MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1fzgsumdlem Structured version   Visualization version   GIF version

Theorem coe1fzgsumdlem 22223
Description: Lemma for coe1fzgsumd 22224 (induction step). (Contributed by AV, 8-Oct-2019.)
Hypotheses
Ref Expression
coe1fzgsumd.p 𝑃 = (Poly1𝑅)
coe1fzgsumd.b 𝐵 = (Base‘𝑃)
coe1fzgsumd.r (𝜑𝑅 ∈ Ring)
coe1fzgsumd.k (𝜑𝐾 ∈ ℕ0)
Assertion
Ref Expression
coe1fzgsumdlem ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → ((∀𝑥𝑚 𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))) → (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾))))))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐾   𝑥,𝑚   𝑥,𝑎
Allowed substitution hints:   𝜑(𝑥,𝑚,𝑎)   𝐵(𝑚,𝑎)   𝑃(𝑥,𝑚,𝑎)   𝑅(𝑥,𝑚,𝑎)   𝐾(𝑚,𝑎)   𝑀(𝑥,𝑚,𝑎)

Proof of Theorem coe1fzgsumdlem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ralunb 4156 . . 3 (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝐵 ↔ (∀𝑥𝑚 𝑀𝐵 ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵))
2 nfcv 2891 . . . . . . . . . . . . . . . . 17 𝑦𝑀
3 nfcsb1v 3883 . . . . . . . . . . . . . . . . 17 𝑥𝑦 / 𝑥𝑀
4 csbeq1a 3873 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦𝑀 = 𝑦 / 𝑥𝑀)
52, 3, 4cbvmpt 5204 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀) = (𝑦 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑦 / 𝑥𝑀)
65oveq2i 7380 . . . . . . . . . . . . . . 15 (𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)) = (𝑃 Σg (𝑦 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑦 / 𝑥𝑀))
7 coe1fzgsumd.b . . . . . . . . . . . . . . . 16 𝐵 = (Base‘𝑃)
8 eqid 2729 . . . . . . . . . . . . . . . 16 (+g𝑃) = (+g𝑃)
9 coe1fzgsumd.r . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑅 ∈ Ring)
10 coe1fzgsumd.p . . . . . . . . . . . . . . . . . . . . 21 𝑃 = (Poly1𝑅)
1110ply1ring 22165 . . . . . . . . . . . . . . . . . . . 20 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
129, 11syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑃 ∈ Ring)
13 ringcmn 20202 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ Ring → 𝑃 ∈ CMnd)
1412, 13syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝑃 ∈ CMnd)
15143ad2ant3 1135 . . . . . . . . . . . . . . . . 17 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → 𝑃 ∈ CMnd)
1615ad2antrr 726 . . . . . . . . . . . . . . . 16 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → 𝑃 ∈ CMnd)
17 simpll1 1213 . . . . . . . . . . . . . . . 16 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → 𝑚 ∈ Fin)
18 rspcsbela 4397 . . . . . . . . . . . . . . . . . . . 20 ((𝑦𝑚 ∧ ∀𝑥𝑚 𝑀𝐵) → 𝑦 / 𝑥𝑀𝐵)
1918expcom 413 . . . . . . . . . . . . . . . . . . 19 (∀𝑥𝑚 𝑀𝐵 → (𝑦𝑚𝑦 / 𝑥𝑀𝐵))
2019adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) → (𝑦𝑚𝑦 / 𝑥𝑀𝐵))
2120adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → (𝑦𝑚𝑦 / 𝑥𝑀𝐵))
2221imp 406 . . . . . . . . . . . . . . . 16 (((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) ∧ 𝑦𝑚) → 𝑦 / 𝑥𝑀𝐵)
