MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1fzgsumdlem Structured version   Visualization version   GIF version

Theorem coe1fzgsumdlem 21382
Description: Lemma for coe1fzgsumd 21383 (induction step). (Contributed by AV, 8-Oct-2019.)
Hypotheses
Ref Expression
coe1fzgsumd.p 𝑃 = (Poly1𝑅)
coe1fzgsumd.b 𝐵 = (Base‘𝑃)
coe1fzgsumd.r (𝜑𝑅 ∈ Ring)
coe1fzgsumd.k (𝜑𝐾 ∈ ℕ0)
Assertion
Ref Expression
coe1fzgsumdlem ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → ((∀𝑥𝑚 𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))) → (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾))))))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐾   𝑥,𝑚   𝑥,𝑎
Allowed substitution hints:   𝜑(𝑥,𝑚,𝑎)   𝐵(𝑚,𝑎)   𝑃(𝑥,𝑚,𝑎)   𝑅(𝑥,𝑚,𝑎)   𝐾(𝑚,𝑎)   𝑀(𝑥,𝑚,𝑎)

Proof of Theorem coe1fzgsumdlem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ralunb 4121 . . 3 (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝐵 ↔ (∀𝑥𝑚 𝑀𝐵 ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵))
2 nfcv 2906 . . . . . . . . . . . . . . . . 17 𝑦𝑀
3 nfcsb1v 3853 . . . . . . . . . . . . . . . . 17 𝑥𝑦 / 𝑥𝑀
4 csbeq1a 3842 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦𝑀 = 𝑦 / 𝑥𝑀)
52, 3, 4cbvmpt 5181 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀) = (𝑦 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑦 / 𝑥𝑀)
65oveq2i 7266 . . . . . . . . . . . . . . 15 (𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)) = (𝑃 Σg (𝑦 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑦 / 𝑥𝑀))
7 coe1fzgsumd.b . . . . . . . . . . . . . . . 16 𝐵 = (Base‘𝑃)
8 eqid 2738 . . . . . . . . . . . . . . . 16 (+g𝑃) = (+g𝑃)
9 coe1fzgsumd.r . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑅 ∈ Ring)
10 coe1fzgsumd.p . . . . . . . . . . . . . . . . . . . . 21 𝑃 = (Poly1𝑅)
1110ply1ring 21329 . . . . . . . . . . . . . . . . . . . 20 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
129, 11syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑃 ∈ Ring)
13 ringcmn 19735 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ Ring → 𝑃 ∈ CMnd)
1412, 13syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝑃 ∈ CMnd)
15143ad2ant3 1133 . . . . . . . . . . . . . . . . 17 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → 𝑃 ∈ CMnd)
1615ad2antrr 722 . . . . . . . . . . . . . . . 16 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → 𝑃 ∈ CMnd)
17 simpll1 1210 . . . . . . . . . . . . . . . 16 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → 𝑚 ∈ Fin)
18 rspcsbela 4366 . . . . . . . . . . . . . . . . . . . 20 ((𝑦𝑚 ∧ ∀𝑥𝑚 𝑀𝐵) → 𝑦 / 𝑥𝑀𝐵)
1918expcom 413 . . . . . . . . . . . . . . . . . . 19 (∀𝑥𝑚 𝑀𝐵 → (𝑦𝑚𝑦 / 𝑥𝑀𝐵))
2019adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) → (𝑦𝑚𝑦 / 𝑥𝑀𝐵))
2120adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → (𝑦𝑚𝑦 / 𝑥𝑀𝐵))
2221imp 406 . . . . . . . . . . . . . . . 16 (((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) ∧ 𝑦𝑚) → 𝑦 / 𝑥𝑀𝐵)
