MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1fzgsumdlem Structured version   Visualization version   GIF version

Theorem coe1fzgsumdlem 21482
Description: Lemma for coe1fzgsumd 21483 (induction step). (Contributed by AV, 8-Oct-2019.)
Hypotheses
Ref Expression
coe1fzgsumd.p 𝑃 = (Poly1𝑅)
coe1fzgsumd.b 𝐵 = (Base‘𝑃)
coe1fzgsumd.r (𝜑𝑅 ∈ Ring)
coe1fzgsumd.k (𝜑𝐾 ∈ ℕ0)
Assertion
Ref Expression
coe1fzgsumdlem ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → ((∀𝑥𝑚 𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))) → (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾))))))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐾   𝑥,𝑚   𝑥,𝑎
Allowed substitution hints:   𝜑(𝑥,𝑚,𝑎)   𝐵(𝑚,𝑎)   𝑃(𝑥,𝑚,𝑎)   𝑅(𝑥,𝑚,𝑎)   𝐾(𝑚,𝑎)   𝑀(𝑥,𝑚,𝑎)

Proof of Theorem coe1fzgsumdlem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ralunb 4124 . . 3 (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝐵 ↔ (∀𝑥𝑚 𝑀𝐵 ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵))
2 nfcv 2907 . . . . . . . . . . . . . . . . 17 𝑦𝑀
3 nfcsb1v 3856 . . . . . . . . . . . . . . . . 17 𝑥𝑦 / 𝑥𝑀
4 csbeq1a 3845 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦𝑀 = 𝑦 / 𝑥𝑀)
52, 3, 4cbvmpt 5184 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀) = (𝑦 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑦 / 𝑥𝑀)
65oveq2i 7278 . . . . . . . . . . . . . . 15 (𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)) = (𝑃 Σg (𝑦 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑦 / 𝑥𝑀))
7 coe1fzgsumd.b . . . . . . . . . . . . . . . 16 𝐵 = (Base‘𝑃)
8 eqid 2738 . . . . . . . . . . . . . . . 16 (+g𝑃) = (+g𝑃)
9 coe1fzgsumd.r . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑅 ∈ Ring)
10 coe1fzgsumd.p . . . . . . . . . . . . . . . . . . . . 21 𝑃 = (Poly1𝑅)
1110ply1ring 21429 . . . . . . . . . . . . . . . . . . . 20 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
129, 11syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑃 ∈ Ring)
13 ringcmn 19830 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ Ring → 𝑃 ∈ CMnd)
1412, 13syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝑃 ∈ CMnd)
15143ad2ant3 1134 . . . . . . . . . . . . . . . . 17 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → 𝑃 ∈ CMnd)
1615ad2antrr 723 . . . . . . . . . . . . . . . 16 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → 𝑃 ∈ CMnd)
17 simpll1 1211 . . . . . . . . . . . . . . . 16 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → 𝑚 ∈ Fin)
18 rspcsbela 4369 . . . . . . . . . . . . . . . . . . . 20 ((𝑦𝑚 ∧ ∀𝑥𝑚 𝑀𝐵) → 𝑦 / 𝑥𝑀𝐵)
1918expcom 414 . . . . . . . . . . . . . . . . . . 19 (∀𝑥𝑚 𝑀𝐵 → (𝑦𝑚𝑦 / 𝑥𝑀𝐵))
2019adantl 482 . . . . . . . . . . . . . . . . . 18 (((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) → (𝑦𝑚𝑦 / 𝑥𝑀𝐵))
2120adantr 481 . . . . . . . . . . . . . . . . 17 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → (𝑦𝑚𝑦 / 𝑥𝑀𝐵))
2221imp 407 . . . . . . . . . . . . . . . 16 (((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) ∧ 𝑦𝑚) → 𝑦 / 𝑥𝑀𝐵)
23 vex 3433 . . . . . . . . . . . . . . . . 17 𝑎 ∈ V
2423a1i 11 . . . . . . . . . . . . . . . 16 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → 𝑎 ∈ V)
25 simpll2 1212 . . . . . . . . . . . . . . . 16 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → ¬ 𝑎𝑚)
