MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evl1gsumdlem Structured version   Visualization version   GIF version

Theorem evl1gsumdlem 22294
Description: Lemma for evl1gsumd 22295 (induction step). (Contributed by AV, 17-Sep-2019.)
Hypotheses
Ref Expression
evl1gsumd.q 𝑂 = (eval1𝑅)
evl1gsumd.p 𝑃 = (Poly1𝑅)
evl1gsumd.b 𝐵 = (Base‘𝑅)
evl1gsumd.u 𝑈 = (Base‘𝑃)
evl1gsumd.r (𝜑𝑅 ∈ CRing)
evl1gsumd.y (𝜑𝑌𝐵)
Assertion
Ref Expression
evl1gsumdlem ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → ((∀𝑥𝑚 𝑀𝑈 → ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌)))) → (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝑈 → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌))))))
Distinct variable groups:   𝑥,𝑂   𝑥,𝑈   𝑥,𝑌   𝑥,𝑎   𝑥,𝑚
Allowed substitution hints:   𝜑(𝑥,𝑚,𝑎)   𝐵(𝑥,𝑚,𝑎)   𝑃(𝑥,𝑚,𝑎)   𝑅(𝑥,𝑚,𝑎)   𝑈(𝑚,𝑎)   𝑀(𝑥,𝑚,𝑎)   𝑂(𝑚,𝑎)   𝑌(𝑚,𝑎)

Proof of Theorem evl1gsumdlem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ralunb 4172 . . 3 (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝑈 ↔ (∀𝑥𝑚 𝑀𝑈 ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈))
2 nfcv 2898 . . . . . . . . . . . . . . . . 17 𝑦𝑀
3 nfcsb1v 3898 . . . . . . . . . . . . . . . . 17 𝑥𝑦 / 𝑥𝑀
4 csbeq1a 3888 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦𝑀 = 𝑦 / 𝑥𝑀)
52, 3, 4cbvmpt 5223 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀) = (𝑦 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑦 / 𝑥𝑀)
65oveq2i 7416 . . . . . . . . . . . . . . 15 (𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)) = (𝑃 Σg (𝑦 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑦 / 𝑥𝑀))
7 evl1gsumd.u . . . . . . . . . . . . . . . 16 𝑈 = (Base‘𝑃)
8 eqid 2735 . . . . . . . . . . . . . . . 16 (+g𝑃) = (+g𝑃)
9 evl1gsumd.r . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑅 ∈ CRing)
10 crngring 20205 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
119, 10syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑅 ∈ Ring)
12 evl1gsumd.p . . . . . . . . . . . . . . . . . . . . 21 𝑃 = (Poly1𝑅)
1312ply1ring 22183 . . . . . . . . . . . . . . . . . . . 20 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
1411, 13syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑃 ∈ Ring)
15 ringcmn 20242 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ Ring → 𝑃 ∈ CMnd)
1614, 15syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝑃 ∈ CMnd)
17163ad2ant3 1135 . . . . . . . . . . . . . . . . 17 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → 𝑃 ∈ CMnd)
1817ad2antrr 726 . . . . . . . . . . . . . . . 16 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → 𝑃 ∈ CMnd)
19 simpll1 1213 . . . . . . . . . . . . . . . 16 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → 𝑚 ∈ Fin)
20 rspcsbela 4413 . . . . . . . . . . . . . . . . . . . 20 ((𝑦𝑚 ∧ ∀𝑥𝑚 𝑀𝑈) → 𝑦 / 𝑥𝑀𝑈)
2120expcom 413 . . . . . . . . . . . . . . . . . . 19 (∀𝑥𝑚 𝑀𝑈 → (𝑦𝑚𝑦 / 𝑥𝑀𝑈))
2221adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) → (𝑦𝑚𝑦 / 𝑥𝑀𝑈))
2322adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → (𝑦𝑚𝑦 / 𝑥𝑀𝑈))
