MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evl1gsumdlem Structured version   Visualization version   GIF version

Theorem evl1gsumdlem 22375
Description: Lemma for evl1gsumd 22376 (induction step). (Contributed by AV, 17-Sep-2019.)
Hypotheses
Ref Expression
evl1gsumd.q 𝑂 = (eval1𝑅)
evl1gsumd.p 𝑃 = (Poly1𝑅)
evl1gsumd.b 𝐵 = (Base‘𝑅)
evl1gsumd.u 𝑈 = (Base‘𝑃)
evl1gsumd.r (𝜑𝑅 ∈ CRing)
evl1gsumd.y (𝜑𝑌𝐵)
Assertion
Ref Expression
evl1gsumdlem ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → ((∀𝑥𝑚 𝑀𝑈 → ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌)))) → (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝑈 → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌))))))
Distinct variable groups:   𝑥,𝑂   𝑥,𝑈   𝑥,𝑌   𝑥,𝑎   𝑥,𝑚
Allowed substitution hints:   𝜑(𝑥,𝑚,𝑎)   𝐵(𝑥,𝑚,𝑎)   𝑃(𝑥,𝑚,𝑎)   𝑅(𝑥,𝑚,𝑎)   𝑈(𝑚,𝑎)   𝑀(𝑥,𝑚,𝑎)   𝑂(𝑚,𝑎)   𝑌(𝑚,𝑎)

Proof of Theorem evl1gsumdlem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ralunb 4206 . . 3 (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝑈 ↔ (∀𝑥𝑚 𝑀𝑈 ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈))
2 nfcv 2902 . . . . . . . . . . . . . . . . 17 𝑦𝑀
3 nfcsb1v 3932 . . . . . . . . . . . . . . . . 17 𝑥𝑦 / 𝑥𝑀
4 csbeq1a 3921 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦𝑀 = 𝑦 / 𝑥𝑀)
52, 3, 4cbvmpt 5258 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀) = (𝑦 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑦 / 𝑥𝑀)
65oveq2i 7441 . . . . . . . . . . . . . . 15 (𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)) = (𝑃 Σg (𝑦 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑦 / 𝑥𝑀))
7 evl1gsumd.u . . . . . . . . . . . . . . . 16 𝑈 = (Base‘𝑃)
8 eqid 2734 . . . . . . . . . . . . . . . 16 (+g𝑃) = (+g𝑃)
9 evl1gsumd.r . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑅 ∈ CRing)
10 crngring 20262 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
119, 10syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑅 ∈ Ring)
12 evl1gsumd.p . . . . . . . . . . . . . . . . . . . . 21 𝑃 = (Poly1𝑅)
1312ply1ring 22264 . . . . . . . . . . . . . . . . . . . 20 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
1411, 13syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑃 ∈ Ring)
15 ringcmn 20295 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ Ring → 𝑃 ∈ CMnd)
1614, 15syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝑃 ∈ CMnd)
17163ad2ant3 1134 . . . . . . . . . . . . . . . . 17 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → 𝑃 ∈ CMnd)
1817ad2antrr 726 . . . . . . . . . . . . . . . 16 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → 𝑃 ∈ CMnd)
19 simpll1 1211 . . . . . . . . . . . . . . . 16 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → 𝑚 ∈ Fin)
20 rspcsbela 4443 . . . . . . . . . . . . . . . . . . . 20 ((𝑦𝑚 ∧ ∀𝑥𝑚 𝑀𝑈) → 𝑦 / 𝑥𝑀𝑈)
2120expcom 413 . . . . . . . . . . . . . . . . . . 19 (∀𝑥𝑚 𝑀𝑈 → (𝑦𝑚𝑦 / 𝑥𝑀𝑈))
2221adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) → (𝑦𝑚𝑦 / 𝑥𝑀𝑈))
2322adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → (𝑦𝑚𝑦 / 𝑥𝑀𝑈))