23 vex 3448 . . . . . . . . . . . . . . . . 17 𝑎 ∈ V
2423a1i 11 . . . . . . . . . . . . . . . 16 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → 𝑎 ∈ V)
25 simpll2 1214 . . . . . . . . . . . . . . . 16 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → ¬ 𝑎𝑚)
26 vsnid 4623 . . . . . . . . . . . . . . . . . 18 𝑎 ∈ {𝑎}
27 rspcsbela 4397 . . . . . . . . . . . . . . . . . 18 ((𝑎 ∈ {𝑎} ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → 𝑎 / 𝑥𝑀𝐵)
2826, 27mpan 690 . . . . . . . . . . . . . . . . 17 (∀𝑥 ∈ {𝑎}𝑀𝐵𝑎 / 𝑥𝑀𝐵)
2928adantl 481 . . . . . . . . . . . . . . . 16 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → 𝑎 / 𝑥𝑀𝐵)
30 csbeq1 3862 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑎𝑦 / 𝑥𝑀 = 𝑎 / 𝑥𝑀)
317, 8, 16, 17, 22, 24, 25, 29, 30gsumunsn 19874 . . . . . . . . . . . . . . 15 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → (𝑃 Σg (𝑦 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑦 / 𝑥𝑀)) = ((𝑃 Σg (𝑦𝑚𝑦 / 𝑥𝑀))(+g𝑃)𝑎 / 𝑥𝑀))
326, 31eqtrid 2776 . . . . . . . . . . . . . 14 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → (𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)) = ((𝑃 Σg (𝑦𝑚𝑦 / 𝑥𝑀))(+g𝑃)𝑎 / 𝑥𝑀))
332, 3, 4cbvmpt 5204 . . . . . . . . . . . . . . . . 17 (𝑥𝑚𝑀) = (𝑦𝑚𝑦 / 𝑥𝑀)
3433eqcomi 2738 . . . . . . . . . . . . . . . 16 (𝑦𝑚𝑦 / 𝑥𝑀) = (𝑥𝑚𝑀)
3534oveq2i 7380 . . . . . . . . . . . . . . 15 (𝑃 Σg (𝑦𝑚𝑦 / 𝑥𝑀)) = (𝑃 Σg (𝑥𝑚𝑀))
3635oveq1i 7379 . . . . . . . . . . . . . 14 ((𝑃 Σg (𝑦𝑚𝑦 / 𝑥𝑀))(+g𝑃)𝑎 / 𝑥𝑀) = ((𝑃 Σg (𝑥𝑚𝑀))(+g𝑃)𝑎 / 𝑥𝑀)
3732, 36eqtrdi 2780 . . . . . . . . . . . . 13 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → (𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)) = ((𝑃 Σg (𝑥𝑚𝑀))(+g𝑃)𝑎 / 𝑥𝑀))
3837fveq2d 6844 . . . . . . . . . . . 12 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → (coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀))) = (coe1‘((𝑃 Σg (𝑥𝑚𝑀))(+g𝑃)𝑎 / 𝑥𝑀)))
3938fveq1d 6842 . . . . . . . . . . 11 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = ((coe1‘((𝑃 Σg (𝑥𝑚𝑀))(+g𝑃)𝑎 / 𝑥𝑀))‘𝐾))
4093ad2ant3 1135 . . . . . . . . . . . . 13 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → 𝑅 ∈ Ring)
4140ad2antrr 726 . . . . . . . . . . . 12 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → 𝑅 ∈ Ring)
42 simplr 768 . . . . . . . . . . . . 13 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → ∀𝑥𝑚 𝑀𝐵)
437, 16, 17, 42gsummptcl 19881 . . . . . . . . . . . 12 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → (𝑃 Σg (𝑥𝑚𝑀)) ∈ 𝐵)
44 coe1fzgsumd.k . . . . . . . . . . . . . 14 (𝜑𝐾 ∈ ℕ0)
45443ad2ant3 1135 . . . . . . . . . . . . 13 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → 𝐾 ∈ ℕ0)
4645ad2antrr 726 . . . . . . . . . . . 12 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → 𝐾 ∈ ℕ0)
47 eqid 2729 . . . . . . . . . . . . 13 (+g𝑅) = (+g𝑅)
4810, 7, 8, 47coe1addfv 22184 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ (𝑃 Σg (𝑥𝑚𝑀)) ∈ 𝐵𝑎 / 𝑥𝑀𝐵) ∧ 𝐾 ∈ ℕ0) → ((coe1‘((𝑃 Σg (𝑥𝑚𝑀))(+g𝑃)𝑎 / 𝑥𝑀))‘𝐾) = (((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾)(+g𝑅)((coe1𝑎 / 𝑥𝑀)‘𝐾)))