2423imp 406 . . . . . . . . . . . . . . . 16 (((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) ∧ 𝑦𝑚) → 𝑦 / 𝑥𝑀𝑈)
25 vex 3463 . . . . . . . . . . . . . . . . 17 𝑎 ∈ V
2625a1i 11 . . . . . . . . . . . . . . . 16 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → 𝑎 ∈ V)
27 simpll2 1214 . . . . . . . . . . . . . . . 16 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → ¬ 𝑎𝑚)
28 vsnid 4639 . . . . . . . . . . . . . . . . . 18 𝑎 ∈ {𝑎}
29 rspcsbela 4413 . . . . . . . . . . . . . . . . . 18 ((𝑎 ∈ {𝑎} ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → 𝑎 / 𝑥𝑀𝑈)
3028, 29mpan 690 . . . . . . . . . . . . . . . . 17 (∀𝑥 ∈ {𝑎}𝑀𝑈𝑎 / 𝑥𝑀𝑈)
3130adantl 481 . . . . . . . . . . . . . . . 16 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → 𝑎 / 𝑥𝑀𝑈)
32 csbeq1 3877 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑎𝑦 / 𝑥𝑀 = 𝑎 / 𝑥𝑀)
337, 8, 18, 19, 24, 26, 27, 31, 32gsumunsn 19941 . . . . . . . . . . . . . . 15 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → (𝑃 Σg (𝑦 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑦 / 𝑥𝑀)) = ((𝑃 Σg (𝑦𝑚𝑦 / 𝑥𝑀))(+g𝑃)𝑎 / 𝑥𝑀))
346, 33eqtrid 2782 . . . . . . . . . . . . . 14 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → (𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)) = ((𝑃 Σg (𝑦𝑚𝑦 / 𝑥𝑀))(+g𝑃)𝑎 / 𝑥𝑀))
352, 3, 4cbvmpt 5223 . . . . . . . . . . . . . . . . 17 (𝑥𝑚𝑀) = (𝑦𝑚𝑦 / 𝑥𝑀)
3635eqcomi 2744 . . . . . . . . . . . . . . . 16 (𝑦𝑚𝑦 / 𝑥𝑀) = (𝑥𝑚𝑀)
3736oveq2i 7416 . . . . . . . . . . . . . . 15 (𝑃 Σg (𝑦𝑚𝑦 / 𝑥𝑀)) = (𝑃 Σg (𝑥𝑚𝑀))
3837oveq1i 7415 . . . . . . . . . . . . . 14 ((𝑃 Σg (𝑦𝑚𝑦 / 𝑥𝑀))(+g𝑃)𝑎 / 𝑥𝑀) = ((𝑃 Σg (𝑥𝑚𝑀))(+g𝑃)𝑎 / 𝑥𝑀)
3934, 38eqtrdi 2786 . . . . . . . . . . . . 13 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → (𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)) = ((𝑃 Σg (𝑥𝑚𝑀))(+g𝑃)𝑎 / 𝑥𝑀))
4039fveq2d 6880 . . . . . . . . . . . 12 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → (𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀))) = (𝑂‘((𝑃 Σg (𝑥𝑚𝑀))(+g𝑃)𝑎 / 𝑥𝑀)))
4140fveq1d 6878 . . . . . . . . . . 11 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = ((𝑂‘((𝑃 Σg (𝑥𝑚𝑀))(+g𝑃)𝑎 / 𝑥𝑀))‘𝑌))
42 evl1gsumd.q . . . . . . . . . . . . 13 𝑂 = (eval1𝑅)
43 evl1gsumd.b . . . . . . . . . . . . 13 𝐵 = (Base‘𝑅)
4493ad2ant3 1135 . . . . . . . . . . . . . 14 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → 𝑅 ∈ CRing)
4544ad2antrr 726 . . . . . . . . . . . . 13 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → 𝑅 ∈ CRing)
46 evl1gsumd.y . . . . . . . . . . . . . . 15 (𝜑𝑌𝐵)
47463ad2ant3 1135 . . . . . . . . . . . . . 14 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → 𝑌𝐵)
4847ad2antrr 726 . . . . . . . . . . . . 13 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → 𝑌𝐵)
49 simplr 768 . . . . . . . . . . . . . . 15 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → ∀𝑥𝑚 𝑀𝑈)
507, 18, 19, 49gsummptcl 19948 . . . . . . . . . . . . . 14 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → (𝑃 Σg (𝑥𝑚𝑀)) ∈ 𝑈)
51 eqidd 2736 . . . . . . . . . . . . . 14 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌))
