Step | Hyp | Ref
| Expression |
1 | | ralunb 4124 |
. . 3
⊢
(∀𝑥 ∈
(𝑚 ∪ {𝑎})𝑀 ∈ 𝐵 ↔ (∀𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ∧ ∀𝑥 ∈ {𝑎}𝑀 ∈ 𝐵)) |
2 | | nfcv 2907 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑦𝑀 |
3 | | nfcsb1v 3856 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑥⦋𝑦 / 𝑥⦌𝑀 |
4 | | csbeq1a 3845 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑦 → 𝑀 = ⦋𝑦 / 𝑥⦌𝑀) |
5 | 2, 3, 4 | cbvmpt 5184 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀) = (𝑦 ∈ (𝑚 ∪ {𝑎}) ↦ ⦋𝑦 / 𝑥⦌𝑀) |
6 | 5 | oveq2i 7278 |
. . . . . . . . . . . . . . 15
⊢ (𝑃 Σg
(𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)) = (𝑃 Σg (𝑦 ∈ (𝑚 ∪ {𝑎}) ↦ ⦋𝑦 / 𝑥⦌𝑀)) |
7 | | coe1fzgsumd.b |
. . . . . . . . . . . . . . . 16
⊢ 𝐵 = (Base‘𝑃) |
8 | | eqid 2738 |
. . . . . . . . . . . . . . . 16
⊢
(+g‘𝑃) = (+g‘𝑃) |
9 | | coe1fzgsumd.r |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝑅 ∈ Ring) |
10 | | coe1fzgsumd.p |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑃 = (Poly1‘𝑅) |
11 | 10 | ply1ring 21429 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
12 | 9, 11 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑃 ∈ Ring) |
13 | | ringcmn 19830 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑃 ∈ Ring → 𝑃 ∈ CMnd) |
14 | 12, 13 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑃 ∈ CMnd) |
15 | 14 | 3ad2ant3 1134 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑) → 𝑃 ∈ CMnd) |
16 | 15 | ad2antrr 723 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑) ∧ ∀𝑥 ∈ 𝑚 𝑀 ∈ 𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀 ∈ 𝐵) → 𝑃 ∈ CMnd) |
17 | | simpll1 1211 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑) ∧ ∀𝑥 ∈ 𝑚 𝑀 ∈ 𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀 ∈ 𝐵) → 𝑚 ∈ Fin) |
18 | | rspcsbela 4369 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑦 ∈ 𝑚 ∧ ∀𝑥 ∈ 𝑚 𝑀 ∈ 𝐵) → ⦋𝑦 / 𝑥⦌𝑀 ∈ 𝐵) |
19 | 18 | expcom 414 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∀𝑥 ∈
𝑚 𝑀 ∈ 𝐵 → (𝑦 ∈ 𝑚 → ⦋𝑦 / 𝑥⦌𝑀 ∈ 𝐵)) |
20 | 19 | adantl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑) ∧ ∀𝑥 ∈ 𝑚 𝑀 ∈ 𝐵) → (𝑦 ∈ 𝑚 → ⦋𝑦 / 𝑥⦌𝑀 ∈ 𝐵)) |
21 | 20 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑) ∧ ∀𝑥 ∈ 𝑚 𝑀 ∈ 𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀 ∈ 𝐵) → (𝑦 ∈ 𝑚 → ⦋𝑦 / 𝑥⦌𝑀 ∈ 𝐵)) |
22 | 21 | imp 407 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑚 ∈ Fin
∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑) ∧ ∀𝑥 ∈ 𝑚 𝑀 ∈ 𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀 ∈ 𝐵) ∧ 𝑦 ∈ 𝑚) → ⦋𝑦 / 𝑥⦌𝑀 ∈ 𝐵) |
23 | | vex 3433 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑎 ∈ V |
