MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evl1gsumdlem Structured version   Visualization version   GIF version

Theorem evl1gsumdlem 20980
Description: Lemma for evl1gsumd 20981 (induction step). (Contributed by AV, 17-Sep-2019.)
Hypotheses
Ref Expression
evl1gsumd.q 𝑂 = (eval1𝑅)
evl1gsumd.p 𝑃 = (Poly1𝑅)
evl1gsumd.b 𝐵 = (Base‘𝑅)
evl1gsumd.u 𝑈 = (Base‘𝑃)
evl1gsumd.r (𝜑𝑅 ∈ CRing)
evl1gsumd.y (𝜑𝑌𝐵)
Assertion
Ref Expression
evl1gsumdlem ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → ((∀𝑥𝑚 𝑀𝑈 → ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌)))) → (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝑈 → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌))))))
Distinct variable groups:   𝑥,𝑂   𝑥,𝑈   𝑥,𝑌   𝑥,𝑎   𝑥,𝑚
Allowed substitution hints:   𝜑(𝑥,𝑚,𝑎)   𝐵(𝑥,𝑚,𝑎)   𝑃(𝑥,𝑚,𝑎)   𝑅(𝑥,𝑚,𝑎)   𝑈(𝑚,𝑎)   𝑀(𝑥,𝑚,𝑎)   𝑂(𝑚,𝑎)   𝑌(𝑚,𝑎)

Proof of Theorem evl1gsumdlem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ralunb 4118 . . 3 (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝑈 ↔ (∀𝑥𝑚 𝑀𝑈 ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈))
2 nfcv 2955 . . . . . . . . . . . . . . . . 17 𝑦𝑀
3 nfcsb1v 3852 . . . . . . . . . . . . . . . . 17 𝑥𝑦 / 𝑥𝑀
4 csbeq1a 3842 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦𝑀 = 𝑦 / 𝑥𝑀)
52, 3, 4cbvmpt 5131 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀) = (𝑦 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑦 / 𝑥𝑀)
65oveq2i 7146 . . . . . . . . . . . . . . 15 (𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)) = (𝑃 Σg (𝑦 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑦 / 𝑥𝑀))
7 evl1gsumd.u . . . . . . . . . . . . . . . 16 𝑈 = (Base‘𝑃)
8 eqid 2798 . . . . . . . . . . . . . . . 16 (+g𝑃) = (+g𝑃)
9 evl1gsumd.r . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑅 ∈ CRing)
10 crngring 19302 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
119, 10syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑅 ∈ Ring)
12 evl1gsumd.p . . . . . . . . . . . . . . . . . . . . 21 𝑃 = (Poly1𝑅)
1312ply1ring 20877 . . . . . . . . . . . . . . . . . . . 20 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
1411, 13syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑃 ∈ Ring)
15 ringcmn 19327 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ Ring → 𝑃 ∈ CMnd)
1614, 15syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝑃 ∈ CMnd)
17163ad2ant3 1132 . . . . . . . . . . . . . . . . 17 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → 𝑃 ∈ CMnd)
1817ad2antrr 725 . . . . . . . . . . . . . . . 16 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → 𝑃 ∈ CMnd)
19 simpll1 1209 . . . . . . . . . . . . . . . 16 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → 𝑚 ∈ Fin)
20 rspcsbela 4343 . . . . . . . . . . . . . . . . . . . 20 ((𝑦𝑚 ∧ ∀𝑥𝑚 𝑀𝑈) → 𝑦 / 𝑥𝑀𝑈)
2120expcom 417 . . . . . . . . . . . . . . . . . . 19 (∀𝑥𝑚 𝑀𝑈 → (𝑦𝑚𝑦 / 𝑥𝑀𝑈))
2221adantl 485 . . . . . . . . . . . . . . . . . 18 (((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) → (𝑦𝑚𝑦 / 𝑥𝑀𝑈))