4941, 43, 29, 46, 48syl31anc 1375 . . . . . . . . . . 11 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → ((coe1‘((𝑃 Σg (𝑥𝑚𝑀))(+g𝑃)𝑎 / 𝑥𝑀))‘𝐾) = (((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾)(+g𝑅)((coe1𝑎 / 𝑥𝑀)‘𝐾)))
5039, 49eqtrd 2764 . . . . . . . . . 10 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾)(+g𝑅)((coe1𝑎 / 𝑥𝑀)‘𝐾)))
51 oveq1 7376 . . . . . . . . . 10 (((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾))) → (((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾)(+g𝑅)((coe1𝑎 / 𝑥𝑀)‘𝐾)) = ((𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))(+g𝑅)((coe1𝑎 / 𝑥𝑀)‘𝐾)))
5250, 51sylan9eq 2784 . . . . . . . . 9 (((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) ∧ ((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))) → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = ((𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))(+g𝑅)((coe1𝑎 / 𝑥𝑀)‘𝐾)))
53 nfcv 2891 . . . . . . . . . . . . . 14 𝑦((coe1𝑀)‘𝐾)
54 nfcsb1v 3883 . . . . . . . . . . . . . 14 𝑥𝑦 / 𝑥((coe1𝑀)‘𝐾)
55 csbeq1a 3873 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → ((coe1𝑀)‘𝐾) = 𝑦 / 𝑥((coe1𝑀)‘𝐾))
5653, 54, 55cbvmpt 5204 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾)) = (𝑦 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑦 / 𝑥((coe1𝑀)‘𝐾))
5756oveq2i 7380 . . . . . . . . . . . 12 (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾))) = (𝑅 Σg (𝑦 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑦 / 𝑥((coe1𝑀)‘𝐾)))
58 eqid 2729 . . . . . . . . . . . . 13 (Base‘𝑅) = (Base‘𝑅)
59 ringcmn 20202 . . . . . . . . . . . . . . . 16 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
609, 59syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑅 ∈ CMnd)
61603ad2ant3 1135 . . . . . . . . . . . . . 14 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → 𝑅 ∈ CMnd)
6261ad2antrr 726 . . . . . . . . . . . . 13 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → 𝑅 ∈ CMnd)
63 csbfv12 6888 . . . . . . . . . . . . . . 15 𝑦 / 𝑥((coe1𝑀)‘𝐾) = (𝑦 / 𝑥(coe1𝑀)‘𝑦 / 𝑥𝐾)
64 csbfv2g 6889 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ V → 𝑦 / 𝑥(coe1𝑀) = (coe1𝑦 / 𝑥𝑀))
6564elv 3449 . . . . . . . . . . . . . . . 16 𝑦 / 𝑥(coe1𝑀) = (coe1𝑦 / 𝑥𝑀)
66 csbconstg 3878 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ V → 𝑦 / 𝑥𝐾 = 𝐾)
6766elv 3449 . . . . . . . . . . . . . . . 16 𝑦 / 𝑥𝐾 = 𝐾
6865, 67fveq12i 6846 . . . . . . . . . . . . . . 15 (𝑦 / 𝑥(coe1𝑀)‘𝑦 / 𝑥𝐾) = ((coe1𝑦 / 𝑥𝑀)‘𝐾)
6963, 68eqtri 2752 . . . . . . . . . . . . . 14 𝑦 / 𝑥((coe1𝑀)‘𝐾) = ((coe1𝑦 / 𝑥𝑀)‘𝐾)
70 eqid 2729 . . . . . . . . . . . . . . . . 17 (coe1𝑦 / 𝑥𝑀) = (coe1𝑦 / 𝑥𝑀)
7170, 7, 10, 58coe1f 22129 . . . . . . . . . . . . . . . 16 (𝑦 / 𝑥𝑀𝐵 → (coe1𝑦 / 𝑥𝑀):ℕ0⟶(Base‘𝑅))
7222, 71syl 17 . . . . . . . . . . . . . . 15 (((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) ∧ 𝑦𝑚) → (coe1𝑦 / 𝑥𝑀):ℕ0⟶(Base‘𝑅))