23 vex 3426 . . . . . . . . . . . . . . . . 17 𝑎 ∈ V
2423a1i 11 . . . . . . . . . . . . . . . 16 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → 𝑎 ∈ V)
25 simpll2 1211 . . . . . . . . . . . . . . . 16 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → ¬ 𝑎𝑚)
26 vsnid 4595 . . . . . . . . . . . . . . . . . 18 𝑎 ∈ {𝑎}
27 rspcsbela 4366 . . . . . . . . . . . . . . . . . 18 ((𝑎 ∈ {𝑎} ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → 𝑎 / 𝑥𝑀𝐵)
2826, 27mpan 686 . . . . . . . . . . . . . . . . 17 (∀𝑥 ∈ {𝑎}𝑀𝐵𝑎 / 𝑥𝑀𝐵)
2928adantl 481 . . . . . . . . . . . . . . . 16 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → 𝑎 / 𝑥𝑀𝐵)
30 csbeq1 3831 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑎𝑦 / 𝑥𝑀 = 𝑎 / 𝑥𝑀)
317, 8, 16, 17, 22, 24, 25, 29, 30gsumunsn 19476 . . . . . . . . . . . . . . 15 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → (𝑃 Σg (𝑦 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑦 / 𝑥𝑀)) = ((𝑃 Σg (𝑦𝑚𝑦 / 𝑥𝑀))(+g𝑃)𝑎 / 𝑥𝑀))
326, 31eqtrid 2790 . . . . . . . . . . . . . 14 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → (𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)) = ((𝑃 Σg (𝑦𝑚𝑦 / 𝑥𝑀))(+g𝑃)𝑎 / 𝑥𝑀))
332, 3, 4cbvmpt 5181 . . . . . . . . . . . . . . . . 17 (𝑥𝑚𝑀) = (𝑦𝑚𝑦 / 𝑥𝑀)
3433eqcomi 2747 . . . . . . . . . . . . . . . 16 (𝑦𝑚𝑦 / 𝑥𝑀) = (𝑥𝑚𝑀)
3534oveq2i 7266 . . . . . . . . . . . . . . 15 (𝑃 Σg (𝑦𝑚𝑦 / 𝑥𝑀)) = (𝑃 Σg (𝑥𝑚𝑀))
3635oveq1i 7265 . . . . . . . . . . . . . 14 ((𝑃 Σg (𝑦𝑚𝑦 / 𝑥𝑀))(+g𝑃)𝑎 / 𝑥𝑀) = ((𝑃 Σg (𝑥𝑚𝑀))(+g𝑃)𝑎 / 𝑥𝑀)
3732, 36eqtrdi 2795 . . . . . . . . . . . . 13 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → (𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)) = ((𝑃 Σg (𝑥𝑚𝑀))(+g𝑃)𝑎 / 𝑥𝑀))
3837fveq2d 6760 . . . . . . . . . . . 12 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → (coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀))) = (coe1‘((𝑃 Σg (𝑥𝑚𝑀))(+g𝑃)𝑎 / 𝑥𝑀)))
3938fveq1d 6758 . . . . . . . . . . 11 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = ((coe1‘((𝑃 Σg (𝑥𝑚𝑀))(+g𝑃)𝑎 / 𝑥𝑀))‘𝐾))
4093ad2ant3 1133 . . . . . . . . . . . . 13 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → 𝑅 ∈ Ring)
4140ad2antrr 722 . . . . . . . . . . . 12 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → 𝑅 ∈ Ring)
42 simplr 765 . . . . . . . . . . . . 13 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → ∀𝑥𝑚 𝑀𝐵)
437, 16, 17, 42gsummptcl 19483 . . . . . . . . . . . 12 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → (𝑃 Σg (𝑥𝑚𝑀)) ∈ 𝐵)
44 coe1fzgsumd.k . . . . . . . . . . . . . 14 (𝜑𝐾 ∈ ℕ0)
45443ad2ant3 1133 . . . . . . . . . . . . 13 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → 𝐾 ∈ ℕ0)
4645ad2antrr 722 . . . . . . . . . . . 12 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → 𝐾 ∈ ℕ0)
47 eqid 2738 . . . . . . . . . . . . 13 (+g𝑅) = (+g𝑅)
