MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evl1gsumdlem Structured version   Visualization version   GIF version

Theorem evl1gsumdlem 20978
Description: Lemma for evl1gsumd 20979 (induction step). (Contributed by AV, 17-Sep-2019.)
Hypotheses
Ref Expression
evl1gsumd.q 𝑂 = (eval1𝑅)
evl1gsumd.p 𝑃 = (Poly1𝑅)
evl1gsumd.b 𝐵 = (Base‘𝑅)
evl1gsumd.u 𝑈 = (Base‘𝑃)
evl1gsumd.r (𝜑𝑅 ∈ CRing)
evl1gsumd.y (𝜑𝑌𝐵)
Assertion
Ref Expression
evl1gsumdlem ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → ((∀𝑥𝑚 𝑀𝑈 → ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌)))) → (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝑈 → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌))))))
Distinct variable groups:   𝑥,𝑂   𝑥,𝑈   𝑥,𝑌   𝑥,𝑎   𝑥,𝑚
Allowed substitution hints:   𝜑(𝑥,𝑚,𝑎)   𝐵(𝑥,𝑚,𝑎)   𝑃(𝑥,𝑚,𝑎)   𝑅(𝑥,𝑚,𝑎)   𝑈(𝑚,𝑎)   𝑀(𝑥,𝑚,𝑎)   𝑂(𝑚,𝑎)   𝑌(𝑚,𝑎)

Proof of Theorem evl1gsumdlem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ralunb 4142 . . 3 (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝑈 ↔ (∀𝑥𝑚 𝑀𝑈 ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈))
2 nfcv 2979 . . . . . . . . . . . . . . . . 17 𝑦𝑀
3 nfcsb1v 3879 . . . . . . . . . . . . . . . . 17 𝑥𝑦 / 𝑥𝑀
4 csbeq1a 3869 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦𝑀 = 𝑦 / 𝑥𝑀)
52, 3, 4cbvmpt 5143 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀) = (𝑦 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑦 / 𝑥𝑀)
65oveq2i 7151 . . . . . . . . . . . . . . 15 (𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)) = (𝑃 Σg (𝑦 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑦 / 𝑥𝑀))
7 evl1gsumd.u . . . . . . . . . . . . . . . 16 𝑈 = (Base‘𝑃)
8 eqid 2822 . . . . . . . . . . . . . . . 16 (+g𝑃) = (+g𝑃)
9 evl1gsumd.r . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑅 ∈ CRing)
10 crngring 19300 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
119, 10syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑅 ∈ Ring)
12 evl1gsumd.p . . . . . . . . . . . . . . . . . . . . 21 𝑃 = (Poly1𝑅)
1312ply1ring 20875 . . . . . . . . . . . . . . . . . . . 20 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
1411, 13syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑃 ∈ Ring)
15 ringcmn 19325 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ Ring → 𝑃 ∈ CMnd)
1614, 15syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝑃 ∈ CMnd)
17163ad2ant3 1132 . . . . . . . . . . . . . . . . 17 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → 𝑃 ∈ CMnd)
1817ad2antrr 725 . . . . . . . . . . . . . . . 16 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → 𝑃 ∈ CMnd)
19 simpll1 1209 . . . . . . . . . . . . . . . 16 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → 𝑚 ∈ Fin)
20 rspcsbela 4359 . . . . . . . . . . . . . . . . . . . 20 ((𝑦𝑚 ∧ ∀𝑥𝑚 𝑀𝑈) → 𝑦 / 𝑥𝑀𝑈)
2120expcom 417 . . . . . . . . . . . . . . . . . . 19 (∀𝑥𝑚 𝑀𝑈 → (𝑦𝑚𝑦 / 𝑥𝑀𝑈))
2221adantl 485 . . . . . . . . . . . . . . . . . 18 (((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) → (𝑦𝑚𝑦 / 𝑥𝑀𝑈))
2322adantr 484 . . . . . . . . . . . . . . . . 17 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → (𝑦𝑚𝑦 / 𝑥𝑀𝑈))