2322adantr 484 . . . . . . . . . . . . . . . . 17 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → (𝑦𝑚𝑦 / 𝑥𝑀𝑈))
2423imp 410 . . . . . . . . . . . . . . . 16 (((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) ∧ 𝑦𝑚) → 𝑦 / 𝑥𝑀𝑈)
25 vex 3444 . . . . . . . . . . . . . . . . 17 𝑎 ∈ V
2625a1i 11 . . . . . . . . . . . . . . . 16 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → 𝑎 ∈ V)
27 simpll2 1210 . . . . . . . . . . . . . . . 16 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → ¬ 𝑎𝑚)
28 vsnid 4562 . . . . . . . . . . . . . . . . . 18 𝑎 ∈ {𝑎}
29 rspcsbela 4343 . . . . . . . . . . . . . . . . . 18 ((𝑎 ∈ {𝑎} ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → 𝑎 / 𝑥𝑀𝑈)
3028, 29mpan 689 . . . . . . . . . . . . . . . . 17 (∀𝑥 ∈ {𝑎}𝑀𝑈𝑎 / 𝑥𝑀𝑈)
3130adantl 485 . . . . . . . . . . . . . . . 16 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → 𝑎 / 𝑥𝑀𝑈)
32 csbeq1 3831 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑎𝑦 / 𝑥𝑀 = 𝑎 / 𝑥𝑀)
337, 8, 18, 19, 24, 26, 27, 31, 32gsumunsn 19073 . . . . . . . . . . . . . . 15 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → (𝑃 Σg (𝑦 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑦 / 𝑥𝑀)) = ((𝑃 Σg (𝑦𝑚𝑦 / 𝑥𝑀))(+g𝑃)𝑎 / 𝑥𝑀))
346, 33syl5eq 2845 . . . . . . . . . . . . . 14 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → (𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)) = ((𝑃 Σg (𝑦𝑚𝑦 / 𝑥𝑀))(+g𝑃)𝑎 / 𝑥𝑀))
352, 3, 4cbvmpt 5131 . . . . . . . . . . . . . . . . 17 (𝑥𝑚𝑀) = (𝑦𝑚𝑦 / 𝑥𝑀)
3635eqcomi 2807 . . . . . . . . . . . . . . . 16 (𝑦𝑚𝑦 / 𝑥𝑀) = (𝑥𝑚𝑀)
3736oveq2i 7146 . . . . . . . . . . . . . . 15 (𝑃 Σg (𝑦𝑚𝑦 / 𝑥𝑀)) = (𝑃 Σg (𝑥𝑚𝑀))
3837oveq1i 7145 . . . . . . . . . . . . . 14 ((𝑃 Σg (𝑦𝑚𝑦 / 𝑥𝑀))(+g𝑃)𝑎 / 𝑥𝑀) = ((𝑃 Σg (𝑥𝑚𝑀))(+g𝑃)𝑎 / 𝑥𝑀)
3934, 38eqtrdi 2849 . . . . . . . . . . . . 13 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → (𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)) = ((𝑃 Σg (𝑥𝑚𝑀))(+g𝑃)𝑎 / 𝑥𝑀))
4039fveq2d 6649 . . . . . . . . . . . 12 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → (𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀))) = (𝑂‘((𝑃 Σg (𝑥𝑚𝑀))(+g𝑃)𝑎 / 𝑥𝑀)))
4140fveq1d 6647 . . . . . . . . . . 11 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = ((𝑂‘((𝑃 Σg (𝑥𝑚𝑀))(+g𝑃)𝑎 / 𝑥𝑀))‘𝑌))
42 evl1gsumd.q . . . . . . . . . . . . 13 𝑂 = (eval1𝑅)
43 evl1gsumd.b . . . . . . . . . . . . 13 𝐵 = (Base‘𝑅)
4493ad2ant3 1132 . . . . . . . . . . . . . 14 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → 𝑅 ∈ CRing)
4544ad2antrr 725 . . . . . . . . . . . . 13 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → 𝑅 ∈ CRing)
46 evl1gsumd.y . . . . . . . . . . . . . . 15 (𝜑𝑌𝐵)
47463ad2ant3 1132 . . . . . . . . . . . . . 14 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → 𝑌𝐵)
4847ad2antrr 725 . . . . . . . . . . . . 13 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → 𝑌𝐵)
49 simplr 768 . . . . . . . . . . . . . . 15 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → ∀𝑥𝑚 𝑀𝑈)
507, 18, 19, 49gsummptcl 19080 . . . . . . . . . . . . . 14 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → (𝑃 Σg (𝑥𝑚𝑀)) ∈ 𝑈)