24 | 23 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑) ∧ ∀𝑥 ∈ 𝑚 𝑀 ∈ 𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀 ∈ 𝐵) → 𝑎 ∈ V) |
25 | | simpll2 1212 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑) ∧ ∀𝑥 ∈ 𝑚 𝑀 ∈ 𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀 ∈ 𝐵) → ¬ 𝑎 ∈ 𝑚) |
26 | | vsnid 4598 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑎 ∈ {𝑎} |
27 | | rspcsbela 4369 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑎 ∈ {𝑎} ∧ ∀𝑥 ∈ {𝑎}𝑀 ∈ 𝐵) → ⦋𝑎 / 𝑥⦌𝑀 ∈ 𝐵) |
28 | 26, 27 | mpan 687 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑥 ∈
{𝑎}𝑀 ∈ 𝐵 → ⦋𝑎 / 𝑥⦌𝑀 ∈ 𝐵) |
29 | 28 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑) ∧ ∀𝑥 ∈ 𝑚 𝑀 ∈ 𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀 ∈ 𝐵) → ⦋𝑎 / 𝑥⦌𝑀 ∈ 𝐵) |
30 | | csbeq1 3834 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑎 → ⦋𝑦 / 𝑥⦌𝑀 = ⦋𝑎 / 𝑥⦌𝑀) |
31 | 7, 8, 16, 17, 22, 24, 25, 29, 30 | gsumunsn 19571 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑) ∧ ∀𝑥 ∈ 𝑚 𝑀 ∈ 𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀 ∈ 𝐵) → (𝑃 Σg (𝑦 ∈ (𝑚 ∪ {𝑎}) ↦ ⦋𝑦 / 𝑥⦌𝑀)) = ((𝑃 Σg (𝑦 ∈ 𝑚 ↦ ⦋𝑦 / 𝑥⦌𝑀))(+g‘𝑃)⦋𝑎 / 𝑥⦌𝑀)) |
32 | 6, 31 | eqtrid 2790 |
. . . . . . . . . . . . . 14
⊢ ((((𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑) ∧ ∀𝑥 ∈ 𝑚 𝑀 ∈ 𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀 ∈ 𝐵) → (𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)) = ((𝑃 Σg (𝑦 ∈ 𝑚 ↦ ⦋𝑦 / 𝑥⦌𝑀))(+g‘𝑃)⦋𝑎 / 𝑥⦌𝑀)) |
33 | 2, 3, 4 | cbvmpt 5184 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ 𝑚 ↦ 𝑀) = (𝑦 ∈ 𝑚 ↦ ⦋𝑦 / 𝑥⦌𝑀) |
34 | 33 | eqcomi 2747 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ 𝑚 ↦ ⦋𝑦 / 𝑥⦌𝑀) = (𝑥 ∈ 𝑚 ↦ 𝑀) |
35 | 34 | oveq2i 7278 |
. . . . . . . . . . . . . . 15
⊢ (𝑃 Σg
(𝑦 ∈ 𝑚 ↦ ⦋𝑦 / 𝑥⦌𝑀)) = (𝑃 Σg (𝑥 ∈ 𝑚 ↦ 𝑀)) |
36 | 35 | oveq1i 7277 |
. . . . . . . . . . . . . 14
⊢ ((𝑃 Σg
(𝑦 ∈ 𝑚 ↦ ⦋𝑦 / 𝑥⦌𝑀))(+g‘𝑃)⦋𝑎 / 𝑥⦌𝑀) = ((𝑃 Σg (𝑥 ∈ 𝑚 ↦ 𝑀))(+g‘𝑃)⦋𝑎 / 𝑥⦌𝑀) |
37 | 32, 36 | eqtrdi 2794 |
. . . . . . . . . . . . 13
⊢ ((((𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑) ∧ ∀𝑥 ∈ 𝑚 𝑀 ∈ 𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀 ∈ 𝐵) → (𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)) = ((𝑃 Σg (𝑥 ∈ 𝑚 ↦ 𝑀))(+g‘𝑃)⦋𝑎 / 𝑥⦌𝑀)) |
38 | 37 | fveq2d 6770 |
. . . . . . . . . . . 12
⊢ ((((𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑) ∧ ∀𝑥 ∈ 𝑚 𝑀 ∈ 𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀 ∈ 𝐵) → (coe1‘(𝑃 Σg
(𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀))) = (coe1‘((𝑃 Σg
(𝑥 ∈ 𝑚 ↦ 𝑀))(+g‘𝑃)⦋𝑎 / 𝑥⦌𝑀))) |
39 | 38 | fveq1d 6768 |