26 vsnid 4598 . . . . . . . . . . . . . . . . . 18 𝑎 ∈ {𝑎}
27 rspcsbela 4369 . . . . . . . . . . . . . . . . . 18 ((𝑎 ∈ {𝑎} ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → 𝑎 / 𝑥𝑀𝐵)
2826, 27mpan 687 . . . . . . . . . . . . . . . . 17 (∀𝑥 ∈ {𝑎}𝑀𝐵𝑎 / 𝑥𝑀𝐵)
2928adantl 482 . . . . . . . . . . . . . . . 16 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → 𝑎 / 𝑥𝑀𝐵)
30 csbeq1 3834 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑎𝑦 / 𝑥𝑀 = 𝑎 / 𝑥𝑀)
317, 8, 16, 17, 22, 24, 25, 29, 30gsumunsn 19571 . . . . . . . . . . . . . . 15 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → (𝑃 Σg (𝑦 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑦 / 𝑥𝑀)) = ((𝑃 Σg (𝑦𝑚𝑦 / 𝑥𝑀))(+g𝑃)𝑎 / 𝑥𝑀))
326, 31eqtrid 2790 . . . . . . . . . . . . . 14 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → (𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)) = ((𝑃 Σg (𝑦𝑚𝑦 / 𝑥𝑀))(+g𝑃)𝑎 / 𝑥𝑀))
332, 3, 4cbvmpt 5184 . . . . . . . . . . . . . . . . 17 (𝑥𝑚𝑀) = (𝑦𝑚𝑦 / 𝑥𝑀)
3433eqcomi 2747 . . . . . . . . . . . . . . . 16 (𝑦𝑚𝑦 / 𝑥𝑀) = (𝑥𝑚𝑀)
3534oveq2i 7278 . . . . . . . . . . . . . . 15 (𝑃 Σg (𝑦𝑚𝑦 / 𝑥𝑀)) = (𝑃 Σg (𝑥𝑚𝑀))
3635oveq1i 7277 . . . . . . . . . . . . . 14 ((𝑃 Σg (𝑦𝑚𝑦 / 𝑥𝑀))(+g𝑃)𝑎 / 𝑥𝑀) = ((𝑃 Σg (𝑥𝑚𝑀))(+g𝑃)𝑎 / 𝑥𝑀)
3732, 36eqtrdi 2794 . . . . . . . . . . . . 13 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → (𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)) = ((𝑃 Σg (𝑥𝑚𝑀))(+g𝑃)𝑎 / 𝑥𝑀))
3837fveq2d 6770 . . . . . . . . . . . 12 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → (coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀))) = (coe1‘((𝑃 Σg (𝑥𝑚𝑀))(+g𝑃)𝑎 / 𝑥𝑀)))
3938fveq1d 6768 . . . . . . . . . . 11 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = ((coe1‘((𝑃 Σg (𝑥𝑚𝑀))(+g𝑃)𝑎 / 𝑥𝑀))‘𝐾))
4093ad2ant3 1134 . . . . . . . . . . . . 13 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → 𝑅 ∈ Ring)
4140ad2antrr 723 . . . . . . . . . . . 12 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → 𝑅 ∈ Ring)
42 simplr 766 . . . . . . . . . . . . 13 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → ∀𝑥𝑚 𝑀𝐵)
437, 16, 17, 42gsummptcl 19578 . . . . . . . . . . . 12 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → (𝑃 Σg (𝑥𝑚𝑀)) ∈ 𝐵)
44 coe1fzgsumd.k . . . . . . . . . . . . . 14 (𝜑𝐾 ∈ ℕ0)
45443ad2ant3 1134 . . . . . . . . . . . . 13 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → 𝐾 ∈ ℕ0)
4645ad2antrr 723 . . . . . . . . . . . 12 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → 𝐾 ∈ ℕ0)
47 eqid 2738 . . . . . . . . . . . . 13 (+g𝑅) = (+g𝑅)
4810, 7, 8, 47coe1addfv 21446 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ (𝑃 Σg (𝑥𝑚𝑀)) ∈ 𝐵𝑎 / 𝑥𝑀𝐵) ∧ 𝐾 ∈ ℕ0) → ((coe1‘((𝑃 Σg (𝑥𝑚𝑀))(+g𝑃)𝑎 / 𝑥𝑀))‘𝐾) = (((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾)(+g𝑅)((coe1𝑎 / 𝑥𝑀)‘𝐾)))
4941, 43, 29, 46, 48syl31anc 1372 . . . . . . . . . . 11 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → ((coe1‘((𝑃 Σg (𝑥𝑚𝑀))(+g𝑃)𝑎 / 𝑥𝑀))‘𝐾) = (((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾)(+g𝑅)((coe1𝑎 / 𝑥𝑀)‘𝐾)))
5039, 49eqtrd 2778 . . . . . . . . . 10 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾)(+g𝑅)((coe1𝑎 / 𝑥𝑀)‘𝐾)))
51 oveq1 7274 . . . . . . . . . 10 (((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾))) → (((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾)(+g𝑅)((coe1𝑎 / 𝑥𝑀)‘𝐾)) = ((𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))(+g𝑅)((coe1𝑎 / 𝑥𝑀)‘𝐾)))
