MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1fzgsumdlem Structured version   Visualization version   GIF version

Theorem coe1fzgsumdlem 20386
Description: Lemma for coe1fzgsumd 20387 (induction step). (Contributed by AV, 8-Oct-2019.)
Hypotheses
Ref Expression
coe1fzgsumd.p 𝑃 = (Poly1𝑅)
coe1fzgsumd.b 𝐵 = (Base‘𝑃)
coe1fzgsumd.r (𝜑𝑅 ∈ Ring)
coe1fzgsumd.k (𝜑𝐾 ∈ ℕ0)
Assertion
Ref Expression
coe1fzgsumdlem ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → ((∀𝑥𝑚 𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))) → (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾))))))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐾   𝑥,𝑚   𝑥,𝑎
Allowed substitution hints:   𝜑(𝑥,𝑚,𝑎)   𝐵(𝑚,𝑎)   𝑃(𝑥,𝑚,𝑎)   𝑅(𝑥,𝑚,𝑎)   𝐾(𝑚,𝑎)   𝑀(𝑥,𝑚,𝑎)

Proof of Theorem coe1fzgsumdlem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ralunb 4170 . . 3 (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝐵 ↔ (∀𝑥𝑚 𝑀𝐵 ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵))
2 nfcv 2981 . . . . . . . . . . . . . . . . 17 𝑦𝑀
3 nfcsb1v 3910 . . . . . . . . . . . . . . . . 17 𝑥𝑦 / 𝑥𝑀
4 csbeq1a 3900 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦𝑀 = 𝑦 / 𝑥𝑀)
52, 3, 4cbvmpt 5163 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀) = (𝑦 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑦 / 𝑥𝑀)
65oveq2i 7162 . . . . . . . . . . . . . . 15 (𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)) = (𝑃 Σg (𝑦 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑦 / 𝑥𝑀))
7 coe1fzgsumd.b . . . . . . . . . . . . . . . 16 𝐵 = (Base‘𝑃)
8 eqid 2825 . . . . . . . . . . . . . . . 16 (+g𝑃) = (+g𝑃)
9 coe1fzgsumd.r . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑅 ∈ Ring)
10 coe1fzgsumd.p . . . . . . . . . . . . . . . . . . . . 21 𝑃 = (Poly1𝑅)
1110ply1ring 20333 . . . . . . . . . . . . . . . . . . . 20 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
129, 11syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑃 ∈ Ring)
13 ringcmn 19253 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ Ring → 𝑃 ∈ CMnd)
1412, 13syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝑃 ∈ CMnd)
15143ad2ant3 1129 . . . . . . . . . . . . . . . . 17 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → 𝑃 ∈ CMnd)
1615ad2antrr 722 . . . . . . . . . . . . . . . 16 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → 𝑃 ∈ CMnd)
17 simpll1 1206 . . . . . . . . . . . . . . . 16 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → 𝑚 ∈ Fin)
18 rspcsbela 4390 . . . . . . . . . . . . . . . . . . . 20 ((𝑦𝑚 ∧ ∀𝑥𝑚 𝑀𝐵) → 𝑦 / 𝑥𝑀𝐵)
1918expcom 414 . . . . . . . . . . . . . . . . . . 19 (∀𝑥𝑚 𝑀𝐵 → (𝑦𝑚𝑦 / 𝑥𝑀𝐵))
2019adantl 482 . . . . . . . . . . . . . . . . . 18 (((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) → (𝑦𝑚𝑦 / 𝑥𝑀𝐵))
2120adantr 481 . . . . . . . . . . . . . . . . 17 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → (𝑦𝑚𝑦 / 𝑥𝑀𝐵))
2221imp 407 . . . . . . . . . . . . . . . 16 (((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) ∧ 𝑦𝑚) → 𝑦 / 𝑥𝑀𝐵)
