Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iundisj2fi Structured version   Visualization version   GIF version

Theorem iundisj2fi 31700
Description: A disjoint union is disjoint, finite version. Cf. iundisj2 24913. (Contributed by Thierry Arnoux, 16-Feb-2017.)
Hypotheses
Ref Expression
iundisj2fi.0 𝑛𝐵
iundisj2fi.1 (𝑛 = 𝑘𝐴 = 𝐵)
Assertion
Ref Expression
iundisj2fi Disj 𝑛 ∈ (1..^𝑁)(𝐴 𝑘 ∈ (1..^𝑛)𝐵)
Distinct variable groups:   𝑘,𝑛,𝑁   𝐴,𝑘
Allowed substitution hints:   𝐴(𝑛)   𝐵(𝑘,𝑛)

Proof of Theorem iundisj2fi
Dummy variables 𝑎 𝑏 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tru 1545 . . . 4
2 eqeq12 2753 . . . . . 6 ((𝑎 = 𝑥𝑏 = 𝑦) → (𝑎 = 𝑏𝑥 = 𝑦))
3 csbeq1 3858 . . . . . . . 8 (𝑎 = 𝑥𝑎 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) = 𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵))
4 csbeq1 3858 . . . . . . . 8 (𝑏 = 𝑦𝑏 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) = 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵))
53, 4ineqan12d 4174 . . . . . . 7 ((𝑎 = 𝑥𝑏 = 𝑦) → (𝑎 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑏 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)))
65eqeq1d 2738 . . . . . 6 ((𝑎 = 𝑥𝑏 = 𝑦) → ((𝑎 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑏 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅ ↔ (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅))
72, 6orbi12d 917 . . . . 5 ((𝑎 = 𝑥𝑏 = 𝑦) → ((𝑎 = 𝑏 ∨ (𝑎 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑏 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅) ↔ (𝑥 = 𝑦 ∨ (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅)))
8 eqeq12 2753 . . . . . . 7 ((𝑎 = 𝑦𝑏 = 𝑥) → (𝑎 = 𝑏𝑦 = 𝑥))
9 equcom 2021 . . . . . . 7 (𝑦 = 𝑥𝑥 = 𝑦)
108, 9bitrdi 286 . . . . . 6 ((𝑎 = 𝑦𝑏 = 𝑥) → (𝑎 = 𝑏𝑥 = 𝑦))
11 csbeq1 3858 . . . . . . . . 9 (𝑎 = 𝑦𝑎 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) = 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵))
12 csbeq1 3858 . . . . . . . . 9 (𝑏 = 𝑥𝑏 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) = 𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵))
1311, 12ineqan12d 4174 . . . . . . . 8 ((𝑎 = 𝑦𝑏 = 𝑥) → (𝑎 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑏 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = (𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)))
14 incom 4161 . . . . . . . 8 (𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵))
1513, 14eqtrdi 2792 . . . . . . 7 ((𝑎 = 𝑦𝑏 = 𝑥) → (𝑎 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑏 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)))