. . . . . . . . . . 11
⊢ ((((𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑) ∧ ∀𝑥 ∈ 𝑚 𝑀 ∈ 𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀 ∈ 𝐵) → ((coe1‘(𝑃 Σg
(𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = ((coe1‘((𝑃 Σg
(𝑥 ∈ 𝑚 ↦ 𝑀))(+g‘𝑃)⦋𝑎 / 𝑥⦌𝑀))‘𝐾)) |
40 | 9 | 3ad2ant3 1134 |
. . . . . . . . . . . . 13
⊢ ((𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑) → 𝑅 ∈ Ring) |
41 | 40 | ad2antrr 723 |
. . . . . . . . . . . 12
⊢ ((((𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑) ∧ ∀𝑥 ∈ 𝑚 𝑀 ∈ 𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀 ∈ 𝐵) → 𝑅 ∈ Ring) |
42 | | simplr 766 |
. . . . . . . . . . . . 13
⊢ ((((𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑) ∧ ∀𝑥 ∈ 𝑚 𝑀 ∈ 𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀 ∈ 𝐵) → ∀𝑥 ∈ 𝑚 𝑀 ∈ 𝐵) |
43 | 7, 16, 17, 42 | gsummptcl 19578 |
. . . . . . . . . . . 12
⊢ ((((𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑) ∧ ∀𝑥 ∈ 𝑚 𝑀 ∈ 𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀 ∈ 𝐵) → (𝑃 Σg (𝑥 ∈ 𝑚 ↦ 𝑀)) ∈ 𝐵) |
44 | | coe1fzgsumd.k |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐾 ∈
ℕ0) |
45 | 44 | 3ad2ant3 1134 |
. . . . . . . . . . . . 13
⊢ ((𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑) → 𝐾 ∈
ℕ0) |
46 | 45 | ad2antrr 723 |
. . . . . . . . . . . 12
⊢ ((((𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑) ∧ ∀𝑥 ∈ 𝑚 𝑀 ∈ 𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀 ∈ 𝐵) → 𝐾 ∈
ℕ0) |
47 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(+g‘𝑅) = (+g‘𝑅) |
48 | 10, 7, 8, 47 | coe1addfv 21446 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ Ring ∧ (𝑃 Σg
(𝑥 ∈ 𝑚 ↦ 𝑀)) ∈ 𝐵 ∧ ⦋𝑎 / 𝑥⦌𝑀 ∈ 𝐵) ∧ 𝐾 ∈ ℕ0) →
((coe1‘((𝑃
Σg (𝑥 ∈ 𝑚 ↦ 𝑀))(+g‘𝑃)⦋𝑎 / 𝑥⦌𝑀))‘𝐾) = (((coe1‘(𝑃 Σg
(𝑥 ∈ 𝑚 ↦ 𝑀)))‘𝐾)(+g‘𝑅)((coe1‘⦋𝑎 / 𝑥⦌𝑀)‘𝐾))) |
49 | 41, 43, 29, 46, 48 | syl31anc 1372 |
. . . . . . . . . . 11
⊢ ((((𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑) ∧ ∀𝑥 ∈ 𝑚 𝑀 ∈ 𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀 ∈ 𝐵) → ((coe1‘((𝑃 Σg
(𝑥 ∈ 𝑚 ↦ 𝑀))(+g‘𝑃)⦋𝑎 / 𝑥⦌𝑀))‘𝐾) = (((coe1‘(𝑃 Σg
(𝑥 ∈ 𝑚 ↦ 𝑀)))‘𝐾)(+g‘𝑅)((coe1‘⦋𝑎 / 𝑥⦌𝑀)‘𝐾))) |
50 | 39, 49 | eqtrd 2778 |
. . . . . . . . . 10
⊢ ((((𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑) ∧ ∀𝑥 ∈ 𝑚 𝑀 ∈ 𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀 ∈ 𝐵) → ((coe1‘(𝑃 Σg
(𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (((coe1‘(𝑃 Σg
(𝑥 ∈ 𝑚 ↦ 𝑀)))‘𝐾)(+g‘𝑅)((coe1‘⦋𝑎 / 𝑥⦌𝑀)‘𝐾))) |
51 | | oveq1 7274 |
. . . . . . . . . 10
⊢
(((coe1‘(𝑃 Σg (𝑥 ∈ 𝑚 ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ 𝑚 ↦ ((coe1‘𝑀)‘𝐾))) → (((coe1‘(𝑃 Σg