5250, 51jca 511 . . . . . . . . . . . . 13 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → ((𝑃 Σg (𝑥𝑚𝑀)) ∈ 𝑈 ∧ ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌)))
53 eqidd 2736 . . . . . . . . . . . . . 14 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → ((𝑂𝑎 / 𝑥𝑀)‘𝑌) = ((𝑂𝑎 / 𝑥𝑀)‘𝑌))
5431, 53jca 511 . . . . . . . . . . . . 13 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → (𝑎 / 𝑥𝑀𝑈 ∧ ((𝑂𝑎 / 𝑥𝑀)‘𝑌) = ((𝑂𝑎 / 𝑥𝑀)‘𝑌)))
55 eqid 2735 . . . . . . . . . . . . 13 (+g𝑅) = (+g𝑅)
5642, 12, 43, 7, 45, 48, 52, 54, 8, 55evl1addd 22279 . . . . . . . . . . . 12 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → (((𝑃 Σg (𝑥𝑚𝑀))(+g𝑃)𝑎 / 𝑥𝑀) ∈ 𝑈 ∧ ((𝑂‘((𝑃 Σg (𝑥𝑚𝑀))(+g𝑃)𝑎 / 𝑥𝑀))‘𝑌) = (((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌)(+g𝑅)((𝑂𝑎 / 𝑥𝑀)‘𝑌))))
5756simprd 495 . . . . . . . . . . 11 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → ((𝑂‘((𝑃 Σg (𝑥𝑚𝑀))(+g𝑃)𝑎 / 𝑥𝑀))‘𝑌) = (((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌)(+g𝑅)((𝑂𝑎 / 𝑥𝑀)‘𝑌)))
5841, 57eqtrd 2770 . . . . . . . . . 10 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌)(+g𝑅)((𝑂𝑎 / 𝑥𝑀)‘𝑌)))
59 oveq1 7412 . . . . . . . . . 10 (((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌))) → (((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌)(+g𝑅)((𝑂𝑎 / 𝑥𝑀)‘𝑌)) = ((𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌)))(+g𝑅)((𝑂𝑎 / 𝑥𝑀)‘𝑌)))
6058, 59sylan9eq 2790 . . . . . . . . 9 (((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) ∧ ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌)))) → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = ((𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌)))(+g𝑅)((𝑂𝑎 / 𝑥𝑀)‘𝑌)))
61 nfcv 2898 . . . . . . . . . . . . . 14 𝑦((𝑂𝑀)‘𝑌)
62 nfcsb1v 3898 . . . . . . . . . . . . . 14 𝑥𝑦 / 𝑥((𝑂𝑀)‘𝑌)
63 csbeq1a 3888 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → ((𝑂𝑀)‘𝑌) = 𝑦 / 𝑥((𝑂𝑀)‘𝑌))
6461, 62, 63cbvmpt 5223 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌)) = (𝑦 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑦 / 𝑥((𝑂𝑀)‘𝑌))
6564oveq2i 7416 . . . . . . . . . . . 12 (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌))) = (𝑅 Σg (𝑦 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑦 / 𝑥((𝑂𝑀)‘𝑌)))
66 ringcmn 20242 . . . . . . . . . . . . . . . 16 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
6711, 66syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑅 ∈ CMnd)
68673ad2ant3 1135 . . . . . . . . . . . . . 14 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → 𝑅 ∈ CMnd)
6968ad2antrr 726 . . . . . . . . . . . . 13 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → 𝑅 ∈ CMnd)
70 csbfv12 6924 . . . . . . . . . . . . . . 15 𝑦 / 𝑥((𝑂𝑀)‘𝑌) = (𝑦 / 𝑥(𝑂𝑀)‘𝑦 / 𝑥𝑌)
71 csbfv2g 6925 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ V → 𝑦 / 𝑥(𝑂𝑀) = (𝑂𝑦 / 𝑥𝑀))
7271elv 3464 . . . . . . . . . . . . . . . 16 𝑦 / 𝑥(𝑂𝑀) = (𝑂𝑦 / 𝑥𝑀)
73 csbconstg 3893 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ V → 𝑦 / 𝑥𝑌 = 𝑌)
7473elv 3464 . . . . . . . . . . . . . . . 16 𝑦 / 𝑥𝑌 = 𝑌