2423imp 406 . . . . . . . . . . . . . . . 16 (((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) ∧ 𝑦𝑚) → 𝑦 / 𝑥𝑀𝑈)
25 vex 3481 . . . . . . . . . . . . . . . . 17 𝑎 ∈ V
2625a1i 11 . . . . . . . . . . . . . . . 16 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → 𝑎 ∈ V)
27 simpll2 1212 . . . . . . . . . . . . . . . 16 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → ¬ 𝑎𝑚)
28 vsnid 4667 . . . . . . . . . . . . . . . . . 18 𝑎 ∈ {𝑎}
29 rspcsbela 4443 . . . . . . . . . . . . . . . . . 18 ((𝑎 ∈ {𝑎} ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → 𝑎 / 𝑥𝑀𝑈)
3028, 29mpan 690 . . . . . . . . . . . . . . . . 17 (∀𝑥 ∈ {𝑎}𝑀𝑈𝑎 / 𝑥𝑀𝑈)
3130adantl 481 . . . . . . . . . . . . . . . 16 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → 𝑎 / 𝑥𝑀𝑈)
32 csbeq1 3910 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑎𝑦 / 𝑥𝑀 = 𝑎 / 𝑥𝑀)
337, 8, 18, 19, 24, 26, 27, 31, 32gsumunsn 19992 . . . . . . . . . . . . . . 15 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → (𝑃 Σg (𝑦 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑦 / 𝑥𝑀)) = ((𝑃 Σg (𝑦𝑚𝑦 / 𝑥𝑀))(+g𝑃)𝑎 / 𝑥𝑀))
346, 33eqtrid 2786 . . . . . . . . . . . . . 14 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → (𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)) = ((𝑃 Σg (𝑦𝑚𝑦 / 𝑥𝑀))(+g𝑃)𝑎 / 𝑥𝑀))
352, 3, 4cbvmpt 5258 . . . . . . . . . . . . . . . . 17 (𝑥𝑚𝑀) = (𝑦𝑚𝑦 / 𝑥𝑀)
3635eqcomi 2743 . . . . . . . . . . . . . . . 16 (𝑦𝑚𝑦 / 𝑥𝑀) = (𝑥𝑚𝑀)
3736oveq2i 7441 . . . . . . . . . . . . . . 15 (𝑃 Σg (𝑦𝑚𝑦 / 𝑥𝑀)) = (𝑃 Σg (𝑥𝑚𝑀))
3837oveq1i 7440 . . . . . . . . . . . . . 14 ((𝑃 Σg (𝑦𝑚𝑦 / 𝑥𝑀))(+g𝑃)𝑎 / 𝑥𝑀) = ((𝑃 Σg (𝑥𝑚𝑀))(+g𝑃)𝑎 / 𝑥𝑀)
3934, 38eqtrdi 2790 . . . . . . . . . . . . 13 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → (𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)) = ((𝑃 Σg (𝑥𝑚𝑀))(+g𝑃)𝑎 / 𝑥𝑀))
4039fveq2d 6910 . . . . . . . . . . . 12 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → (𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀))) = (𝑂‘((𝑃 Σg (𝑥𝑚𝑀))(+g𝑃)𝑎 / 𝑥𝑀)))
4140fveq1d 6908 . . . . . . . . . . 11 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = ((𝑂‘((𝑃 Σg (𝑥𝑚𝑀))(+g𝑃)𝑎 / 𝑥𝑀))‘𝑌))
42 evl1gsumd.q . . . . . . . . . . . . 13 𝑂 = (eval1𝑅)
43 evl1gsumd.b . . . . . . . . . . . . 13 𝐵 = (Base‘𝑅)
4493ad2ant3 1134 . . . . . . . . . . . . . 14 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → 𝑅 ∈ CRing)
4544ad2antrr 726 . . . . . . . . . . . . 13 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → 𝑅 ∈ CRing)
46 evl1gsumd.y . . . . . . . . . . . . . . 15 (𝜑𝑌𝐵)
47463ad2ant3 1134 . . . . . . . . . . . . . 14 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → 𝑌𝐵)
4847ad2antrr 726 . . . . . . . . . . . . 13 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → 𝑌𝐵)
49 simplr 769 . . . . . . . . . . . . . . 15 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → ∀𝑥𝑚 𝑀𝑈)
507, 18, 19, 49gsummptcl 19999 . . . . . . . . . . . . . 14 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → (𝑃 Σg (𝑥𝑚𝑀)) ∈ 𝑈)
51 eqidd 2735 . . . . . . . . . . . . . 14 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌))