7345adantr 480 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) → 𝐾 ∈ ℕ0)
7473ad2antrr 726 . . . . . . . . . . . . . . 15 (((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) ∧ 𝑦𝑚) → 𝐾 ∈ ℕ0)
7572, 74ffvelcdmd 7039 . . . . . . . . . . . . . 14 (((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) ∧ 𝑦𝑚) → ((coe1𝑦 / 𝑥𝑀)‘𝐾) ∈ (Base‘𝑅))
7669, 75eqeltrid 2832 . . . . . . . . . . . . 13 (((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) ∧ 𝑦𝑚) → 𝑦 / 𝑥((coe1𝑀)‘𝐾) ∈ (Base‘𝑅))
77 eqid 2729 . . . . . . . . . . . . . . . 16 (coe1𝑎 / 𝑥𝑀) = (coe1𝑎 / 𝑥𝑀)
7877, 7, 10, 58coe1f 22129 . . . . . . . . . . . . . . 15 (𝑎 / 𝑥𝑀𝐵 → (coe1𝑎 / 𝑥𝑀):ℕ0⟶(Base‘𝑅))
7929, 78syl 17 . . . . . . . . . . . . . 14 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → (coe1𝑎 / 𝑥𝑀):ℕ0⟶(Base‘𝑅))
8079, 46ffvelcdmd 7039 . . . . . . . . . . . . 13 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → ((coe1𝑎 / 𝑥𝑀)‘𝐾) ∈ (Base‘𝑅))
81 nfcv 2891 . . . . . . . . . . . . . 14 𝑥𝑎
82 nfcv 2891 . . . . . . . . . . . . . . . 16 𝑥coe1
83 nfcsb1v 3883 . . . . . . . . . . . . . . . 16 𝑥𝑎 / 𝑥𝑀
8482, 83nffv 6850 . . . . . . . . . . . . . . 15 𝑥(coe1𝑎 / 𝑥𝑀)
85 nfcv 2891 . . . . . . . . . . . . . . 15 𝑥𝐾
8684, 85nffv 6850 . . . . . . . . . . . . . 14 𝑥((coe1𝑎 / 𝑥𝑀)‘𝐾)
87 csbeq1a 3873 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑎𝑀 = 𝑎 / 𝑥𝑀)
8887fveq2d 6844 . . . . . . . . . . . . . . 15 (𝑥 = 𝑎 → (coe1𝑀) = (coe1𝑎 / 𝑥𝑀))
8988fveq1d 6842 . . . . . . . . . . . . . 14 (𝑥 = 𝑎 → ((coe1𝑀)‘𝐾) = ((coe1𝑎 / 𝑥𝑀)‘𝐾))
9081, 86, 89csbhypf 3887 . . . . . . . . . . . . 13 (𝑦 = 𝑎𝑦 / 𝑥((coe1𝑀)‘𝐾) = ((coe1𝑎 / 𝑥𝑀)‘𝐾))
9158, 47, 62, 17, 76, 24, 25, 80, 90gsumunsn 19874 . . . . . . . . . . . 12 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → (𝑅 Σg (𝑦 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑦 / 𝑥((coe1𝑀)‘𝐾))) = ((𝑅 Σg (𝑦𝑚𝑦 / 𝑥((coe1𝑀)‘𝐾)))(+g𝑅)((coe1𝑎 / 𝑥𝑀)‘𝐾)))
9257, 91eqtrid 2776 . . . . . . . . . . 11 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾))) = ((𝑅 Σg (𝑦𝑚𝑦 / 𝑥((coe1𝑀)‘𝐾)))(+g𝑅)((coe1𝑎 / 𝑥𝑀)‘𝐾)))
9353, 54, 55cbvmpt 5204 . . . . . . . . . . . . . 14 (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)) = (𝑦𝑚𝑦 / 𝑥((coe1𝑀)‘𝐾))
9493eqcomi 2738 . . . . . . . . . . . . 13 (𝑦𝑚𝑦 / 𝑥((coe1𝑀)‘𝐾)) = (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾))
9594oveq2i 7380 . . . . . . . . . . . 12 (𝑅 Σg (𝑦𝑚𝑦 / 𝑥((coe1𝑀)‘𝐾))) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))
9695oveq1i 7379 . . . . . . . . . . 11 ((𝑅 Σg (𝑦𝑚𝑦 / 𝑥((coe1𝑀)‘𝐾)))(+g𝑅)((coe1𝑎 / 𝑥𝑀)‘𝐾)) = ((𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))(+g𝑅)((coe1𝑎 / 𝑥𝑀)‘𝐾))
9792, 96eqtr2di 2781 . . . . . . . . . 10 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → ((𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))(+g𝑅)((coe1𝑎 / 𝑥𝑀)‘𝐾)) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾))))