7572, 74fveq12i 6882 . . . . . . . . . . . . . . 15 (𝑦 / 𝑥(𝑂𝑀)‘𝑦 / 𝑥𝑌) = ((𝑂𝑦 / 𝑥𝑀)‘𝑌)
7670, 75eqtri 2758 . . . . . . . . . . . . . 14 𝑦 / 𝑥((𝑂𝑀)‘𝑌) = ((𝑂𝑦 / 𝑥𝑀)‘𝑌)
7745adantr 480 . . . . . . . . . . . . . . 15 (((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) ∧ 𝑦𝑚) → 𝑅 ∈ CRing)
7848adantr 480 . . . . . . . . . . . . . . 15 (((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) ∧ 𝑦𝑚) → 𝑌𝐵)
7942, 12, 43, 7, 77, 78, 24fveval1fvcl 22271 . . . . . . . . . . . . . 14 (((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) ∧ 𝑦𝑚) → ((𝑂𝑦 / 𝑥𝑀)‘𝑌) ∈ 𝐵)
8076, 79eqeltrid 2838 . . . . . . . . . . . . 13 (((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) ∧ 𝑦𝑚) → 𝑦 / 𝑥((𝑂𝑀)‘𝑌) ∈ 𝐵)
8142, 12, 43, 7, 45, 48, 31fveval1fvcl 22271 . . . . . . . . . . . . 13 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → ((𝑂𝑎 / 𝑥𝑀)‘𝑌) ∈ 𝐵)
82 nfcv 2898 . . . . . . . . . . . . . 14 𝑥𝑎
83 nfcv 2898 . . . . . . . . . . . . . . . 16 𝑥𝑂
84 nfcsb1v 3898 . . . . . . . . . . . . . . . 16 𝑥𝑎 / 𝑥𝑀
8583, 84nffv 6886 . . . . . . . . . . . . . . 15 𝑥(𝑂𝑎 / 𝑥𝑀)
86 nfcv 2898 . . . . . . . . . . . . . . 15 𝑥𝑌
8785, 86nffv 6886 . . . . . . . . . . . . . 14 𝑥((𝑂𝑎 / 𝑥𝑀)‘𝑌)
88 csbeq1a 3888 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑎𝑀 = 𝑎 / 𝑥𝑀)
8988fveq2d 6880 . . . . . . . . . . . . . . 15 (𝑥 = 𝑎 → (𝑂𝑀) = (𝑂𝑎 / 𝑥𝑀))
9089fveq1d 6878 . . . . . . . . . . . . . 14 (𝑥 = 𝑎 → ((𝑂𝑀)‘𝑌) = ((𝑂𝑎 / 𝑥𝑀)‘𝑌))
9182, 87, 90csbhypf 3902 . . . . . . . . . . . . 13 (𝑦 = 𝑎𝑦 / 𝑥((𝑂𝑀)‘𝑌) = ((𝑂𝑎 / 𝑥𝑀)‘𝑌))
9243, 55, 69, 19, 80, 26, 27, 81, 91gsumunsn 19941 . . . . . . . . . . . 12 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → (𝑅 Σg (𝑦 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑦 / 𝑥((𝑂𝑀)‘𝑌))) = ((𝑅 Σg (𝑦𝑚𝑦 / 𝑥((𝑂𝑀)‘𝑌)))(+g𝑅)((𝑂𝑎 / 𝑥𝑀)‘𝑌)))
9365, 92eqtrid 2782 . . . . . . . . . . 11 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌))) = ((𝑅 Σg (𝑦𝑚𝑦 / 𝑥((𝑂𝑀)‘𝑌)))(+g𝑅)((𝑂𝑎 / 𝑥𝑀)‘𝑌)))
9461, 62, 63cbvmpt 5223 . . . . . . . . . . . . . 14 (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌)) = (𝑦𝑚𝑦 / 𝑥((𝑂𝑀)‘𝑌))
9594eqcomi 2744 . . . . . . . . . . . . 13 (𝑦𝑚𝑦 / 𝑥((𝑂𝑀)‘𝑌)) = (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌))
9695oveq2i 7416 . . . . . . . . . . . 12 (𝑅 Σg (𝑦𝑚𝑦 / 𝑥((𝑂𝑀)‘𝑌))) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌)))
9796oveq1i 7415 . . . . . . . . . . 11 ((𝑅 Σg (𝑦𝑚𝑦 / 𝑥((𝑂𝑀)‘𝑌)))(+g𝑅)((𝑂𝑎 / 𝑥𝑀)‘𝑌)) = ((𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌)))(+g𝑅)((𝑂𝑎 / 𝑥𝑀)‘𝑌))
9893, 97eqtr2di 2787 . . . . . . . . . 10 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → ((𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌)))(+g𝑅)((𝑂𝑎 / 𝑥𝑀)‘𝑌)) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌))))
9998adantr 480 . . . . . . . . 9 (((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) ∧ ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌)))) → ((𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌)))(+g𝑅)((𝑂𝑎 / 𝑥𝑀)‘𝑌)) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌))))