23 vex 3502 . . . . . . . . . . . . . . . . 17 𝑎 ∈ V
2423a1i 11 . . . . . . . . . . . . . . . 16 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → 𝑎 ∈ V)
25 simpll2 1207 . . . . . . . . . . . . . . . 16 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → ¬ 𝑎𝑚)
26 vsnid 4598 . . . . . . . . . . . . . . . . . 18 𝑎 ∈ {𝑎}
27 rspcsbela 4390 . . . . . . . . . . . . . . . . . 18 ((𝑎 ∈ {𝑎} ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → 𝑎 / 𝑥𝑀𝐵)
2826, 27mpan 686 . . . . . . . . . . . . . . . . 17 (∀𝑥 ∈ {𝑎}𝑀𝐵𝑎 / 𝑥𝑀𝐵)
2928adantl 482 . . . . . . . . . . . . . . . 16 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → 𝑎 / 𝑥𝑀𝐵)
30 csbeq1 3889 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑎𝑦 / 𝑥𝑀 = 𝑎 / 𝑥𝑀)
317, 8, 16, 17, 22, 24, 25, 29, 30gsumunsn 19002 . . . . . . . . . . . . . . 15 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → (𝑃 Σg (𝑦 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑦 / 𝑥𝑀)) = ((𝑃 Σg (𝑦𝑚𝑦 / 𝑥𝑀))(+g𝑃)𝑎 / 𝑥𝑀))
326, 31syl5eq 2872 . . . . . . . . . . . . . 14 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → (𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)) = ((𝑃 Σg (𝑦𝑚𝑦 / 𝑥𝑀))(+g𝑃)𝑎 / 𝑥𝑀))
332, 3, 4cbvmpt 5163 . . . . . . . . . . . . . . . . 17 (𝑥𝑚𝑀) = (𝑦𝑚𝑦 / 𝑥𝑀)
3433eqcomi 2834 . . . . . . . . . . . . . . . 16 (𝑦𝑚𝑦 / 𝑥𝑀) = (𝑥𝑚𝑀)
3534oveq2i 7162 . . . . . . . . . . . . . . 15 (𝑃 Σg (𝑦𝑚𝑦 / 𝑥𝑀)) = (𝑃 Σg (𝑥𝑚𝑀))
3635oveq1i 7161 . . . . . . . . . . . . . 14 ((𝑃 Σg (𝑦𝑚𝑦 / 𝑥𝑀))(+g𝑃)𝑎 / 𝑥𝑀) = ((𝑃 Σg (𝑥𝑚𝑀))(+g𝑃)𝑎 / 𝑥𝑀)
3732, 36syl6eq 2876 . . . . . . . . . . . . 13 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → (𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)) = ((𝑃 Σg (𝑥𝑚𝑀))(+g𝑃)𝑎 / 𝑥𝑀))
3837fveq2d 6670 . . . . . . . . . . . 12 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → (coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀))) = (coe1‘((𝑃 Σg (𝑥𝑚𝑀))(+g𝑃)𝑎 / 𝑥𝑀)))
3938fveq1d 6668 . . . . . . . . . . 11 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = ((coe1‘((𝑃 Σg (𝑥𝑚𝑀))(+g𝑃)𝑎 / 𝑥𝑀))‘𝐾))
4093ad2ant3 1129 . . . . . . . . . . . . 13 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → 𝑅 ∈ Ring)
4140ad2antrr 722 . . . . . . . . . . . 12 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → 𝑅 ∈ Ring)
42 simplr 765 . . . . . . . . . . . . 13 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → ∀𝑥𝑚 𝑀𝐵)
437, 16, 17, 42gsummptcl 19009 . . . . . . . . . . . 12 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → (𝑃 Σg (𝑥𝑚𝑀)) ∈ 𝐵)
44 coe1fzgsumd.k . . . . . . . . . . . . . 14 (𝜑𝐾 ∈ ℕ0)
45443ad2ant3 1129 . . . . . . . . . . . . 13 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → 𝐾 ∈ ℕ0)
4645ad2antrr 722 . . . . . . . . . . . 12 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → 𝐾 ∈ ℕ0)
47 eqid 2825 . . . . . . . . . . . . 13 (+g𝑅) = (+g𝑅)
4810, 7, 8, 47coe1addfv 20350 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ (𝑃 Σg (𝑥𝑚𝑀)) ∈ 𝐵𝑎 / 𝑥𝑀𝐵) ∧ 𝐾 ∈ ℕ0) → ((coe1‘((𝑃 Σg (𝑥𝑚𝑀))(+g𝑃)𝑎 / 𝑥𝑀))‘𝐾) = (((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾)(+g𝑅)((coe1𝑎 / 𝑥𝑀)‘𝐾)))