51 eqidd 2799 . . . . . . . . . . . . . 14 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌))
5250, 51jca 515 . . . . . . . . . . . . 13 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → ((𝑃 Σg (𝑥𝑚𝑀)) ∈ 𝑈 ∧ ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌)))
53 eqidd 2799 . . . . . . . . . . . . . 14 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → ((𝑂𝑎 / 𝑥𝑀)‘𝑌) = ((𝑂𝑎 / 𝑥𝑀)‘𝑌))
5431, 53jca 515 . . . . . . . . . . . . 13 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → (𝑎 / 𝑥𝑀𝑈 ∧ ((𝑂𝑎 / 𝑥𝑀)‘𝑌) = ((𝑂𝑎 / 𝑥𝑀)‘𝑌)))
55 eqid 2798 . . . . . . . . . . . . 13 (+g𝑅) = (+g𝑅)
5642, 12, 43, 7, 45, 48, 52, 54, 8, 55evl1addd 20965 . . . . . . . . . . . 12 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → (((𝑃 Σg (𝑥𝑚𝑀))(+g𝑃)𝑎 / 𝑥𝑀) ∈ 𝑈 ∧ ((𝑂‘((𝑃 Σg (𝑥𝑚𝑀))(+g𝑃)𝑎 / 𝑥𝑀))‘𝑌) = (((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌)(+g𝑅)((𝑂𝑎 / 𝑥𝑀)‘𝑌))))
5756simprd 499 . . . . . . . . . . 11 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → ((𝑂‘((𝑃 Σg (𝑥𝑚𝑀))(+g𝑃)𝑎 / 𝑥𝑀))‘𝑌) = (((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌)(+g𝑅)((𝑂𝑎 / 𝑥𝑀)‘𝑌)))
5841, 57eqtrd 2833 . . . . . . . . . 10 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌)(+g𝑅)((𝑂𝑎 / 𝑥𝑀)‘𝑌)))
59 oveq1 7142 . . . . . . . . . 10 (((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌))) → (((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌)(+g𝑅)((𝑂𝑎 / 𝑥𝑀)‘𝑌)) = ((𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌)))(+g𝑅)((𝑂𝑎 / 𝑥𝑀)‘𝑌)))
6058, 59sylan9eq 2853 . . . . . . . . 9 (((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) ∧ ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌)))) → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = ((𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌)))(+g𝑅)((𝑂𝑎 / 𝑥𝑀)‘𝑌)))
61 nfcv 2955 . . . . . . . . . . . . . 14 𝑦((𝑂𝑀)‘𝑌)
62 nfcsb1v 3852 . . . . . . . . . . . . . 14 𝑥𝑦 / 𝑥((𝑂𝑀)‘𝑌)
63 csbeq1a 3842 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → ((𝑂𝑀)‘𝑌) = 𝑦 / 𝑥((𝑂𝑀)‘𝑌))
6461, 62, 63cbvmpt 5131 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌)) = (𝑦 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑦 / 𝑥((𝑂𝑀)‘𝑌))
6564oveq2i 7146 . . . . . . . . . . . 12 (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌))) = (𝑅 Σg (𝑦 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑦 / 𝑥((𝑂𝑀)‘𝑌)))
66 ringcmn 19327 . . . . . . . . . . . . . . . 16 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
6711, 66syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑅 ∈ CMnd)
68673ad2ant3 1132 . . . . . . . . . . . . . 14 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → 𝑅 ∈ CMnd)
6968ad2antrr 725 . . . . . . . . . . . . 13 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → 𝑅 ∈ CMnd)
70 csbfv12 6688 . . . . . . . . . . . . . . 15 𝑦 / 𝑥((𝑂𝑀)‘𝑌) = (𝑦 / 𝑥(𝑂𝑀)‘𝑦 / 𝑥𝑌)
71 csbfv2g 6689 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ V → 𝑦 / 𝑥(𝑂𝑀) = (𝑂𝑦 / 𝑥𝑀))
7271elv 3446 . . . . . . . . . . . . . . . 16 𝑦 / 𝑥(𝑂𝑀) = (𝑂𝑦 / 𝑥𝑀)
73 csbconstg 3847 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ V → 𝑦 / 𝑥𝑌 = 𝑌)