10060, 99eqtrd 2770 . . . . . . . 8 (((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) ∧ ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌)))) → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌))))
101100exp31 419 . . . . . . 7 (((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) → (∀𝑥 ∈ {𝑎}𝑀𝑈 → (((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌))) → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌))))))
102101com23 86 . . . . . 6 (((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) → (((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌))) → (∀𝑥 ∈ {𝑎}𝑀𝑈 → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌))))))
103102ex 412 . . . . 5 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → (∀𝑥𝑚 𝑀𝑈 → (((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌))) → (∀𝑥 ∈ {𝑎}𝑀𝑈 → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌)))))))
104103a2d 29 . . . 4 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → ((∀𝑥𝑚 𝑀𝑈 → ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌)))) → (∀𝑥𝑚 𝑀𝑈 → (∀𝑥 ∈ {𝑎}𝑀𝑈 → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌)))))))
105104imp4b 421 . . 3 (((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ (∀𝑥𝑚 𝑀𝑈 → ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌))))) → ((∀𝑥𝑚 𝑀𝑈 ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌)))))
1061, 105biimtrid 242 . 2 (((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ (∀𝑥𝑚 𝑀𝑈 → ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌))))) → (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝑈 → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌)))))
107106ex 412 1 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → ((∀𝑥𝑚 𝑀𝑈 → ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌)))) → (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝑈 → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051  Vcvv 3459  csb 3874  cun 3924  {csn 4601  cmpt 5201  cfv 6531  (class class class)co 7405  Fincfn 8959  Basecbs 17228  +gcplusg 17271   Σg cgsu 17454  CMndccmn 19761  Ringcrg 20193  CRingccrg 20194  Poly1cpl1 22112  eval1ce1 22252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-ofr 7672  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-sup 9454  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-fz 13525  df-fzo 13672  df-seq 14020  df-hash 14349  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-hom 17295  df-cco 17296  df-0g 17455  df-gsum 17456  df-prds 17461  df-pws 17463  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mhm 18761  df-submnd 18762  df-grp 18919  df-minusg 18920  df-sbg 18921  df-mulg 19051  df-subg 19106  df-ghm 19196  df-cntz 19300  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-srg 20147  df-ring 20195  df-cring 20196  df-rhm 20432  df-subrng 20506  df-subrg 20530  df-lmod 20819  df-lss 20889  df-lsp 20929  df-assa 21813  df-asp 21814  df-ascl 21815  df-psr 21869  df-mvr 21870  df-mpl 21871  df-opsr 21873  df-evls 22032  df-evl 22033  df-psr1 22115  df-ply1 22117  df-evl1 22254
This theorem is referenced by:  evl1gsumd  22295
  Copyright terms: Public domain W3C validator