2423imp 410 . . . . . . . . . . . . . . . 16 (((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) ∧ 𝑦𝑚) → 𝑦 / 𝑥𝑀𝑈)
25 vex 3472 . . . . . . . . . . . . . . . . 17 𝑎 ∈ V
2625a1i 11 . . . . . . . . . . . . . . . 16 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → 𝑎 ∈ V)
27 simpll2 1210 . . . . . . . . . . . . . . . 16 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → ¬ 𝑎𝑚)
28 vsnid 4576 . . . . . . . . . . . . . . . . . 18 𝑎 ∈ {𝑎}
29 rspcsbela 4359 . . . . . . . . . . . . . . . . . 18 ((𝑎 ∈ {𝑎} ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → 𝑎 / 𝑥𝑀𝑈)
3028, 29mpan 689 . . . . . . . . . . . . . . . . 17 (∀𝑥 ∈ {𝑎}𝑀𝑈𝑎 / 𝑥𝑀𝑈)
3130adantl 485 . . . . . . . . . . . . . . . 16 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → 𝑎 / 𝑥𝑀𝑈)
32 csbeq1 3858 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑎𝑦 / 𝑥𝑀 = 𝑎 / 𝑥𝑀)
337, 8, 18, 19, 24, 26, 27, 31, 32gsumunsn 19071 . . . . . . . . . . . . . . 15 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → (𝑃 Σg (𝑦 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑦 / 𝑥𝑀)) = ((𝑃 Σg (𝑦𝑚𝑦 / 𝑥𝑀))(+g𝑃)𝑎 / 𝑥𝑀))
346, 33syl5eq 2869 . . . . . . . . . . . . . 14 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → (𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)) = ((𝑃 Σg (𝑦𝑚𝑦 / 𝑥𝑀))(+g𝑃)𝑎 / 𝑥𝑀))
352, 3, 4cbvmpt 5143 . . . . . . . . . . . . . . . . 17 (𝑥𝑚𝑀) = (𝑦𝑚𝑦 / 𝑥𝑀)
3635eqcomi 2831 . . . . . . . . . . . . . . . 16 (𝑦𝑚𝑦 / 𝑥𝑀) = (𝑥𝑚𝑀)
3736oveq2i 7151 . . . . . . . . . . . . . . 15 (𝑃 Σg (𝑦𝑚𝑦 / 𝑥𝑀)) = (𝑃 Σg (𝑥𝑚𝑀))
3837oveq1i 7150 . . . . . . . . . . . . . 14 ((𝑃 Σg (𝑦𝑚𝑦 / 𝑥𝑀))(+g𝑃)𝑎 / 𝑥𝑀) = ((𝑃 Σg (𝑥𝑚𝑀))(+g𝑃)𝑎 / 𝑥𝑀)
3934, 38syl6eq 2873 . . . . . . . . . . . . 13 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → (𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)) = ((𝑃 Σg (𝑥𝑚𝑀))(+g𝑃)𝑎 / 𝑥𝑀))
4039fveq2d 6656 . . . . . . . . . . . 12 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → (𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀))) = (𝑂‘((𝑃 Σg (𝑥𝑚𝑀))(+g𝑃)𝑎 / 𝑥𝑀)))
4140fveq1d 6654 . . . . . . . . . . 11 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = ((𝑂‘((𝑃 Σg (𝑥𝑚𝑀))(+g𝑃)𝑎 / 𝑥𝑀))‘𝑌))
42 evl1gsumd.q . . . . . . . . . . . . 13 𝑂 = (eval1𝑅)
43 evl1gsumd.b . . . . . . . . . . . . 13 𝐵 = (Base‘𝑅)
4493ad2ant3 1132 . . . . . . . . . . . . . 14 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → 𝑅 ∈ CRing)
4544ad2antrr 725 . . . . . . . . . . . . 13 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → 𝑅 ∈ CRing)
46 evl1gsumd.y . . . . . . . . . . . . . . 15 (𝜑𝑌𝐵)
47463ad2ant3 1132 . . . . . . . . . . . . . 14 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → 𝑌𝐵)
4847ad2antrr 725 . . . . . . . . . . . . 13 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → 𝑌𝐵)
49 simplr 768 . . . . . . . . . . . . . . 15 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → ∀𝑥𝑚 𝑀𝑈)
507, 18, 19, 49gsummptcl 19078 . . . . . . . . . . . . . 14 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → (𝑃 Σg (𝑥𝑚𝑀)) ∈ 𝑈)
51 eqidd 2823 . . . . . . . . . . . . . 14 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌))
5250, 51jca 515 . . . . . . . . . . . . 13 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → ((𝑃 Σg (𝑥𝑚𝑀)) ∈ 𝑈 ∧ ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌)))