7473elv 3446 . . . . . . . . . . . . . . . 16 𝑦 / 𝑥𝑌 = 𝑌
7572, 74fveq12i 6651 . . . . . . . . . . . . . . 15 (𝑦 / 𝑥(𝑂𝑀)‘𝑦 / 𝑥𝑌) = ((𝑂𝑦 / 𝑥𝑀)‘𝑌)
7670, 75eqtri 2821 . . . . . . . . . . . . . 14 𝑦 / 𝑥((𝑂𝑀)‘𝑌) = ((𝑂𝑦 / 𝑥𝑀)‘𝑌)
7745adantr 484 . . . . . . . . . . . . . . 15 (((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) ∧ 𝑦𝑚) → 𝑅 ∈ CRing)
7848adantr 484 . . . . . . . . . . . . . . 15 (((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) ∧ 𝑦𝑚) → 𝑌𝐵)
7942, 12, 43, 7, 77, 78, 24fveval1fvcl 20957 . . . . . . . . . . . . . 14 (((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) ∧ 𝑦𝑚) → ((𝑂𝑦 / 𝑥𝑀)‘𝑌) ∈ 𝐵)
8076, 79eqeltrid 2894 . . . . . . . . . . . . 13 (((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) ∧ 𝑦𝑚) → 𝑦 / 𝑥((𝑂𝑀)‘𝑌) ∈ 𝐵)
8142, 12, 43, 7, 45, 48, 31fveval1fvcl 20957 . . . . . . . . . . . . 13 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → ((𝑂𝑎 / 𝑥𝑀)‘𝑌) ∈ 𝐵)
82 nfcv 2955 . . . . . . . . . . . . . 14 𝑥𝑎
83 nfcv 2955 . . . . . . . . . . . . . . . 16 𝑥𝑂
84 nfcsb1v 3852 . . . . . . . . . . . . . . . 16 𝑥𝑎 / 𝑥𝑀
8583, 84nffv 6655 . . . . . . . . . . . . . . 15 𝑥(𝑂𝑎 / 𝑥𝑀)
86 nfcv 2955 . . . . . . . . . . . . . . 15 𝑥𝑌
8785, 86nffv 6655 . . . . . . . . . . . . . 14 𝑥((𝑂𝑎 / 𝑥𝑀)‘𝑌)
88 csbeq1a 3842 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑎𝑀 = 𝑎 / 𝑥𝑀)
8988fveq2d 6649 . . . . . . . . . . . . . . 15 (𝑥 = 𝑎 → (𝑂𝑀) = (𝑂𝑎 / 𝑥𝑀))
9089fveq1d 6647 . . . . . . . . . . . . . 14 (𝑥 = 𝑎 → ((𝑂𝑀)‘𝑌) = ((𝑂𝑎 / 𝑥𝑀)‘𝑌))
9182, 87, 90csbhypf 3856 . . . . . . . . . . . . 13 (𝑦 = 𝑎𝑦 / 𝑥((𝑂𝑀)‘𝑌) = ((𝑂𝑎 / 𝑥𝑀)‘𝑌))
9243, 55, 69, 19, 80, 26, 27, 81, 91gsumunsn 19073 . . . . . . . . . . . 12 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → (𝑅 Σg (𝑦 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑦 / 𝑥((𝑂𝑀)‘𝑌))) = ((𝑅 Σg (𝑦𝑚𝑦 / 𝑥((𝑂𝑀)‘𝑌)))(+g𝑅)((𝑂𝑎 / 𝑥𝑀)‘𝑌)))
9365, 92syl5eq 2845 . . . . . . . . . . 11 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌))) = ((𝑅 Σg (𝑦𝑚𝑦 / 𝑥((𝑂𝑀)‘𝑌)))(+g𝑅)((𝑂𝑎 / 𝑥𝑀)‘𝑌)))
9461, 62, 63cbvmpt 5131 . . . . . . . . . . . . . 14 (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌)) = (𝑦𝑚𝑦 / 𝑥((𝑂𝑀)‘𝑌))
9594eqcomi 2807 . . . . . . . . . . . . 13 (𝑦𝑚𝑦 / 𝑥((𝑂𝑀)‘𝑌)) = (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌))
9695oveq2i 7146 . . . . . . . . . . . 12 (𝑅 Σg (𝑦𝑚𝑦 / 𝑥((𝑂𝑀)‘𝑌))) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌)))
9796oveq1i 7145 . . . . . . . . . . 11 ((𝑅 Σg (𝑦𝑚𝑦 / 𝑥((𝑂𝑀)‘𝑌)))(+g𝑅)((𝑂𝑎 / 𝑥𝑀)‘𝑌)) = ((𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌)))(+g𝑅)((𝑂𝑎 / 𝑥𝑀)‘𝑌))
9893, 97eqtr2di 2850 . . . . . . . . . 10 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → ((𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌)))(+g𝑅)((𝑂𝑎 / 𝑥𝑀)‘𝑌)) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌))))
9998adantr 484 . . . . . . . . 9 (((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) ∧ ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌)))) → ((𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌)))(+g𝑅)((𝑂𝑎 / 𝑥𝑀)‘𝑌)) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌))))