1615eqeq1d 2738 . . . . . 6 ((𝑎 = 𝑦𝑏 = 𝑥) → ((𝑎 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑏 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅ ↔ (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅))
1710, 16orbi12d 917 . . . . 5 ((𝑎 = 𝑦𝑏 = 𝑥) → ((𝑎 = 𝑏 ∨ (𝑎 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑏 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅) ↔ (𝑥 = 𝑦 ∨ (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅)))
18 fzossnn 13621 . . . . . . 7 (1..^𝑁) ⊆ ℕ
19 nnssre 12157 . . . . . . 7 ℕ ⊆ ℝ
2018, 19sstri 3953 . . . . . 6 (1..^𝑁) ⊆ ℝ
2120a1i 11 . . . . 5 (⊤ → (1..^𝑁) ⊆ ℝ)
22 biidd 261 . . . . 5 ((⊤ ∧ (𝑥 ∈ (1..^𝑁) ∧ 𝑦 ∈ (1..^𝑁))) → ((𝑥 = 𝑦 ∨ (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅) ↔ (𝑥 = 𝑦 ∨ (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅)))
23 nesym 3000 . . . . . . . 8 (𝑦𝑥 ↔ ¬ 𝑥 = 𝑦)
2420sseli 3940 . . . . . . . . . 10 (𝑥 ∈ (1..^𝑁) → 𝑥 ∈ ℝ)
2520sseli 3940 . . . . . . . . . 10 (𝑦 ∈ (1..^𝑁) → 𝑦 ∈ ℝ)
26 id 22 . . . . . . . . . 10 (𝑥𝑦𝑥𝑦)
27 leltne 11244 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥𝑦) → (𝑥 < 𝑦𝑦𝑥))
2824, 25, 26, 27syl3an 1160 . . . . . . . . 9 ((𝑥 ∈ (1..^𝑁) ∧ 𝑦 ∈ (1..^𝑁) ∧ 𝑥𝑦) → (𝑥 < 𝑦𝑦𝑥))
29 vex 3449 . . . . . . . . . . . . . . 15 𝑥 ∈ V
30 nfcsb1v 3880 . . . . . . . . . . . . . . . 16 𝑛𝑥 / 𝑛𝐴
31 nfcv 2907 . . . . . . . . . . . . . . . . 17 𝑛(1..^𝑥)
32 iundisj2fi.0 . . . . . . . . . . . . . . . . 17 𝑛𝐵
3331, 32nfiun 4984 . . . . . . . . . . . . . . . 16 𝑛 𝑘 ∈ (1..^𝑥)𝐵
3430, 33nfdif 4085 . . . . . . . . . . . . . . 15 𝑛(𝑥 / 𝑛𝐴 𝑘 ∈ (1..^𝑥)𝐵)
35 csbeq1a 3869 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑥𝐴 = 𝑥 / 𝑛𝐴)
36 oveq2 7365 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑥 → (1..^𝑛) = (1..^𝑥))
3736iuneq1d 4981 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑥 𝑘 ∈ (1..^𝑛)𝐵 = 𝑘 ∈ (1..^𝑥)𝐵)
3835, 37difeq12d 4083 . . . . . . . . . . . . . . 15 (𝑛 = 𝑥 → (𝐴 𝑘 ∈ (1..^𝑛)𝐵) = (𝑥 / 𝑛𝐴 𝑘 ∈ (1..^𝑥)𝐵))
3929, 34, 38csbief 3890 . . . . . . . . . . . . . 14 𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) = (𝑥 / 𝑛𝐴 𝑘 ∈ (1..^𝑥)𝐵)
40 vex 3449 . . . . . . . . . . . . . . 15 𝑦 ∈ V
41 nfcsb1v 3880 . . . . . . . . . . . . . . . 16 𝑛𝑦 / 𝑛𝐴
42 nfcv 2907 . . . . . . . . . . . . . . . . 17 𝑛(1..^𝑦)
4342, 32nfiun 4984 . . . . . . . . . . . . . . . 16 𝑛 𝑘 ∈ (1..^𝑦)𝐵
4441, 43nfdif 4085 . . . . . . . . . . . . . . 15 𝑛(𝑦 / 𝑛𝐴 𝑘 ∈ (1..^𝑦)𝐵)
45 csbeq1a 3869 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑦𝐴 = 𝑦 / 𝑛𝐴)
46 oveq2 7365 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑦 → (1..^𝑛) = (1..^𝑦))