5250, 51sylan9eq 2798 . . . . . . . . 9 (((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) ∧ ((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))) → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = ((𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))(+g𝑅)((coe1𝑎 / 𝑥𝑀)‘𝐾)))
53 nfcv 2907 . . . . . . . . . . . . . 14 𝑦((coe1𝑀)‘𝐾)
54 nfcsb1v 3856 . . . . . . . . . . . . . 14 𝑥𝑦 / 𝑥((coe1𝑀)‘𝐾)
55 csbeq1a 3845 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → ((coe1𝑀)‘𝐾) = 𝑦 / 𝑥((coe1𝑀)‘𝐾))
5653, 54, 55cbvmpt 5184 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾)) = (𝑦 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑦 / 𝑥((coe1𝑀)‘𝐾))
5756oveq2i 7278 . . . . . . . . . . . 12 (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾))) = (𝑅 Σg (𝑦 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑦 / 𝑥((coe1𝑀)‘𝐾)))
58 eqid 2738 . . . . . . . . . . . . 13 (Base‘𝑅) = (Base‘𝑅)
59 ringcmn 19830 . . . . . . . . . . . . . . . 16 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
609, 59syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑅 ∈ CMnd)
61603ad2ant3 1134 . . . . . . . . . . . . . 14 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → 𝑅 ∈ CMnd)
6261ad2antrr 723 . . . . . . . . . . . . 13 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → 𝑅 ∈ CMnd)
63 csbfv12 6809 . . . . . . . . . . . . . . 15 𝑦 / 𝑥((coe1𝑀)‘𝐾) = (𝑦 / 𝑥(coe1𝑀)‘𝑦 / 𝑥𝐾)
64 csbfv2g 6810 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ V → 𝑦 / 𝑥(coe1𝑀) = (coe1𝑦 / 𝑥𝑀))
6564elv 3435 . . . . . . . . . . . . . . . 16 𝑦 / 𝑥(coe1𝑀) = (coe1𝑦 / 𝑥𝑀)
66 csbconstg 3850 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ V → 𝑦 / 𝑥𝐾 = 𝐾)
6766elv 3435 . . . . . . . . . . . . . . . 16 𝑦 / 𝑥𝐾 = 𝐾
6865, 67fveq12i 6772 . . . . . . . . . . . . . . 15 (𝑦 / 𝑥(coe1𝑀)‘𝑦 / 𝑥𝐾) = ((coe1𝑦 / 𝑥𝑀)‘𝐾)
6963, 68eqtri 2766 . . . . . . . . . . . . . 14 𝑦 / 𝑥((coe1𝑀)‘𝐾) = ((coe1𝑦 / 𝑥𝑀)‘𝐾)
70 eqid 2738 . . . . . . . . . . . . . . . . 17 (coe1𝑦 / 𝑥𝑀) = (coe1𝑦 / 𝑥𝑀)
7170, 7, 10, 58coe1f 21392 . . . . . . . . . . . . . . . 16 (𝑦 / 𝑥𝑀𝐵 → (coe1𝑦 / 𝑥𝑀):ℕ0⟶(Base‘𝑅))
7222, 71syl 17 . . . . . . . . . . . . . . 15 (((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) ∧ 𝑦𝑚) → (coe1𝑦 / 𝑥𝑀):ℕ0⟶(Base‘𝑅))
7345adantr 481 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) → 𝐾 ∈ ℕ0)
7473ad2antrr 723 . . . . . . . . . . . . . . 15 (((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) ∧ 𝑦𝑚) → 𝐾 ∈ ℕ0)
7572, 74ffvelrnd 6954 . . . . . . . . . . . . . 14 (((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) ∧ 𝑦𝑚) → ((coe1𝑦 / 𝑥𝑀)‘𝐾) ∈ (Base‘𝑅))
7669, 75eqeltrid 2843 . . . . . . . . . . . . 13 (((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) ∧ 𝑦𝑚) → 𝑦 / 𝑥((coe1𝑀)‘𝐾) ∈ (Base‘𝑅))
77 eqid 2738 . . . . . . . . . . . . . . . 16 (coe1𝑎 / 𝑥𝑀) = (coe1𝑎 / 𝑥𝑀)
7877, 7, 10, 58coe1f 21392 . . . . . . . . . . . . . . 15 (𝑎 / 𝑥𝑀𝐵 → (coe1𝑎 / 𝑥𝑀):ℕ0⟶(Base‘𝑅))
7929, 78syl 17 . . . . . . . . . . . . . 14 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → (coe1𝑎 / 𝑥𝑀):ℕ0⟶(Base‘𝑅))
8079, 46ffvelrnd 6954 . . . . . . . . . . . . 13 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → ((coe1𝑎 / 𝑥𝑀)‘𝐾) ∈ (Base‘𝑅))
81 nfcv 2907 . . . . . . . . . . . . . 14 𝑥𝑎