10060, 99eqtrd 2833 . . . . . . . 8 (((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) ∧ ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌)))) → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌))))
101100exp31 423 . . . . . . 7 (((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) → (∀𝑥 ∈ {𝑎}𝑀𝑈 → (((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌))) → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌))))))
102101com23 86 . . . . . 6 (((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) → (((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌))) → (∀𝑥 ∈ {𝑎}𝑀𝑈 → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌))))))
103102ex 416 . . . . 5 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → (∀𝑥𝑚 𝑀𝑈 → (((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌))) → (∀𝑥 ∈ {𝑎}𝑀𝑈 → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌)))))))
104103a2d 29 . . . 4 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → ((∀𝑥𝑚 𝑀𝑈 → ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌)))) → (∀𝑥𝑚 𝑀𝑈 → (∀𝑥 ∈ {𝑎}𝑀𝑈 → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌)))))))
105104imp4b 425 . . 3 (((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ (∀𝑥𝑚 𝑀𝑈 → ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌))))) → ((∀𝑥𝑚 𝑀𝑈 ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌)))))
1061, 105syl5bi 245 . 2 (((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ (∀𝑥𝑚 𝑀𝑈 → ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌))))) → (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝑈 → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌)))))
107106ex 416 1 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → ((∀𝑥𝑚 𝑀𝑈 → ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌)))) → (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝑈 → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106  Vcvv 3441  csb 3828  cun 3879  {csn 4525  cmpt 5110  cfv 6324  (class class class)co 7135  Fincfn 8492  Basecbs 16475  +gcplusg 16557   Σg cgsu 16706  CMndccmn 18898  Ringcrg 19290  CRingccrg 19291  Poly1cpl1 20806  eval1ce1 20938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-ofr 7390  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-sup 8890  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12886  df-fzo 13029  df-seq 13365  df-hash 13687  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-hom 16581  df-cco 16582  df-0g 16707  df-gsum 16708  df-prds 16713  df-pws 16715  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-submnd 17949  df-grp 18098  df-minusg 18099  df-sbg 18100  df-mulg 18217  df-subg 18268  df-ghm 18348  df-cntz 18439  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-srg 19249  df-ring 19292  df-cring 19293  df-rnghom 19463  df-subrg 19526  df-lmod 19629  df-lss 19697  df-lsp 19737  df-assa 20542  df-asp 20543  df-ascl 20544  df-psr 20594  df-mvr 20595  df-mpl 20596  df-opsr 20598  df-evls 20745  df-evl 20746  df-psr1 20809  df-ply1 20811  df-evl1 20940
This theorem is referenced by:  evl1gsumd  20981
  Copyright terms: Public domain W3C validator