4746iuneq1d 4981 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑦 𝑘 ∈ (1..^𝑛)𝐵 = 𝑘 ∈ (1..^𝑦)𝐵)
4845, 47difeq12d 4083 . . . . . . . . . . . . . . 15 (𝑛 = 𝑦 → (𝐴 𝑘 ∈ (1..^𝑛)𝐵) = (𝑦 / 𝑛𝐴 𝑘 ∈ (1..^𝑦)𝐵))
4940, 44, 48csbief 3890 . . . . . . . . . . . . . 14 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) = (𝑦 / 𝑛𝐴 𝑘 ∈ (1..^𝑦)𝐵)
5039, 49ineq12i 4170 . . . . . . . . . . . . 13 (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ((𝑥 / 𝑛𝐴 𝑘 ∈ (1..^𝑥)𝐵) ∩ (𝑦 / 𝑛𝐴 𝑘 ∈ (1..^𝑦)𝐵))
51 simp1 1136 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (1..^𝑁) ∧ 𝑦 ∈ (1..^𝑁) ∧ 𝑥 < 𝑦) → 𝑥 ∈ (1..^𝑁))
5218, 51sselid 3942 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ (1..^𝑁) ∧ 𝑦 ∈ (1..^𝑁) ∧ 𝑥 < 𝑦) → 𝑥 ∈ ℕ)
53 nnuz 12806 . . . . . . . . . . . . . . . . . 18 ℕ = (ℤ‘1)
5452, 53eleqtrdi 2848 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ (1..^𝑁) ∧ 𝑦 ∈ (1..^𝑁) ∧ 𝑥 < 𝑦) → 𝑥 ∈ (ℤ‘1))
55 simp2 1137 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (1..^𝑁) ∧ 𝑦 ∈ (1..^𝑁) ∧ 𝑥 < 𝑦) → 𝑦 ∈ (1..^𝑁))
5618, 55sselid 3942 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ (1..^𝑁) ∧ 𝑦 ∈ (1..^𝑁) ∧ 𝑥 < 𝑦) → 𝑦 ∈ ℕ)
5756nnzd 12526 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ (1..^𝑁) ∧ 𝑦 ∈ (1..^𝑁) ∧ 𝑥 < 𝑦) → 𝑦 ∈ ℤ)
58 simp3 1138 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ (1..^𝑁) ∧ 𝑦 ∈ (1..^𝑁) ∧ 𝑥 < 𝑦) → 𝑥 < 𝑦)
59 elfzo2 13575 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (1..^𝑦) ↔ (𝑥 ∈ (ℤ‘1) ∧ 𝑦 ∈ ℤ ∧ 𝑥 < 𝑦))
6054, 57, 58, 59syl3anbrc 1343 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (1..^𝑁) ∧ 𝑦 ∈ (1..^𝑁) ∧ 𝑥 < 𝑦) → 𝑥 ∈ (1..^𝑦))
61 nfcv 2907 . . . . . . . . . . . . . . . . . . . 20 𝑛𝑘
62 iundisj2fi.1 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑘𝐴 = 𝐵)
6361, 32, 62csbhypf 3884 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑘𝑥 / 𝑛𝐴 = 𝐵)
6463equcoms 2023 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑥𝑥 / 𝑛𝐴 = 𝐵)
6564eqcomd 2742 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑥𝐵 = 𝑥 / 𝑛𝐴)
6665ssiun2s 5008 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (1..^𝑦) → 𝑥 / 𝑛𝐴 𝑘 ∈ (1..^𝑦)𝐵)
6760, 66syl 17 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (1..^𝑁) ∧ 𝑦 ∈ (1..^𝑁) ∧ 𝑥 < 𝑦) → 𝑥 / 𝑛𝐴 𝑘 ∈ (1..^𝑦)𝐵)
6867ssdifssd 4102 . . . . . . . . . . . . . 14 ((𝑥 ∈ (1..^𝑁) ∧ 𝑦 ∈ (1..^𝑁) ∧ 𝑥 < 𝑦) → (𝑥 / 𝑛𝐴 𝑘 ∈ (1..^𝑥)𝐵) ⊆ 𝑘 ∈ (1..^𝑦)𝐵)
6968ssrind 4195 . . . . . . . . . . . . 13 ((𝑥 ∈ (1..^𝑁) ∧ 𝑦 ∈ (1..^𝑁) ∧ 𝑥 < 𝑦) → ((𝑥 / 𝑛𝐴 𝑘 ∈ (1..^𝑥)𝐵) ∩ (𝑦 / 𝑛𝐴 𝑘 ∈ (1..^𝑦)𝐵)) ⊆ ( 𝑘 ∈ (1..^𝑦)𝐵 ∩ (𝑦 / 𝑛𝐴 𝑘 ∈ (1..^𝑦)𝐵)))
7050, 69eqsstrid 3992 . . . . . . . . . . . 12 ((𝑥 ∈ (1..^𝑁) ∧ 𝑦 ∈ (1..^𝑁) ∧ 𝑥 < 𝑦) → (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) ⊆ ( 𝑘 ∈ (1..^𝑦)𝐵 ∩ (𝑦 / 𝑛𝐴 𝑘 ∈ (1..^𝑦)𝐵)))