53 eqidd 2823 . . . . . . . . . . . . . 14 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → ((𝑂𝑎 / 𝑥𝑀)‘𝑌) = ((𝑂𝑎 / 𝑥𝑀)‘𝑌))
5431, 53jca 515 . . . . . . . . . . . . 13 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → (𝑎 / 𝑥𝑀𝑈 ∧ ((𝑂𝑎 / 𝑥𝑀)‘𝑌) = ((𝑂𝑎 / 𝑥𝑀)‘𝑌)))
55 eqid 2822 . . . . . . . . . . . . 13 (+g𝑅) = (+g𝑅)
5642, 12, 43, 7, 45, 48, 52, 54, 8, 55evl1addd 20963 . . . . . . . . . . . 12 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → (((𝑃 Σg (𝑥𝑚𝑀))(+g𝑃)𝑎 / 𝑥𝑀) ∈ 𝑈 ∧ ((𝑂‘((𝑃 Σg (𝑥𝑚𝑀))(+g𝑃)𝑎 / 𝑥𝑀))‘𝑌) = (((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌)(+g𝑅)((𝑂𝑎 / 𝑥𝑀)‘𝑌))))
5756simprd 499 . . . . . . . . . . 11 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → ((𝑂‘((𝑃 Σg (𝑥𝑚𝑀))(+g𝑃)𝑎 / 𝑥𝑀))‘𝑌) = (((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌)(+g𝑅)((𝑂𝑎 / 𝑥𝑀)‘𝑌)))
5841, 57eqtrd 2857 . . . . . . . . . 10 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌)(+g𝑅)((𝑂𝑎 / 𝑥𝑀)‘𝑌)))
59 oveq1 7147 . . . . . . . . . 10 (((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌))) → (((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌)(+g𝑅)((𝑂𝑎 / 𝑥𝑀)‘𝑌)) = ((𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌)))(+g𝑅)((𝑂𝑎 / 𝑥𝑀)‘𝑌)))
6058, 59sylan9eq 2877 . . . . . . . . 9 (((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) ∧ ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌)))) → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = ((𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌)))(+g𝑅)((𝑂𝑎 / 𝑥𝑀)‘𝑌)))
61 nfcv 2979 . . . . . . . . . . . . . 14 𝑦((𝑂𝑀)‘𝑌)
62 nfcsb1v 3879 . . . . . . . . . . . . . 14 𝑥𝑦 / 𝑥((𝑂𝑀)‘𝑌)
63 csbeq1a 3869 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → ((𝑂𝑀)‘𝑌) = 𝑦 / 𝑥((𝑂𝑀)‘𝑌))
6461, 62, 63cbvmpt 5143 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌)) = (𝑦 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑦 / 𝑥((𝑂𝑀)‘𝑌))
6564oveq2i 7151 . . . . . . . . . . . 12 (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌))) = (𝑅 Σg (𝑦 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑦 / 𝑥((𝑂𝑀)‘𝑌)))
66 ringcmn 19325 . . . . . . . . . . . . . . . 16 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
6711, 66syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑅 ∈ CMnd)
68673ad2ant3 1132 . . . . . . . . . . . . . 14 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → 𝑅 ∈ CMnd)
6968ad2antrr 725 . . . . . . . . . . . . 13 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → 𝑅 ∈ CMnd)
70 csbfv12 6695 . . . . . . . . . . . . . . 15 𝑦 / 𝑥((𝑂𝑀)‘𝑌) = (𝑦 / 𝑥(𝑂𝑀)‘𝑦 / 𝑥𝑌)
71 csbfv2g 6696 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ V → 𝑦 / 𝑥(𝑂𝑀) = (𝑂𝑦 / 𝑥𝑀))
7271elv 3474 . . . . . . . . . . . . . . . 16 𝑦 / 𝑥(𝑂𝑀) = (𝑂𝑦 / 𝑥𝑀)
73 csbconstg 3874 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ V → 𝑦 / 𝑥𝑌 = 𝑌)
7473elv 3474 . . . . . . . . . . . . . . . 16 𝑦 / 𝑥𝑌 = 𝑌
7572, 74fveq12i 6658 . . . . . . . . . . . . . . 15 (𝑦 / 𝑥(𝑂𝑀)‘𝑦 / 𝑥𝑌) = ((𝑂𝑦 / 𝑥𝑀)‘𝑌)
7670, 75eqtri 2845 . . . . . . . . . . . . . 14 𝑦 / 𝑥((𝑂𝑀)‘𝑌) = ((𝑂𝑦 / 𝑥𝑀)‘𝑌)
7745adantr 484 . . . . . . . . . . . . . . 15 (((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) ∧ 𝑦𝑚) → 𝑅 ∈ CRing)