5250, 51jca 511 . . . . . . . . . . . . 13 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → ((𝑃 Σg (𝑥𝑚𝑀)) ∈ 𝑈 ∧ ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌)))
53 eqidd 2735 . . . . . . . . . . . . . 14 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → ((𝑂𝑎 / 𝑥𝑀)‘𝑌) = ((𝑂𝑎 / 𝑥𝑀)‘𝑌))
5431, 53jca 511 . . . . . . . . . . . . 13 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → (𝑎 / 𝑥𝑀𝑈 ∧ ((𝑂𝑎 / 𝑥𝑀)‘𝑌) = ((𝑂𝑎 / 𝑥𝑀)‘𝑌)))
55 eqid 2734 . . . . . . . . . . . . 13 (+g𝑅) = (+g𝑅)
5642, 12, 43, 7, 45, 48, 52, 54, 8, 55evl1addd 22360 . . . . . . . . . . . 12 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → (((𝑃 Σg (𝑥𝑚𝑀))(+g𝑃)𝑎 / 𝑥𝑀) ∈ 𝑈 ∧ ((𝑂‘((𝑃 Σg (𝑥𝑚𝑀))(+g𝑃)𝑎 / 𝑥𝑀))‘𝑌) = (((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌)(+g𝑅)((𝑂𝑎 / 𝑥𝑀)‘𝑌))))
5756simprd 495 . . . . . . . . . . 11 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → ((𝑂‘((𝑃 Σg (𝑥𝑚𝑀))(+g𝑃)𝑎 / 𝑥𝑀))‘𝑌) = (((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌)(+g𝑅)((𝑂𝑎 / 𝑥𝑀)‘𝑌)))
5841, 57eqtrd 2774 . . . . . . . . . 10 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌)(+g𝑅)((𝑂𝑎 / 𝑥𝑀)‘𝑌)))
59 oveq1 7437 . . . . . . . . . 10 (((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌))) → (((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌)(+g𝑅)((𝑂𝑎 / 𝑥𝑀)‘𝑌)) = ((𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌)))(+g𝑅)((𝑂𝑎 / 𝑥𝑀)‘𝑌)))
6058, 59sylan9eq 2794 . . . . . . . . 9 (((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) ∧ ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌)))) → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = ((𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌)))(+g𝑅)((𝑂𝑎 / 𝑥𝑀)‘𝑌)))
61 nfcv 2902 . . . . . . . . . . . . . 14 𝑦((𝑂𝑀)‘𝑌)
62 nfcsb1v 3932 . . . . . . . . . . . . . 14 𝑥𝑦 / 𝑥((𝑂𝑀)‘𝑌)
63 csbeq1a 3921 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → ((𝑂𝑀)‘𝑌) = 𝑦 / 𝑥((𝑂𝑀)‘𝑌))
6461, 62, 63cbvmpt 5258 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌)) = (𝑦 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑦 / 𝑥((𝑂𝑀)‘𝑌))
6564oveq2i 7441 . . . . . . . . . . . 12 (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌))) = (𝑅 Σg (𝑦 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑦 / 𝑥((𝑂𝑀)‘𝑌)))
66 ringcmn 20295 . . . . . . . . . . . . . . . 16 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
6711, 66syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑅 ∈ CMnd)
68673ad2ant3 1134 . . . . . . . . . . . . . 14 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → 𝑅 ∈ CMnd)
6968ad2antrr 726 . . . . . . . . . . . . 13 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → 𝑅 ∈ CMnd)
70 csbfv12 6954 . . . . . . . . . . . . . . 15 𝑦 / 𝑥((𝑂𝑀)‘𝑌) = (𝑦 / 𝑥(𝑂𝑀)‘𝑦 / 𝑥𝑌)
71 csbfv2g 6955 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ V → 𝑦 / 𝑥(𝑂𝑀) = (𝑂𝑦 / 𝑥𝑀))
7271elv 3482 . . . . . . . . . . . . . . . 16 𝑦 / 𝑥(𝑂𝑀) = (𝑂𝑦 / 𝑥𝑀)
73 csbconstg 3926 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ V → 𝑦 / 𝑥𝑌 = 𝑌)
7473elv 3482 . . . . . . . . . . . . . . . 16 𝑦 / 𝑥𝑌 = 𝑌
7572, 74fveq12i 6912 . . . . . . . . . . . . . . 15 (𝑦 / 𝑥(𝑂𝑀)‘𝑦 / 𝑥𝑌) = ((𝑂𝑦 / 𝑥𝑀)‘𝑌)