9897adantr 480 . . . . . . . . 9 (((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) ∧ ((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))) → ((𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))(+g𝑅)((coe1𝑎 / 𝑥𝑀)‘𝐾)) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾))))
9952, 98eqtrd 2764 . . . . . . . 8 (((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) ∧ ((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))) → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾))))
10099exp31 419 . . . . . . 7 (((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) → (∀𝑥 ∈ {𝑎}𝑀𝐵 → (((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾))) → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾))))))
101100com23 86 . . . . . 6 (((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) → (((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾))) → (∀𝑥 ∈ {𝑎}𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾))))))
102101ex 412 . . . . 5 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → (∀𝑥𝑚 𝑀𝐵 → (((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾))) → (∀𝑥 ∈ {𝑎}𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾)))))))
103102a2d 29 . . . 4 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → ((∀𝑥𝑚 𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))) → (∀𝑥𝑚 𝑀𝐵 → (∀𝑥 ∈ {𝑎}𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾)))))))
104103imp4b 421 . . 3 (((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ (∀𝑥𝑚 𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾))))) → ((∀𝑥𝑚 𝑀𝐵 ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾)))))
1051, 104biimtrid 242 . 2 (((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ (∀𝑥𝑚 𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾))))) → (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾)))))
106105ex 412 1 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → ((∀𝑥𝑚 𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))) → (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  Vcvv 3444  csb 3859  cun 3909  {csn 4585  cmpt 5183  wf 6495  cfv 6499  (class class class)co 7369  Fincfn 8895  0cn0 12418  Basecbs 17155  +gcplusg 17196   Σg cgsu 17379  CMndccmn 19694  Ringcrg 20153  Poly1cpl1 22094  coe1cco1 22095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-ofr 7634  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-sup 9369  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-fzo 13592  df-seq 13943  df-hash 14272  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-hom 17220  df-cco 17221  df-0g 17380  df-gsum 17381  df-prds 17386  df-pws 17388  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-mhm 18692  df-submnd 18693  df-grp 18850  df-minusg 18851  df-mulg 18982  df-subg 19037  df-ghm 19127  df-cntz 19231  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-subrng 20466  df-subrg 20490  df-psr 21851  df-mpl 21853  df-opsr 21855  df-psr1 22097  df-ply1 22099  df-coe1 22100
This theorem is referenced by:  coe1fzgsumd  22224
  Copyright terms: Public domain W3C validator