7848adantr 484 . . . . . . . . . . . . . . 15 (((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) ∧ 𝑦𝑚) → 𝑌𝐵)
7942, 12, 43, 7, 77, 78, 24fveval1fvcl 20955 . . . . . . . . . . . . . 14 (((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) ∧ 𝑦𝑚) → ((𝑂𝑦 / 𝑥𝑀)‘𝑌) ∈ 𝐵)
8076, 79eqeltrid 2918 . . . . . . . . . . . . 13 (((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) ∧ 𝑦𝑚) → 𝑦 / 𝑥((𝑂𝑀)‘𝑌) ∈ 𝐵)
8142, 12, 43, 7, 45, 48, 31fveval1fvcl 20955 . . . . . . . . . . . . 13 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → ((𝑂𝑎 / 𝑥𝑀)‘𝑌) ∈ 𝐵)
82 nfcv 2979 . . . . . . . . . . . . . 14 𝑥𝑎
83 nfcv 2979 . . . . . . . . . . . . . . . 16 𝑥𝑂
84 nfcsb1v 3879 . . . . . . . . . . . . . . . 16 𝑥𝑎 / 𝑥𝑀
8583, 84nffv 6662 . . . . . . . . . . . . . . 15 𝑥(𝑂𝑎 / 𝑥𝑀)
86 nfcv 2979 . . . . . . . . . . . . . . 15 𝑥𝑌
8785, 86nffv 6662 . . . . . . . . . . . . . 14 𝑥((𝑂𝑎 / 𝑥𝑀)‘𝑌)
88 csbeq1a 3869 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑎𝑀 = 𝑎 / 𝑥𝑀)
8988fveq2d 6656 . . . . . . . . . . . . . . 15 (𝑥 = 𝑎 → (𝑂𝑀) = (𝑂𝑎 / 𝑥𝑀))
9089fveq1d 6654 . . . . . . . . . . . . . 14 (𝑥 = 𝑎 → ((𝑂𝑀)‘𝑌) = ((𝑂𝑎 / 𝑥𝑀)‘𝑌))
9182, 87, 90csbhypf 3883 . . . . . . . . . . . . 13 (𝑦 = 𝑎𝑦 / 𝑥((𝑂𝑀)‘𝑌) = ((𝑂𝑎 / 𝑥𝑀)‘𝑌))
9243, 55, 69, 19, 80, 26, 27, 81, 91gsumunsn 19071 . . . . . . . . . . . 12 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → (𝑅 Σg (𝑦 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑦 / 𝑥((𝑂𝑀)‘𝑌))) = ((𝑅 Σg (𝑦𝑚𝑦 / 𝑥((𝑂𝑀)‘𝑌)))(+g𝑅)((𝑂𝑎 / 𝑥𝑀)‘𝑌)))
9365, 92syl5eq 2869 . . . . . . . . . . 11 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌))) = ((𝑅 Σg (𝑦𝑚𝑦 / 𝑥((𝑂𝑀)‘𝑌)))(+g𝑅)((𝑂𝑎 / 𝑥𝑀)‘𝑌)))
9461, 62, 63cbvmpt 5143 . . . . . . . . . . . . . 14 (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌)) = (𝑦𝑚𝑦 / 𝑥((𝑂𝑀)‘𝑌))
9594eqcomi 2831 . . . . . . . . . . . . 13 (𝑦𝑚𝑦 / 𝑥((𝑂𝑀)‘𝑌)) = (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌))
9695oveq2i 7151 . . . . . . . . . . . 12 (𝑅 Σg (𝑦𝑚𝑦 / 𝑥((𝑂𝑀)‘𝑌))) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌)))
9796oveq1i 7150 . . . . . . . . . . 11 ((𝑅 Σg (𝑦𝑚𝑦 / 𝑥((𝑂𝑀)‘𝑌)))(+g𝑅)((𝑂𝑎 / 𝑥𝑀)‘𝑌)) = ((𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌)))(+g𝑅)((𝑂𝑎 / 𝑥𝑀)‘𝑌))
9893, 97syl6req 2874 . . . . . . . . . 10 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → ((𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌)))(+g𝑅)((𝑂𝑎 / 𝑥𝑀)‘𝑌)) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌))))
9998adantr 484 . . . . . . . . 9 (((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) ∧ ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌)))) → ((𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌)))(+g𝑅)((𝑂𝑎 / 𝑥𝑀)‘𝑌)) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌))))
10060, 99eqtrd 2857 . . . . . . . 8 (((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) ∧ ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌)))) → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌))))
101100exp31 423 . . . . . . 7 (((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) → (∀𝑥 ∈ {𝑎}𝑀𝑈 → (((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌))) → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌))))))