4810, 7, 8, 47coe1addfv 21346 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ (𝑃 Σg (𝑥𝑚𝑀)) ∈ 𝐵𝑎 / 𝑥𝑀𝐵) ∧ 𝐾 ∈ ℕ0) → ((coe1‘((𝑃 Σg (𝑥𝑚𝑀))(+g𝑃)𝑎 / 𝑥𝑀))‘𝐾) = (((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾)(+g𝑅)((coe1𝑎 / 𝑥𝑀)‘𝐾)))
4941, 43, 29, 46, 48syl31anc 1371 . . . . . . . . . . 11 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → ((coe1‘((𝑃 Σg (𝑥𝑚𝑀))(+g𝑃)𝑎 / 𝑥𝑀))‘𝐾) = (((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾)(+g𝑅)((coe1𝑎 / 𝑥𝑀)‘𝐾)))
5039, 49eqtrd 2778 . . . . . . . . . 10 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾)(+g𝑅)((coe1𝑎 / 𝑥𝑀)‘𝐾)))
51 oveq1 7262 . . . . . . . . . 10 (((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾))) → (((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾)(+g𝑅)((coe1𝑎 / 𝑥𝑀)‘𝐾)) = ((𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))(+g𝑅)((coe1𝑎 / 𝑥𝑀)‘𝐾)))
5250, 51sylan9eq 2799 . . . . . . . . 9 (((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) ∧ ((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))) → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = ((𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))(+g𝑅)((coe1𝑎 / 𝑥𝑀)‘𝐾)))
53 nfcv 2906 . . . . . . . . . . . . . 14 𝑦((coe1𝑀)‘𝐾)
54 nfcsb1v 3853 . . . . . . . . . . . . . 14 𝑥𝑦 / 𝑥((coe1𝑀)‘𝐾)
55 csbeq1a 3842 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → ((coe1𝑀)‘𝐾) = 𝑦 / 𝑥((coe1𝑀)‘𝐾))
5653, 54, 55cbvmpt 5181 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾)) = (𝑦 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑦 / 𝑥((coe1𝑀)‘𝐾))
5756oveq2i 7266 . . . . . . . . . . . 12 (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾))) = (𝑅 Σg (𝑦 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑦 / 𝑥((coe1𝑀)‘𝐾)))
58 eqid 2738 . . . . . . . . . . . . 13 (Base‘𝑅) = (Base‘𝑅)
59 ringcmn 19735 . . . . . . . . . . . . . . . 16 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
609, 59syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑅 ∈ CMnd)
61603ad2ant3 1133 . . . . . . . . . . . . . 14 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → 𝑅 ∈ CMnd)
6261ad2antrr 722 . . . . . . . . . . . . 13 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → 𝑅 ∈ CMnd)
63 csbfv12 6799 . . . . . . . . . . . . . . 15 𝑦 / 𝑥((coe1𝑀)‘𝐾) = (𝑦 / 𝑥(coe1𝑀)‘𝑦 / 𝑥𝐾)
64 csbfv2g 6800 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ V → 𝑦 / 𝑥(coe1𝑀) = (coe1𝑦 / 𝑥𝑀))
6564elv 3428 . . . . . . . . . . . . . . . 16 𝑦 / 𝑥(coe1𝑀) = (coe1𝑦 / 𝑥𝑀)
66 csbconstg 3847 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ V → 𝑦 / 𝑥𝐾 = 𝐾)
6766elv 3428 . . . . . . . . . . . . . . . 16 𝑦 / 𝑥𝐾 = 𝐾
6865, 67fveq12i 6762 . . . . . . . . . . . . . . 15 (𝑦 / 𝑥(coe1𝑀)‘𝑦 / 𝑥𝐾) = ((coe1𝑦 / 𝑥𝑀)‘𝐾)
6963, 68eqtri 2766 . . . . . . . . . . . . . 14 𝑦 / 𝑥((coe1𝑀)‘𝐾) = ((coe1𝑦 / 𝑥𝑀)‘𝐾)
70 eqid 2738 . . . . . . . . . . . . . . . . 17 (coe1𝑦 / 𝑥𝑀) = (coe1𝑦 / 𝑥𝑀)
7170, 7, 10, 58coe1f 21292 . . . . . . . . . . . . . . . 16 (𝑦 / 𝑥𝑀𝐵 → (coe1𝑦 / 𝑥𝑀):ℕ0⟶(Base‘𝑅))