4941, 43, 29, 46, 48syl31anc 1367 . . . . . . . . . . 11 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → ((coe1‘((𝑃 Σg (𝑥𝑚𝑀))(+g𝑃)𝑎 / 𝑥𝑀))‘𝐾) = (((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾)(+g𝑅)((coe1𝑎 / 𝑥𝑀)‘𝐾)))
5039, 49eqtrd 2860 . . . . . . . . . 10 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾)(+g𝑅)((coe1𝑎 / 𝑥𝑀)‘𝐾)))
51 oveq1 7158 . . . . . . . . . 10 (((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾))) → (((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾)(+g𝑅)((coe1𝑎 / 𝑥𝑀)‘𝐾)) = ((𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))(+g𝑅)((coe1𝑎 / 𝑥𝑀)‘𝐾)))
5250, 51sylan9eq 2880 . . . . . . . . 9 (((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) ∧ ((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))) → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = ((𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))(+g𝑅)((coe1𝑎 / 𝑥𝑀)‘𝐾)))
53 nfcv 2981 . . . . . . . . . . . . . 14 𝑦((coe1𝑀)‘𝐾)
54 nfcsb1v 3910 . . . . . . . . . . . . . 14 𝑥𝑦 / 𝑥((coe1𝑀)‘𝐾)
55 csbeq1a 3900 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → ((coe1𝑀)‘𝐾) = 𝑦 / 𝑥((coe1𝑀)‘𝐾))
5653, 54, 55cbvmpt 5163 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾)) = (𝑦 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑦 / 𝑥((coe1𝑀)‘𝐾))
5756oveq2i 7162 . . . . . . . . . . . 12 (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾))) = (𝑅 Σg (𝑦 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑦 / 𝑥((coe1𝑀)‘𝐾)))
58 eqid 2825 . . . . . . . . . . . . 13 (Base‘𝑅) = (Base‘𝑅)
59 ringcmn 19253 . . . . . . . . . . . . . . . 16 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
609, 59syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑅 ∈ CMnd)
61603ad2ant3 1129 . . . . . . . . . . . . . 14 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → 𝑅 ∈ CMnd)
6261ad2antrr 722 . . . . . . . . . . . . 13 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → 𝑅 ∈ CMnd)
63 csbfv12 6709 . . . . . . . . . . . . . . 15 𝑦 / 𝑥((coe1𝑀)‘𝐾) = (𝑦 / 𝑥(coe1𝑀)‘𝑦 / 𝑥𝐾)
64 csbfv2g 6710 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ V → 𝑦 / 𝑥(coe1𝑀) = (coe1𝑦 / 𝑥𝑀))
6564elv 3504 . . . . . . . . . . . . . . . 16 𝑦 / 𝑥(coe1𝑀) = (coe1𝑦 / 𝑥𝑀)
66 csbconstg 3905 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ V → 𝑦 / 𝑥𝐾 = 𝐾)
6766elv 3504 . . . . . . . . . . . . . . . 16 𝑦 / 𝑥𝐾 = 𝐾
6865, 67fveq12i 6672 . . . . . . . . . . . . . . 15 (𝑦 / 𝑥(coe1𝑀)‘𝑦 / 𝑥𝐾) = ((coe1𝑦 / 𝑥𝑀)‘𝐾)
6963, 68eqtri 2848 . . . . . . . . . . . . . 14 𝑦 / 𝑥((coe1𝑀)‘𝐾) = ((coe1𝑦 / 𝑥𝑀)‘𝐾)
70 eqid 2825 . . . . . . . . . . . . . . . . 17 (coe1𝑦 / 𝑥𝑀) = (coe1𝑦 / 𝑥𝑀)
7170, 7, 10, 58coe1f 20296 . . . . . . . . . . . . . . . 16 (𝑦 / 𝑥𝑀𝐵 → (coe1𝑦 / 𝑥𝑀):ℕ0⟶(Base‘𝑅))
7222, 71syl 17 . . . . . . . . . . . . . . 15 (((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) ∧ 𝑦𝑚) → (coe1𝑦 / 𝑥𝑀):ℕ0⟶(Base‘𝑅))
7345adantr 481 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) → 𝐾 ∈ ℕ0)
7473ad2antrr 722 . . . . . . . . . . . . . . 15 (((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) ∧ 𝑦𝑚) → 𝐾 ∈ ℕ0)