102101com23 86 . . . . . 6 (((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) → (((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌))) → (∀𝑥 ∈ {𝑎}𝑀𝑈 → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌))))))
103102ex 416 . . . . 5 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → (∀𝑥𝑚 𝑀𝑈 → (((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌))) → (∀𝑥 ∈ {𝑎}𝑀𝑈 → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌)))))))
104103a2d 29 . . . 4 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → ((∀𝑥𝑚 𝑀𝑈 → ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌)))) → (∀𝑥𝑚 𝑀𝑈 → (∀𝑥 ∈ {𝑎}𝑀𝑈 → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌)))))))
105104imp4b 425 . . 3 (((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ (∀𝑥𝑚 𝑀𝑈 → ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌))))) → ((∀𝑥𝑚 𝑀𝑈 ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌)))))
1061, 105syl5bi 245 . 2 (((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ (∀𝑥𝑚 𝑀𝑈 → ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌))))) → (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝑈 → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌)))))
107106ex 416 1 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → ((∀𝑥𝑚 𝑀𝑈 → ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌)))) → (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝑈 → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2114  wral 3130  Vcvv 3469  csb 3855  cun 3906  {csn 4539  cmpt 5122  cfv 6334  (class class class)co 7140  Fincfn 8496  Basecbs 16474  +gcplusg 16556   Σg cgsu 16705  CMndccmn 18897  Ringcrg 19288  CRingccrg 19289  Poly1cpl1 20804  eval1ce1 20936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-int 4852  df-iun 4896  df-iin 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-se 5492  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-isom 6343  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-of 7394  df-ofr 7395  df-om 7566  df-1st 7675  df-2nd 7676  df-supp 7818  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-er 8276  df-map 8395  df-pm 8396  df-ixp 8449  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fsupp 8822  df-sup 8894  df-oi 8962  df-card 9356  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12886  df-fzo 13029  df-seq 13365  df-hash 13687  df-struct 16476  df-ndx 16477  df-slot 16478  df-base 16480  df-sets 16481  df-ress 16482  df-plusg 16569  df-mulr 16570  df-sca 16572  df-vsca 16573  df-ip 16574  df-tset 16575  df-ple 16576  df-ds 16578  df-hom 16580  df-cco 16581  df-0g 16706  df-gsum 16707  df-prds 16712  df-pws 16714  df-mre 16848  df-mrc 16849  df-acs 16851  df-mgm 17843  df-sgrp 17892  df-mnd 17903  df-mhm 17947  df-submnd 17948  df-grp 18097  df-minusg 18098  df-sbg 18099  df-mulg 18216  df-subg 18267  df-ghm 18347  df-cntz 18438  df-cmn 18899  df-abl 18900  df-mgp 19231  df-ur 19243  df-srg 19247  df-ring 19290  df-cring 19291  df-rnghom 19461  df-subrg 19524  df-lmod 19627  df-lss 19695  df-lsp 19735  df-assa 20540  df-asp 20541  df-ascl 20542  df-psr 20592  df-mvr 20593  df-mpl 20594  df-opsr 20596  df-evls 20743  df-evl 20744  df-psr1 20807  df-ply1 20809  df-evl1 20938
This theorem is referenced by:  evl1gsumd  20979
  Copyright terms: Public domain W3C validator