(𝑥 ∈ 𝑚 ↦ 𝑀)))‘𝐾)(+g‘𝑅)((coe1‘⦋𝑎 / 𝑥⦌𝑀)‘𝐾)) = ((𝑅 Σg (𝑥 ∈ 𝑚 ↦ ((coe1‘𝑀)‘𝐾)))(+g‘𝑅)((coe1‘⦋𝑎 / 𝑥⦌𝑀)‘𝐾))) |
52 | 50, 51 | sylan9eq 2798 |
. . . . . . . . 9
⊢
(((((𝑚 ∈ Fin
∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑) ∧ ∀𝑥 ∈ 𝑚 𝑀 ∈ 𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀 ∈ 𝐵) ∧ ((coe1‘(𝑃 Σg
(𝑥 ∈ 𝑚 ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ 𝑚 ↦ ((coe1‘𝑀)‘𝐾)))) → ((coe1‘(𝑃 Σg
(𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = ((𝑅 Σg (𝑥 ∈ 𝑚 ↦ ((coe1‘𝑀)‘𝐾)))(+g‘𝑅)((coe1‘⦋𝑎 / 𝑥⦌𝑀)‘𝐾))) |
53 | | nfcv 2907 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑦((coe1‘𝑀)‘𝐾) |
54 | | nfcsb1v 3856 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑥⦋𝑦 / 𝑥⦌((coe1‘𝑀)‘𝐾) |
55 | | csbeq1a 3845 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑦 → ((coe1‘𝑀)‘𝐾) = ⦋𝑦 / 𝑥⦌((coe1‘𝑀)‘𝐾)) |
56 | 53, 54, 55 | cbvmpt 5184 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1‘𝑀)‘𝐾)) = (𝑦 ∈ (𝑚 ∪ {𝑎}) ↦ ⦋𝑦 / 𝑥⦌((coe1‘𝑀)‘𝐾)) |
57 | 56 | oveq2i 7278 |
. . . . . . . . . . . 12
⊢ (𝑅 Σg
(𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1‘𝑀)‘𝐾))) = (𝑅 Σg (𝑦 ∈ (𝑚 ∪ {𝑎}) ↦ ⦋𝑦 / 𝑥⦌((coe1‘𝑀)‘𝐾))) |
58 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(Base‘𝑅) =
(Base‘𝑅) |
59 | | ringcmn 19830 |
. . . . . . . . . . . . . . . 16
⊢ (𝑅 ∈ Ring → 𝑅 ∈ CMnd) |
60 | 9, 59 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑅 ∈ CMnd) |
61 | 60 | 3ad2ant3 1134 |
. . . . . . . . . . . . . 14
⊢ ((𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑) → 𝑅 ∈ CMnd) |
62 | 61 | ad2antrr 723 |
. . . . . . . . . . . . 13
⊢ ((((𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑) ∧ ∀𝑥 ∈ 𝑚 𝑀 ∈ 𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀 ∈ 𝐵) → 𝑅 ∈ CMnd) |
63 | | csbfv12 6809 |
. . . . . . . . . . . . . . 15
⊢
⦋𝑦 /
𝑥⦌((coe1‘𝑀)‘𝐾) = (⦋𝑦 / 𝑥⦌(coe1‘𝑀)‘⦋𝑦 / 𝑥⦌𝐾) |
64 | | csbfv2g 6810 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ V →
⦋𝑦 / 𝑥⦌(coe1‘𝑀) =
(coe1‘⦋𝑦 / 𝑥⦌𝑀)) |
65 | 64 | elv 3435 |
. . . . . . . . . . . . . . . 16
⊢
⦋𝑦 /
𝑥⦌(coe1‘𝑀) =
(coe1‘⦋𝑦 / 𝑥⦌𝑀) |
66 | | csbconstg 3850 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ V →
⦋𝑦 / 𝑥⦌𝐾 = 𝐾) |
67 | 66 | elv 3435 |
. . . . . . . . . . . . . . . 16
⊢
⦋𝑦 /
𝑥⦌𝐾 = 𝐾 |
68 | 65, 67 | fveq12i 6772 |
. . . . . . . . . . . . . . 15
⊢
(⦋𝑦 /
𝑥⦌(coe1‘𝑀)‘⦋𝑦 / 𝑥⦌𝐾) =
((coe1‘⦋𝑦 / 𝑥⦌𝑀)‘𝐾) |
69 | 63, 68 | eqtri 2766 |
. . . . . . . . . . . . . 14
⊢
⦋𝑦 /
𝑥⦌((coe1‘𝑀)‘𝐾) =
((coe1‘⦋𝑦 / 𝑥⦌𝑀)‘𝐾) |
70 | | eqid 2738 |
. . . . . . . . . . . . . . . . 17
⊢
(coe1‘⦋𝑦 / 𝑥⦌𝑀) =
(coe1‘⦋𝑦 / 𝑥⦌𝑀) |
71 | 70, 7, 10, 58 | coe1f 21392 |
. . . . . . . . . . . . . . . 16
