1..^𝑁)) → (𝑥 = 𝑦 ∨ (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅))
8281rgen2a 3234 . 2 𝑥 ∈ (1..^𝑁)∀𝑦 ∈ (1..^𝑁)(𝑥 = 𝑦 ∨ (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅)
83 disjors 5044 . 2 (Disj 𝑛 ∈ (1..^𝑁)(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ↔ ∀𝑥 ∈ (1..^𝑁)∀𝑦 ∈ (1..^𝑁)(𝑥 = 𝑦 ∨ (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅))
8482, 83mpbir 232 1 Disj 𝑛 ∈ (1..^𝑁)(𝐴 𝑘 ∈ (1..^𝑛)𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wo 843  w3a 1081   = wceq 1530  wtru 1531  wcel 2107  wnfc 2966  wne 3021  wral 3143  csb 3887  cdif 3937  cin 3939  wss 3940  c0 4295   ciun 4917  Disj wdisj 5028   class class class wbr 5063  cfv 6352  (class class class)co 7148  cr 10525  1c1 10527   < clt 10664  cle 10665  cn 11627  cz 11970  cuz 12232  ..^cfzo 13023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-13 2385  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-iun 4919  df-disj 5029  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7569  df-1st 7680  df-2nd 7681  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-er 8279  df-en 8499  df-dom 8500  df-sdom 8501  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11628  df-n0 11887  df-z 11971  df-uz 12233  df-fz 12883  df-fzo 13024
This theorem is referenced by:  iundisj2cnt  30435
  Copyright terms: Public domain W3C validator