71 disjdif 4431 . . . . . . . . . . . 12 ( 𝑘 ∈ (1..^𝑦)𝐵 ∩ (𝑦 / 𝑛𝐴 𝑘 ∈ (1..^𝑦)𝐵)) = ∅
72 sseq0 4359 . . . . . . . . . . . 12 (((𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) ⊆ ( 𝑘 ∈ (1..^𝑦)𝐵 ∩ (𝑦 / 𝑛𝐴 𝑘 ∈ (1..^𝑦)𝐵)) ∧ ( 𝑘 ∈ (1..^𝑦)𝐵 ∩ (𝑦 / 𝑛𝐴 𝑘 ∈ (1..^𝑦)𝐵)) = ∅) → (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅)
7370, 71, 72sylancl 586 . . . . . . . . . . 11 ((𝑥 ∈ (1..^𝑁) ∧ 𝑦 ∈ (1..^𝑁) ∧ 𝑥 < 𝑦) → (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅)
74733expia 1121 . . . . . . . . . 10 ((𝑥 ∈ (1..^𝑁) ∧ 𝑦 ∈ (1..^𝑁)) → (𝑥 < 𝑦 → (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅))
75743adant3 1132 . . . . . . . . 9 ((𝑥 ∈ (1..^𝑁) ∧ 𝑦 ∈ (1..^𝑁) ∧ 𝑥𝑦) → (𝑥 < 𝑦 → (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅))
7628, 75sylbird 259 . . . . . . . 8 ((𝑥 ∈ (1..^𝑁) ∧ 𝑦 ∈ (1..^𝑁) ∧ 𝑥𝑦) → (𝑦𝑥 → (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅))
7723, 76biimtrrid 242 . . . . . . 7 ((𝑥 ∈ (1..^𝑁) ∧ 𝑦 ∈ (1..^𝑁) ∧ 𝑥𝑦) → (¬ 𝑥 = 𝑦 → (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅))
7877orrd 861 . . . . . 6 ((𝑥 ∈ (1..^𝑁) ∧ 𝑦 ∈ (1..^𝑁) ∧ 𝑥𝑦) → (𝑥 = 𝑦 ∨ (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅))
7978adantl 482 . . . . 5 ((⊤ ∧ (𝑥 ∈ (1..^𝑁) ∧ 𝑦 ∈ (1..^𝑁) ∧ 𝑥𝑦)) → (𝑥 = 𝑦 ∨ (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅))
807, 17, 21, 22, 79wlogle 11688 . . . 4 ((⊤ ∧ (𝑥 ∈ (1..^𝑁) ∧ 𝑦 ∈ (1..^𝑁))) → (𝑥 = 𝑦 ∨ (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅))
811, 80mpan 688 . . 3 ((𝑥 ∈ (1..^𝑁) ∧ 𝑦 ∈ (1..^𝑁)) → (𝑥 = 𝑦 ∨ (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅))
8281rgen2 3194 . 2 𝑥 ∈ (1..^𝑁)∀𝑦 ∈ (1..^𝑁)(𝑥 = 𝑦 ∨ (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅)
83 disjors 5086 . 2 (Disj 𝑛 ∈ (1..^𝑁)(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ↔ ∀𝑥 ∈ (1..^𝑁)∀𝑦 ∈ (1..^𝑁)(𝑥 = 𝑦 ∨ (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅))
8482, 83mpbir 230 1 Disj 𝑛 ∈ (1..^𝑁)(𝐴 𝑘 ∈ (1..^𝑛)𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845  w3a 1087   = wceq 1541  wtru 1542  wcel 2106  wnfc 2887  wne 2943  wral 3064  csb 3855  cdif 3907  cin 3909  wss 3910  c0 4282   ciun 4954  Disj wdisj 5070   class class class wbr 5105  cfv 6496  (class class class)co 7357  cr 11050  1c1 11052   < clt 11189  cle 11190  cn 12153  cz 12499  cuz 12763  ..^cfzo 13567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-disj 5071  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-fzo 13568
This theorem is referenced by:  iundisj2cnt  31702
  Copyright terms: Public domain W3C validator