⊢
(⦋𝑦 /
𝑥⦌𝑀 ∈ 𝐵 →
(coe1‘⦋𝑦 / 𝑥⦌𝑀):ℕ0⟶(Base‘𝑅)) |
72 | 22, 71 | syl 17 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑚 ∈ Fin
∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑) ∧ ∀𝑥 ∈ 𝑚 𝑀 ∈ 𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀 ∈ 𝐵) ∧ 𝑦 ∈ 𝑚) →
(coe1‘⦋𝑦 / 𝑥⦌𝑀):ℕ0⟶(Base‘𝑅)) |
73 | 45 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑) ∧ ∀𝑥 ∈ 𝑚 𝑀 ∈ 𝐵) → 𝐾 ∈
ℕ0) |
74 | 73 | ad2antrr 723 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑚 ∈ Fin
∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑) ∧ ∀𝑥 ∈ 𝑚 𝑀 ∈ 𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀 ∈ 𝐵) ∧ 𝑦 ∈ 𝑚) → 𝐾 ∈
ℕ0) |
75 | 72, 74 | ffvelrnd 6954 |
. . . . . . . . . . . . . 14
⊢
(((((𝑚 ∈ Fin
∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑) ∧ ∀𝑥 ∈ 𝑚 𝑀 ∈ 𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀 ∈ 𝐵) ∧ 𝑦 ∈ 𝑚) →
((coe1‘⦋𝑦 / 𝑥⦌𝑀)‘𝐾) ∈ (Base‘𝑅)) |
76 | 69, 75 | eqeltrid 2843 |
. . . . . . . . . . . . 13
⊢
(((((𝑚 ∈ Fin
∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑) ∧ ∀𝑥 ∈ 𝑚 𝑀 ∈ 𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀 ∈ 𝐵) ∧ 𝑦 ∈ 𝑚) → ⦋𝑦 / 𝑥⦌((coe1‘𝑀)‘𝐾) ∈ (Base‘𝑅)) |
77 | | eqid 2738 |
. . . . . . . . . . . . . . . 16
⊢
(coe1‘⦋𝑎 / 𝑥⦌𝑀) =
(coe1‘⦋𝑎 / 𝑥⦌𝑀) |
78 | 77, 7, 10, 58 | coe1f 21392 |
. . . . . . . . . . . . . . 15
⊢
(⦋𝑎 /
𝑥⦌𝑀 ∈ 𝐵 →
(coe1‘⦋𝑎 / 𝑥⦌𝑀):ℕ0⟶(Base‘𝑅)) |
79 | 29, 78 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((((𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑) ∧ ∀𝑥 ∈ 𝑚 𝑀 ∈ 𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀 ∈ 𝐵) →
(coe1‘⦋𝑎 / 𝑥⦌𝑀):ℕ0⟶(Base‘𝑅)) |
80 | 79, 46 | ffvelrnd 6954 |
. . . . . . . . . . . . 13
⊢ ((((𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑) ∧ ∀𝑥 ∈ 𝑚 𝑀 ∈ 𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀 ∈ 𝐵) →
((coe1‘⦋𝑎 / 𝑥⦌𝑀)‘𝐾) ∈ (Base‘𝑅)) |
81 | | nfcv 2907 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑥𝑎 |
82 | | nfcv 2907 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑥coe1 |
83 | | nfcsb1v 3856 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑥⦋𝑎 / 𝑥⦌𝑀 |
84 | 82, 83 | nffv 6776 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑥(coe1‘⦋𝑎 / 𝑥⦌𝑀) |
85 | | nfcv 2907 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑥𝐾 |
86 | 84, 85 | nffv 6776 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑥((coe1‘⦋𝑎 / 𝑥⦌𝑀)‘𝐾) |
87 | | csbeq1a 3845 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑎 → 𝑀 = ⦋𝑎 / 𝑥⦌𝑀) |
88 | 87 | fveq2d 6770 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑎 → (coe1‘𝑀) =
(coe1‘⦋𝑎 / 𝑥⦌𝑀)) |