7670, 75eqtri 2762 . . . . . . . . . . . . . 14 𝑦 / 𝑥((𝑂𝑀)‘𝑌) = ((𝑂𝑦 / 𝑥𝑀)‘𝑌)
7745adantr 480 . . . . . . . . . . . . . . 15 (((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) ∧ 𝑦𝑚) → 𝑅 ∈ CRing)
7848adantr 480 . . . . . . . . . . . . . . 15 (((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) ∧ 𝑦𝑚) → 𝑌𝐵)
7942, 12, 43, 7, 77, 78, 24fveval1fvcl 22352 . . . . . . . . . . . . . 14 (((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) ∧ 𝑦𝑚) → ((𝑂𝑦 / 𝑥𝑀)‘𝑌) ∈ 𝐵)
8076, 79eqeltrid 2842 . . . . . . . . . . . . 13 (((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) ∧ 𝑦𝑚) → 𝑦 / 𝑥((𝑂𝑀)‘𝑌) ∈ 𝐵)
8142, 12, 43, 7, 45, 48, 31fveval1fvcl 22352 . . . . . . . . . . . . 13 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → ((𝑂𝑎 / 𝑥𝑀)‘𝑌) ∈ 𝐵)
82 nfcv 2902 . . . . . . . . . . . . . 14 𝑥𝑎
83 nfcv 2902 . . . . . . . . . . . . . . . 16 𝑥𝑂
84 nfcsb1v 3932 . . . . . . . . . . . . . . . 16 𝑥𝑎 / 𝑥𝑀
8583, 84nffv 6916 . . . . . . . . . . . . . . 15 𝑥(𝑂𝑎 / 𝑥𝑀)
86 nfcv 2902 . . . . . . . . . . . . . . 15 𝑥𝑌
8785, 86nffv 6916 . . . . . . . . . . . . . 14 𝑥((𝑂𝑎 / 𝑥𝑀)‘𝑌)
88 csbeq1a 3921 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑎𝑀 = 𝑎 / 𝑥𝑀)
8988fveq2d 6910 . . . . . . . . . . . . . . 15 (𝑥 = 𝑎 → (𝑂𝑀) = (𝑂𝑎 / 𝑥𝑀))
9089fveq1d 6908 . . . . . . . . . . . . . 14 (𝑥 = 𝑎 → ((𝑂𝑀)‘𝑌) = ((𝑂𝑎 / 𝑥𝑀)‘𝑌))
9182, 87, 90csbhypf 3936 . . . . . . . . . . . . 13 (𝑦 = 𝑎𝑦 / 𝑥((𝑂𝑀)‘𝑌) = ((𝑂𝑎 / 𝑥𝑀)‘𝑌))
9243, 55, 69, 19, 80, 26, 27, 81, 91gsumunsn 19992 . . . . . . . . . . . 12 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → (𝑅 Σg (𝑦 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑦 / 𝑥((𝑂𝑀)‘𝑌))) = ((𝑅 Σg (𝑦𝑚𝑦 / 𝑥((𝑂𝑀)‘𝑌)))(+g𝑅)((𝑂𝑎 / 𝑥𝑀)‘𝑌)))
9365, 92eqtrid 2786 . . . . . . . . . . 11 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌))) = ((𝑅 Σg (𝑦𝑚𝑦 / 𝑥((𝑂𝑀)‘𝑌)))(+g𝑅)((𝑂𝑎 / 𝑥𝑀)‘𝑌)))
9461, 62, 63cbvmpt 5258 . . . . . . . . . . . . . 14 (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌)) = (𝑦𝑚𝑦 / 𝑥((𝑂𝑀)‘𝑌))
9594eqcomi 2743 . . . . . . . . . . . . 13 (𝑦𝑚𝑦 / 𝑥((𝑂𝑀)‘𝑌)) = (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌))
9695oveq2i 7441 . . . . . . . . . . . 12 (𝑅 Σg (𝑦𝑚𝑦 / 𝑥((𝑂𝑀)‘𝑌))) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌)))
9796oveq1i 7440 . . . . . . . . . . 11 ((𝑅 Σg (𝑦𝑚𝑦 / 𝑥((𝑂𝑀)‘𝑌)))(+g𝑅)((𝑂𝑎 / 𝑥𝑀)‘𝑌)) = ((𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌)))(+g𝑅)((𝑂𝑎 / 𝑥𝑀)‘𝑌))
9893, 97eqtr2di 2791 . . . . . . . . . 10 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → ((𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌)))(+g𝑅)((𝑂𝑎 / 𝑥𝑀)‘𝑌)) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌))))
9998adantr 480 . . . . . . . . 9 (((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) ∧ ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌)))) → ((𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌)))(+g𝑅)((𝑂𝑎 / 𝑥𝑀)‘𝑌)) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌))))
10060, 99eqtrd 2774 . . . . . . . 8 (((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) ∧ ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌)))) → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌))))