7222, 71syl 17 . . . . . . . . . . . . . . 15 (((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) ∧ 𝑦𝑚) → (coe1𝑦 / 𝑥𝑀):ℕ0⟶(Base‘𝑅))
7345adantr 480 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) → 𝐾 ∈ ℕ0)
7473ad2antrr 722 . . . . . . . . . . . . . . 15 (((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) ∧ 𝑦𝑚) → 𝐾 ∈ ℕ0)
7572, 74ffvelrnd 6944 . . . . . . . . . . . . . 14 (((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) ∧ 𝑦𝑚) → ((coe1𝑦 / 𝑥𝑀)‘𝐾) ∈ (Base‘𝑅))
7669, 75eqeltrid 2843 . . . . . . . . . . . . 13 (((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) ∧ 𝑦𝑚) → 𝑦 / 𝑥((coe1𝑀)‘𝐾) ∈ (Base‘𝑅))
77 eqid 2738 . . . . . . . . . . . . . . . 16 (coe1𝑎 / 𝑥𝑀) = (coe1𝑎 / 𝑥𝑀)
7877, 7, 10, 58coe1f 21292 . . . . . . . . . . . . . . 15 (𝑎 / 𝑥𝑀𝐵 → (coe1𝑎 / 𝑥𝑀):ℕ0⟶(Base‘𝑅))
7929, 78syl 17 . . . . . . . . . . . . . 14 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → (coe1𝑎 / 𝑥𝑀):ℕ0⟶(Base‘𝑅))
8079, 46ffvelrnd 6944 . . . . . . . . . . . . 13 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → ((coe1𝑎 / 𝑥𝑀)‘𝐾) ∈ (Base‘𝑅))
81 nfcv 2906 . . . . . . . . . . . . . 14 𝑥𝑎
82 nfcv 2906 . . . . . . . . . . . . . . . 16 𝑥coe1
83 nfcsb1v 3853 . . . . . . . . . . . . . . . 16 𝑥𝑎 / 𝑥𝑀
8482, 83nffv 6766 . . . . . . . . . . . . . . 15 𝑥(coe1𝑎 / 𝑥𝑀)
85 nfcv 2906 . . . . . . . . . . . . . . 15 𝑥𝐾
8684, 85nffv 6766 . . . . . . . . . . . . . 14 𝑥((coe1𝑎 / 𝑥𝑀)‘𝐾)
87 csbeq1a 3842 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑎𝑀 = 𝑎 / 𝑥𝑀)
8887fveq2d 6760 . . . . . . . . . . . . . . 15 (𝑥 = 𝑎 → (coe1𝑀) = (coe1𝑎 / 𝑥𝑀))
8988fveq1d 6758 . . . . . . . . . . . . . 14 (𝑥 = 𝑎 → ((coe1𝑀)‘𝐾) = ((coe1𝑎 / 𝑥𝑀)‘𝐾))
9081, 86, 89csbhypf 3857 . . . . . . . . . . . . 13 (𝑦 = 𝑎𝑦 / 𝑥((coe1𝑀)‘𝐾) = ((coe1𝑎 / 𝑥𝑀)‘𝐾))
9158, 47, 62, 17, 76, 24, 25, 80, 90gsumunsn 19476 . . . . . . . . . . . 12 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → (𝑅 Σg (𝑦 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑦 / 𝑥((coe1𝑀)‘𝐾))) = ((𝑅 Σg (𝑦𝑚𝑦 / 𝑥((coe1𝑀)‘𝐾)))(+g𝑅)((coe1𝑎 / 𝑥𝑀)‘𝐾)))
9257, 91eqtrid 2790 . . . . . . . . . . 11 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾))) = ((𝑅 Σg (𝑦𝑚𝑦 / 𝑥((coe1𝑀)‘𝐾)))(+g𝑅)((coe1𝑎 / 𝑥𝑀)‘𝐾)))
9353, 54, 55cbvmpt 5181 . . . . . . . . . . . . . 14 (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)) = (𝑦𝑚𝑦 / 𝑥((coe1𝑀)‘𝐾))
9493eqcomi 2747 . . . . . . . . . . . . 13 (𝑦𝑚𝑦 / 𝑥((coe1𝑀)‘𝐾)) = (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾))
9594oveq2i 7266 . . . . . . . . . . . 12 (𝑅 Σg (𝑦𝑚𝑦 / 𝑥((coe1𝑀)‘𝐾))) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))
9695oveq1i 7265 . . . . . . . . . . 11 ((𝑅 Σg (𝑦𝑚𝑦 / 𝑥((coe1𝑀)‘𝐾)))(+g𝑅)((coe1𝑎 / 𝑥𝑀)‘𝐾)) = ((𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))(+g𝑅)((coe1𝑎 / 𝑥𝑀)‘𝐾))
9792, 96eqtr2di 2796 . . . . . . . . . 10 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → ((𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))(+g𝑅)((coe1𝑎 / 𝑥𝑀)‘𝐾)) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾))))