7572, 74ffvelrnd 6847 . . . . . . . . . . . . . 14 (((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) ∧ 𝑦𝑚) → ((coe1𝑦 / 𝑥𝑀)‘𝐾) ∈ (Base‘𝑅))
7669, 75eqeltrid 2921 . . . . . . . . . . . . 13 (((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) ∧ 𝑦𝑚) → 𝑦 / 𝑥((coe1𝑀)‘𝐾) ∈ (Base‘𝑅))
77 eqid 2825 . . . . . . . . . . . . . . . 16 (coe1𝑎 / 𝑥𝑀) = (coe1𝑎 / 𝑥𝑀)
7877, 7, 10, 58coe1f 20296 . . . . . . . . . . . . . . 15 (𝑎 / 𝑥𝑀𝐵 → (coe1𝑎 / 𝑥𝑀):ℕ0⟶(Base‘𝑅))
7929, 78syl 17 . . . . . . . . . . . . . 14 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → (coe1𝑎 / 𝑥𝑀):ℕ0⟶(Base‘𝑅))
8079, 46ffvelrnd 6847 . . . . . . . . . . . . 13 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → ((coe1𝑎 / 𝑥𝑀)‘𝐾) ∈ (Base‘𝑅))
81 nfcv 2981 . . . . . . . . . . . . . 14 𝑥𝑎
82 nfcv 2981 . . . . . . . . . . . . . . . 16 𝑥coe1
83 nfcsb1v 3910 . . . . . . . . . . . . . . . 16 𝑥𝑎 / 𝑥𝑀
8482, 83nffv 6676 . . . . . . . . . . . . . . 15 𝑥(coe1𝑎 / 𝑥𝑀)
85 nfcv 2981 . . . . . . . . . . . . . . 15 𝑥𝐾
8684, 85nffv 6676 . . . . . . . . . . . . . 14 𝑥((coe1𝑎 / 𝑥𝑀)‘𝐾)
87 csbeq1a 3900 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑎𝑀 = 𝑎 / 𝑥𝑀)
8887fveq2d 6670 . . . . . . . . . . . . . . 15 (𝑥 = 𝑎 → (coe1𝑀) = (coe1𝑎 / 𝑥𝑀))
8988fveq1d 6668 . . . . . . . . . . . . . 14 (𝑥 = 𝑎 → ((coe1𝑀)‘𝐾) = ((coe1𝑎 / 𝑥𝑀)‘𝐾))
9081, 86, 89csbhypf 3914 . . . . . . . . . . . . 13 (𝑦 = 𝑎𝑦 / 𝑥((coe1𝑀)‘𝐾) = ((coe1𝑎 / 𝑥𝑀)‘𝐾))
9158, 47, 62, 17, 76, 24, 25, 80, 90gsumunsn 19002 . . . . . . . . . . . 12 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → (𝑅 Σg (𝑦 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑦 / 𝑥((coe1𝑀)‘𝐾))) = ((𝑅 Σg (𝑦𝑚𝑦 / 𝑥((coe1𝑀)‘𝐾)))(+g𝑅)((coe1𝑎 / 𝑥𝑀)‘𝐾)))
9257, 91syl5eq 2872 . . . . . . . . . . 11 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾))) = ((𝑅 Σg (𝑦𝑚𝑦 / 𝑥((coe1𝑀)‘𝐾)))(+g𝑅)((coe1𝑎 / 𝑥𝑀)‘𝐾)))
9353, 54, 55cbvmpt 5163 . . . . . . . . . . . . . 14 (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)) = (𝑦𝑚𝑦 / 𝑥((coe1𝑀)‘𝐾))
9493eqcomi 2834 . . . . . . . . . . . . 13 (𝑦𝑚𝑦 / 𝑥((coe1𝑀)‘𝐾)) = (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾))
9594oveq2i 7162 . . . . . . . . . . . 12 (𝑅 Σg (𝑦𝑚𝑦 / 𝑥((coe1𝑀)‘𝐾))) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))
9695oveq1i 7161 . . . . . . . . . . 11 ((𝑅 Σg (𝑦𝑚𝑦 / 𝑥((coe1𝑀)‘𝐾)))(+g𝑅)((coe1𝑎 / 𝑥𝑀)‘𝐾)) = ((𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))(+g𝑅)((coe1𝑎 / 𝑥𝑀)‘𝐾))
9792, 96syl6req 2877 . . . . . . . . . 10 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → ((𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))(+g𝑅)((coe1𝑎 / 𝑥𝑀)‘𝐾)) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾))))
9897adantr 481 . . . . . . . . 9 (((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) ∧ ((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))) → ((𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))(+g𝑅)((coe1𝑎 / 𝑥𝑀)‘𝐾)) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾))))
9952, 98eqtrd 2860 . . . . . . . 8 (((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) ∧ ((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))) → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾))))