82 nfcv 2907 . . . . . . . . . . . . . . . 16 𝑥coe1
83 nfcsb1v 3856 . . . . . . . . . . . . . . . 16 𝑥𝑎 / 𝑥𝑀
8482, 83nffv 6776 . . . . . . . . . . . . . . 15 𝑥(coe1𝑎 / 𝑥𝑀)
85 nfcv 2907 . . . . . . . . . . . . . . 15 𝑥𝐾
8684, 85nffv 6776 . . . . . . . . . . . . . 14 𝑥((coe1𝑎 / 𝑥𝑀)‘𝐾)
87 csbeq1a 3845 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑎𝑀 = 𝑎 / 𝑥𝑀)
8887fveq2d 6770 . . . . . . . . . . . . . . 15 (𝑥 = 𝑎 → (coe1𝑀) = (coe1𝑎 / 𝑥𝑀))
8988fveq1d 6768 . . . . . . . . . . . . . 14 (𝑥 = 𝑎 → ((coe1𝑀)‘𝐾) = ((coe1𝑎 / 𝑥𝑀)‘𝐾))
9081, 86, 89csbhypf 3860 . . . . . . . . . . . . 13 (𝑦 = 𝑎𝑦 / 𝑥((coe1𝑀)‘𝐾) = ((coe1𝑎 / 𝑥𝑀)‘𝐾))
9158, 47, 62, 17, 76, 24, 25, 80, 90gsumunsn 19571 . . . . . . . . . . . 12 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → (𝑅 Σg (𝑦 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑦 / 𝑥((coe1𝑀)‘𝐾))) = ((𝑅 Σg (𝑦𝑚𝑦 / 𝑥((coe1𝑀)‘𝐾)))(+g𝑅)((coe1𝑎 / 𝑥𝑀)‘𝐾)))
9257, 91eqtrid 2790 . . . . . . . . . . 11 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾))) = ((𝑅 Σg (𝑦𝑚𝑦 / 𝑥((coe1𝑀)‘𝐾)))(+g𝑅)((coe1𝑎 / 𝑥𝑀)‘𝐾)))
9353, 54, 55cbvmpt 5184 . . . . . . . . . . . . . 14 (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)) = (𝑦𝑚𝑦 / 𝑥((coe1𝑀)‘𝐾))
9493eqcomi 2747 . . . . . . . . . . . . 13 (𝑦𝑚𝑦 / 𝑥((coe1𝑀)‘𝐾)) = (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾))
9594oveq2i 7278 . . . . . . . . . . . 12 (𝑅 Σg (𝑦𝑚𝑦 / 𝑥((coe1𝑀)‘𝐾))) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))
9695oveq1i 7277 . . . . . . . . . . 11 ((𝑅 Σg (𝑦𝑚𝑦 / 𝑥((coe1𝑀)‘𝐾)))(+g𝑅)((coe1𝑎 / 𝑥𝑀)‘𝐾)) = ((𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))(+g𝑅)((coe1𝑎 / 𝑥𝑀)‘𝐾))
9792, 96eqtr2di 2795 . . . . . . . . . 10 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → ((𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))(+g𝑅)((coe1𝑎 / 𝑥𝑀)‘𝐾)) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾))))
9897adantr 481 . . . . . . . . 9 (((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) ∧ ((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))) → ((𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))(+g𝑅)((coe1𝑎 / 𝑥𝑀)‘𝐾)) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾))))
9952, 98eqtrd 2778 . . . . . . . 8 (((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) ∧ ((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))) → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾))))
10099exp31 420 . . . . . . 7 (((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) → (∀𝑥 ∈ {𝑎}𝑀𝐵 → (((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾))) → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾))))))
101100com23 86 . . . . . 6 (((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) → (((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾))) → (∀𝑥 ∈ {𝑎}𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾))))))
102101ex 413 . . . . 5 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → (∀𝑥𝑚 𝑀𝐵 → (((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾))) → (∀𝑥 ∈ {𝑎}𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾)))))))
103102a2d 29 . . . 4 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → ((∀𝑥𝑚 𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))) → (∀𝑥𝑚 𝑀𝐵 → (∀𝑥 ∈ {𝑎}𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾)))))))