9897adantr 480 . . . . . . . . 9 (((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) ∧ ((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))) → ((𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))(+g𝑅)((coe1𝑎 / 𝑥𝑀)‘𝐾)) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾))))
9952, 98eqtrd 2778 . . . . . . . 8 (((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) ∧ ((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))) → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾))))
10099exp31 419 . . . . . . 7 (((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) → (∀𝑥 ∈ {𝑎}𝑀𝐵 → (((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾))) → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾))))))
101100com23 86 . . . . . 6 (((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) → (((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾))) → (∀𝑥 ∈ {𝑎}𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾))))))
102101ex 412 . . . . 5 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → (∀𝑥𝑚 𝑀𝐵 → (((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾))) → (∀𝑥 ∈ {𝑎}𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾)))))))
103102a2d 29 . . . 4 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → ((∀𝑥𝑚 𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))) → (∀𝑥𝑚 𝑀𝐵 → (∀𝑥 ∈ {𝑎}𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾)))))))
104103imp4b 421 . . 3 (((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ (∀𝑥𝑚 𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾))))) → ((∀𝑥𝑚 𝑀𝐵 ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾)))))
1051, 104syl5bi 241 . 2 (((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ (∀𝑥𝑚 𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾))))) → (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾)))))
106105ex 412 1 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → ((∀𝑥𝑚 𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))) → (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422  csb 3828  cun 3881  {csn 4558  cmpt 5153  wf 6414  cfv 6418  (class class class)co 7255  Fincfn 8691  0cn0 12163  Basecbs 16840  +gcplusg 16888   Σg cgsu 17068  CMndccmn 19301  Ringcrg 19698  Poly1cpl1 21258  coe1cco1 21259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-ofr 7512  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-tset 16907  df-ple 16908  df-0g 17069  df-gsum 17070  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-submnd 18346  df-grp 18495  df-minusg 18496  df-mulg 18616  df-subg 18667  df-ghm 18747  df-cntz 18838  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-subrg 19937  df-psr 21022  df-mpl 21024  df-opsr 21026  df-psr1 21261  df-ply1 21263  df-coe1 21264
This theorem is referenced by:  coe1fzgsumd  21383
  Copyright terms: Public domain W3C validator