10099exp31 420 . . . . . . 7 (((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) → (∀𝑥 ∈ {𝑎}𝑀𝐵 → (((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾))) → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾))))))
101100com23 86 . . . . . 6 (((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) → (((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾))) → (∀𝑥 ∈ {𝑎}𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾))))))
102101ex 413 . . . . 5 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → (∀𝑥𝑚 𝑀𝐵 → (((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾))) → (∀𝑥 ∈ {𝑎}𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾)))))))
103102a2d 29 . . . 4 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → ((∀𝑥𝑚 𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))) → (∀𝑥𝑚 𝑀𝐵 → (∀𝑥 ∈ {𝑎}𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾)))))))
104103imp4b 422 . . 3 (((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ (∀𝑥𝑚 𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾))))) → ((∀𝑥𝑚 𝑀𝐵 ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾)))))
1051, 104syl5bi 243 . 2 (((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ (∀𝑥𝑚 𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾))))) → (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾)))))
106105ex 413 1 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → ((∀𝑥𝑚 𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))) → (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1081   = wceq 1530  wcel 2107  wral 3142  Vcvv 3499  csb 3886  cun 3937  {csn 4563  cmpt 5142  wf 6347  cfv 6351  (class class class)co 7151  Fincfn 8501  0cn0 11889  Basecbs 16475  +gcplusg 16557   Σg cgsu 16706  CMndccmn 18828  Ringcrg 19219  Poly1cpl1 20262  coe1cco1 20263
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-iin 4919  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-se 5513  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-isom 6360  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-of 7402  df-ofr 7403  df-om 7572  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8282  df-map 8401  df-pm 8402  df-ixp 8454  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fsupp 8826  df-oi 8966  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-fz 12886  df-fzo 13027  df-seq 13363  df-hash 13684  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-tset 16576  df-ple 16577  df-0g 16707  df-gsum 16708  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17892  df-mnd 17903  df-mhm 17946  df-submnd 17947  df-grp 18038  df-minusg 18039  df-mulg 18157  df-subg 18208  df-ghm 18288  df-cntz 18379  df-cmn 18830  df-abl 18831  df-mgp 19162  df-ur 19174  df-ring 19221  df-subrg 19455  df-psr 20057  df-mpl 20059  df-opsr 20061  df-psr1 20265  df-ply1 20267  df-coe1 20268
This theorem is referenced by:  coe1fzgsumd  20387
  Copyright terms: Public domain W3C validator