101100exp31 419 . . . . . . 7 (((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) → (∀𝑥 ∈ {𝑎}𝑀𝑈 → (((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌))) → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌))))))
102101com23 86 . . . . . 6 (((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) → (((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌))) → (∀𝑥 ∈ {𝑎}𝑀𝑈 → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌))))))
103102ex 412 . . . . 5 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → (∀𝑥𝑚 𝑀𝑈 → (((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌))) → (∀𝑥 ∈ {𝑎}𝑀𝑈 → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌)))))))
104103a2d 29 . . . 4 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → ((∀𝑥𝑚 𝑀𝑈 → ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌)))) → (∀𝑥𝑚 𝑀𝑈 → (∀𝑥 ∈ {𝑎}𝑀𝑈 → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌)))))))
105104imp4b 421 . . 3 (((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ (∀𝑥𝑚 𝑀𝑈 → ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌))))) → ((∀𝑥𝑚 𝑀𝑈 ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌)))))
1061, 105biimtrid 242 . 2 (((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ (∀𝑥𝑚 𝑀𝑈 → ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌))))) → (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝑈 → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌)))))
107106ex 412 1 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → ((∀𝑥𝑚 𝑀𝑈 → ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌)))) → (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝑈 → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1536  wcel 2105  wral 3058  Vcvv 3477  csb 3907  cun 3960  {csn 4630  cmpt 5230  cfv 6562  (class class class)co 7430  Fincfn 8983  Basecbs 17244  +gcplusg 17297   Σg cgsu 17486  CMndccmn 19812  Ringcrg 20250  CRingccrg 20251  Poly1cpl1 22193  eval1ce1 22333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-ofr 7697  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-er 8743  df-map 8866  df-pm 8867  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-sup 9479  df-oi 9547  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-fz 13544  df-fzo 13691  df-seq 14039  df-hash 14366  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-hom 17321  df-cco 17322  df-0g 17487  df-gsum 17488  df-prds 17493  df-pws 17495  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-mhm 18808  df-submnd 18809  df-grp 18966  df-minusg 18967  df-sbg 18968  df-mulg 19098  df-subg 19153  df-ghm 19243  df-cntz 19347  df-cmn 19814  df-abl 19815  df-mgp 20152  df-rng 20170  df-ur 20199  df-srg 20204  df-ring 20252  df-cring 20253  df-rhm 20488  df-subrng 20562  df-subrg 20586  df-lmod 20876  df-lss 20947  df-lsp 20987  df-assa 21890  df-asp 21891  df-ascl 21892  df-psr 21946  df-mvr 21947  df-mpl 21948  df-opsr 21950  df-evls 22115  df-evl 22116  df-psr1 22196  df-ply1 22198  df-evl1 22335
This theorem is referenced by:  evl1gsumd  22376
  Copyright terms: Public domain W3C validator