89 | 88 | fveq1d 6768 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑎 → ((coe1‘𝑀)‘𝐾) =
((coe1‘⦋𝑎 / 𝑥⦌𝑀)‘𝐾)) |
90 | 81, 86, 89 | csbhypf 3860 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑎 → ⦋𝑦 / 𝑥⦌((coe1‘𝑀)‘𝐾) =
((coe1‘⦋𝑎 / 𝑥⦌𝑀)‘𝐾)) |
91 | 58, 47, 62, 17, 76, 24, 25, 80, 90 | gsumunsn 19571 |
. . . . . . . . . . . 12
⊢ ((((𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑) ∧ ∀𝑥 ∈ 𝑚 𝑀 ∈ 𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀 ∈ 𝐵) → (𝑅 Σg (𝑦 ∈ (𝑚 ∪ {𝑎}) ↦ ⦋𝑦 / 𝑥⦌((coe1‘𝑀)‘𝐾))) = ((𝑅 Σg (𝑦 ∈ 𝑚 ↦ ⦋𝑦 / 𝑥⦌((coe1‘𝑀)‘𝐾)))(+g‘𝑅)((coe1‘⦋𝑎 / 𝑥⦌𝑀)‘𝐾))) |
92 | 57, 91 | eqtrid 2790 |
. . . . . . . . . . 11
⊢ ((((𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑) ∧ ∀𝑥 ∈ 𝑚 𝑀 ∈ 𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀 ∈ 𝐵) → (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1‘𝑀)‘𝐾))) = ((𝑅 Σg (𝑦 ∈ 𝑚 ↦ ⦋𝑦 / 𝑥⦌((coe1‘𝑀)‘𝐾)))(+g‘𝑅)((coe1‘⦋𝑎 / 𝑥⦌𝑀)‘𝐾))) |
93 | 53, 54, 55 | cbvmpt 5184 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ 𝑚 ↦ ((coe1‘𝑀)‘𝐾)) = (𝑦 ∈ 𝑚 ↦ ⦋𝑦 / 𝑥⦌((coe1‘𝑀)‘𝐾)) |
94 | 93 | eqcomi 2747 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ 𝑚 ↦ ⦋𝑦 / 𝑥⦌((coe1‘𝑀)‘𝐾)) = (𝑥 ∈ 𝑚 ↦ ((coe1‘𝑀)‘𝐾)) |
95 | 94 | oveq2i 7278 |
. . . . . . . . . . . 12
⊢ (𝑅 Σg
(𝑦 ∈ 𝑚 ↦ ⦋𝑦 / 𝑥⦌((coe1‘𝑀)‘𝐾))) = (𝑅 Σg (𝑥 ∈ 𝑚 ↦ ((coe1‘𝑀)‘𝐾))) |
96 | 95 | oveq1i 7277 |
. . . . . . . . . . 11
⊢ ((𝑅 Σg
(𝑦 ∈ 𝑚 ↦ ⦋𝑦 / 𝑥⦌((coe1‘𝑀)‘𝐾)))(+g‘𝑅)((coe1‘⦋𝑎 / 𝑥⦌𝑀)‘𝐾)) = ((𝑅 Σg (𝑥 ∈ 𝑚 ↦ ((coe1‘𝑀)‘𝐾)))(+g‘𝑅)((coe1‘⦋𝑎 / 𝑥⦌𝑀)‘𝐾)) |
97 | 92, 96 | eqtr2di 2795 |
. . . . . . . . . 10
⊢ ((((𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑) ∧ ∀𝑥 ∈ 𝑚 𝑀 ∈ 𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀 ∈ 𝐵) → ((𝑅 Σg (𝑥 ∈ 𝑚 ↦ ((coe1‘𝑀)‘𝐾)))(+g‘𝑅)((coe1‘⦋𝑎 / 𝑥⦌𝑀)‘𝐾)) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1‘𝑀)‘𝐾)))) |
98 | 97 | adantr 481 |
. . . . . . . . 9
⊢
(((((𝑚 ∈ Fin
∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑) ∧ ∀𝑥 ∈ 𝑚 𝑀 ∈ 𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀 ∈ 𝐵) ∧ ((coe1‘(𝑃 Σg
(𝑥 ∈ 𝑚 ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ 𝑚 ↦ ((coe1‘𝑀)‘𝐾)))) → ((𝑅 Σg (𝑥 ∈ 𝑚 ↦ ((coe1‘𝑀)‘𝐾)))(+g‘𝑅)((coe1‘⦋𝑎 / 𝑥⦌𝑀)‘𝐾)) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1‘𝑀)‘𝐾)))) |
99 | 52, 98 | eqtrd 2778 |
. . . . . . . 8
⊢
(((((𝑚 ∈ Fin
∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑) ∧ ∀𝑥 ∈ 𝑚 𝑀 ∈ 𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀 ∈ 𝐵) ∧ ((coe1‘(𝑃 Σg
(𝑥 ∈ 𝑚 ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ 𝑚 ↦ ((coe1‘𝑀)‘𝐾)))) → ((coe1‘(𝑃 Σg
(𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1‘𝑀)‘𝐾)))) |
100 | 99 | exp31 420 |