104103imp4b 422 . . 3 (((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ (∀𝑥𝑚 𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾))))) → ((∀𝑥𝑚 𝑀𝐵 ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾)))))
1051, 104syl5bi 241 . 2 (((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ (∀𝑥𝑚 𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾))))) → (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾)))))
106105ex 413 1 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → ((∀𝑥𝑚 𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))) → (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  Vcvv 3429  csb 3831  cun 3884  {csn 4561  cmpt 5156  wf 6422  cfv 6426  (class class class)co 7267  Fincfn 8720  0cn0 12243  Basecbs 16922  +gcplusg 16972   Σg cgsu 17161  CMndccmn 19396  Ringcrg 19793  Poly1cpl1 21358  coe1cco1 21359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5208  ax-sep 5221  ax-nul 5228  ax-pow 5286  ax-pr 5350  ax-un 7578  ax-cnex 10937  ax-resscn 10938  ax-1cn 10939  ax-icn 10940  ax-addcl 10941  ax-addrcl 10942  ax-mulcl 10943  ax-mulrcl 10944  ax-mulcom 10945  ax-addass 10946  ax-mulass 10947  ax-distr 10948  ax-i2m1 10949  ax-1ne0 10950  ax-1rid 10951  ax-rnegex 10952  ax-rrecex 10953  ax-cnre 10954  ax-pre-lttri 10955  ax-pre-lttrn 10956  ax-pre-ltadd 10957  ax-pre-mulgt0 10958
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3431  df-sbc 3716  df-csb 3832  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-pss 3905  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5074  df-opab 5136  df-mpt 5157  df-tr 5191  df-id 5484  df-eprel 5490  df-po 5498  df-so 5499  df-fr 5539  df-se 5540  df-we 5541  df-xp 5590  df-rel 5591  df-cnv 5592  df-co 5593  df-dm 5594  df-rn 5595  df-res 5596  df-ima 5597  df-pred 6195  df-ord 6262  df-on 6263  df-lim 6264  df-suc 6265  df-iota 6384  df-fun 6428  df-fn 6429  df-f 6430  df-f1 6431  df-fo 6432  df-f1o 6433  df-fv 6434  df-isom 6435  df-riota 7224  df-ov 7270  df-oprab 7271  df-mpo 7272  df-of 7523  df-ofr 7524  df-om 7703  df-1st 7820  df-2nd 7821  df-supp 7965  df-frecs 8084  df-wrecs 8115  df-recs 8189  df-rdg 8228  df-1o 8284  df-er 8485  df-map 8604  df-pm 8605  df-ixp 8673  df-en 8721  df-dom 8722  df-sdom 8723  df-fin 8724  df-fsupp 9116  df-oi 9256  df-card 9707  df-pnf 11021  df-mnf 11022  df-xr 11023  df-ltxr 11024  df-le 11025  df-sub 11217  df-neg 11218  df-nn 11984  df-2 12046  df-3 12047  df-4 12048  df-5 12049  df-6 12050  df-7 12051  df-8 12052  df-9 12053  df-n0 12244  df-z 12330  df-dec 12448  df-uz 12593  df-fz 13250  df-fzo 13393  df-seq 13732  df-hash 14055  df-struct 16858  df-sets 16875  df-slot 16893  df-ndx 16905  df-base 16923  df-ress 16952  df-plusg 16985  df-mulr 16986  df-sca 16988  df-vsca 16989  df-tset 16991  df-ple 16992  df-0g 17162  df-gsum 17163  df-mre 17305  df-mrc 17306  df-acs 17308  df-mgm 18336  df-sgrp 18385  df-mnd 18396  df-mhm 18440  df-submnd 18441  df-grp 18590  df-minusg 18591  df-mulg 18711  df-subg 18762  df-ghm 18842  df-cntz 18933  df-cmn 19398  df-abl 19399  df-mgp 19731  df-ur 19748  df-ring 19795  df-subrg 20032  df-psr 21122  df-mpl 21124  df-opsr 21126  df-psr1 21361  df-ply1 21363  df-coe1 21364
This theorem is referenced by:  coe1fzgsumd  21483
  Copyright terms: Public domain W3C validator