. . . . . . 7
⊢ (((𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑) ∧ ∀𝑥 ∈ 𝑚 𝑀 ∈ 𝐵) → (∀𝑥 ∈ {𝑎}𝑀 ∈ 𝐵 → (((coe1‘(𝑃 Σg
(𝑥 ∈ 𝑚 ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ 𝑚 ↦ ((coe1‘𝑀)‘𝐾))) → ((coe1‘(𝑃 Σg
(𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1‘𝑀)‘𝐾)))))) |
101 | 100 | com23 86 |
. . . . . 6
⊢ (((𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑) ∧ ∀𝑥 ∈ 𝑚 𝑀 ∈ 𝐵) → (((coe1‘(𝑃 Σg
(𝑥 ∈ 𝑚 ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ 𝑚 ↦ ((coe1‘𝑀)‘𝐾))) → (∀𝑥 ∈ {𝑎}𝑀 ∈ 𝐵 → ((coe1‘(𝑃 Σg
(𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1‘𝑀)‘𝐾)))))) |
102 | 101 | ex 413 |
. . . . 5
⊢ ((𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑) → (∀𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 → (((coe1‘(𝑃 Σg
(𝑥 ∈ 𝑚 ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ 𝑚 ↦ ((coe1‘𝑀)‘𝐾))) → (∀𝑥 ∈ {𝑎}𝑀 ∈ 𝐵 → ((coe1‘(𝑃 Σg
(𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1‘𝑀)‘𝐾))))))) |
103 | 102 | a2d 29 |
. . . 4
⊢ ((𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑) → ((∀𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 → ((coe1‘(𝑃 Σg
(𝑥 ∈ 𝑚 ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ 𝑚 ↦ ((coe1‘𝑀)‘𝐾)))) → (∀𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 → (∀𝑥 ∈ {𝑎}𝑀 ∈ 𝐵 → ((coe1‘(𝑃 Σg
(𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1‘𝑀)‘𝐾))))))) |
104 | 103 | imp4b 422 |
. . 3
⊢ (((𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑) ∧ (∀𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 → ((coe1‘(𝑃 Σg
(𝑥 ∈ 𝑚 ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ 𝑚 ↦ ((coe1‘𝑀)‘𝐾))))) → ((∀𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ∧ ∀𝑥 ∈ {𝑎}𝑀 ∈ 𝐵) → ((coe1‘(𝑃 Σg
(𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1‘𝑀)‘𝐾))))) |
105 | 1, 104 | syl5bi 241 |
. 2
⊢ (((𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑) ∧ (∀𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 → ((coe1‘(𝑃 Σg
(𝑥 ∈ 𝑚 ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ 𝑚 ↦ ((coe1‘𝑀)‘𝐾))))) → (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀 ∈ 𝐵 → ((coe1‘(𝑃 Σg
(𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1‘𝑀)‘𝐾))))) |
106 | 105 | ex 413 |
1
⊢ ((𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑) → ((∀𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 → ((coe1‘(𝑃 Σg
(𝑥 ∈ 𝑚 ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ 𝑚 ↦ ((coe1‘𝑀)‘𝐾)))) → (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀 ∈ 𝐵 → ((coe1‘(𝑃 Σg
(𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1‘𝑀)‘𝐾)))))) |