MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1fzgsumdlem Structured version   Visualization version   GIF version

Theorem coe1fzgsumdlem 22308
Description: Lemma for coe1fzgsumd 22309 (induction step). (Contributed by AV, 8-Oct-2019.)
Hypotheses
Ref Expression
coe1fzgsumd.p 𝑃 = (Poly1𝑅)
coe1fzgsumd.b 𝐵 = (Base‘𝑃)
coe1fzgsumd.r (𝜑𝑅 ∈ Ring)
coe1fzgsumd.k (𝜑𝐾 ∈ ℕ0)
Assertion
Ref Expression
coe1fzgsumdlem ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → ((∀𝑥𝑚 𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))) → (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾))))))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐾   𝑥,𝑚   𝑥,𝑎
Allowed substitution hints:   𝜑(𝑥,𝑚,𝑎)   𝐵(𝑚,𝑎)   𝑃(𝑥,𝑚,𝑎)   𝑅(𝑥,𝑚,𝑎)   𝐾(𝑚,𝑎)   𝑀(𝑥,𝑚,𝑎)

Proof of Theorem coe1fzgsumdlem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ralunb 4196 . . 3 (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝐵 ↔ (∀𝑥𝑚 𝑀𝐵 ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵))
2 nfcv 2904 . . . . . . . . . . . . . . . . 17 𝑦𝑀
3 nfcsb1v 3922 . . . . . . . . . . . . . . . . 17 𝑥𝑦 / 𝑥𝑀
4 csbeq1a 3912 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦𝑀 = 𝑦 / 𝑥𝑀)
52, 3, 4cbvmpt 5252 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀) = (𝑦 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑦 / 𝑥𝑀)
65oveq2i 7443 . . . . . . . . . . . . . . 15 (𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)) = (𝑃 Σg (𝑦 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑦 / 𝑥𝑀))
7 coe1fzgsumd.b . . . . . . . . . . . . . . . 16 𝐵 = (Base‘𝑃)
8 eqid 2736 . . . . . . . . . . . . . . . 16 (+g𝑃) = (+g𝑃)
9 coe1fzgsumd.r . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑅 ∈ Ring)
10 coe1fzgsumd.p . . . . . . . . . . . . . . . . . . . . 21 𝑃 = (Poly1𝑅)
1110ply1ring 22250 . . . . . . . . . . . . . . . . . . . 20 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
129, 11syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑃 ∈ Ring)
13 ringcmn 20280 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ Ring → 𝑃 ∈ CMnd)
1412, 13syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝑃 ∈ CMnd)
15143ad2ant3 1135 . . . . . . . . . . . . . . . . 17 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → 𝑃 ∈ CMnd)
1615ad2antrr 726 . . . . . . . . . . . . . . . 16 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → 𝑃 ∈ CMnd)
17 simpll1 1212 . . . . . . . . . . . . . . . 16 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → 𝑚 ∈ Fin)
18 rspcsbela 4437 . . . . . . . . . . . . . . . . . . . 20 ((𝑦𝑚 ∧ ∀𝑥𝑚 𝑀𝐵) → 𝑦 / 𝑥𝑀𝐵)
1918expcom 413 . . . . . . . . . . . . . . . . . . 19 (∀𝑥𝑚 𝑀𝐵 → (𝑦𝑚𝑦 / 𝑥𝑀𝐵))
2019adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) → (𝑦𝑚𝑦 / 𝑥𝑀𝐵))
2120adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → (𝑦𝑚𝑦 / 𝑥𝑀𝐵))
2221imp 406 . . . . . . . . . . . . . . . 16 (((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) ∧ 𝑦𝑚) → 𝑦 / 𝑥𝑀𝐵)
23 vex 3483 . . . . . . . . . . . . . . . . 17 𝑎 ∈ V
2423a1i 11 . . . . . . . . . . . . . . . 16 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → 𝑎 ∈ V)
25 simpll2 1213 . . . . . . . . . . . . . . . 16 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → ¬ 𝑎𝑚)
26 vsnid 4662 . . . . . . . . . . . . . . . . . 18 𝑎 ∈ {𝑎}
27 rspcsbela 4437 . . . . . . . . . . . . . . . . . 18 ((𝑎 ∈ {𝑎} ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → 𝑎 / 𝑥𝑀𝐵)
2826, 27mpan 690 . . . . . . . . . . . . . . . . 17 (∀𝑥 ∈ {𝑎}𝑀𝐵𝑎 / 𝑥𝑀𝐵)
2928adantl 481 . . . . . . . . . . . . . . . 16 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → 𝑎 / 𝑥𝑀𝐵)
30 csbeq1 3901 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑎𝑦 / 𝑥𝑀 = 𝑎 / 𝑥𝑀)
317, 8, 16, 17, 22, 24, 25, 29, 30gsumunsn 19979 . . . . . . . . . . . . . . 15 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → (𝑃 Σg (𝑦 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑦 / 𝑥𝑀)) = ((𝑃 Σg (𝑦𝑚𝑦 / 𝑥𝑀))(+g𝑃)𝑎 / 𝑥𝑀))
326, 31eqtrid 2788 . . . . . . . . . . . . . 14 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → (𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)) = ((𝑃 Σg (𝑦𝑚𝑦 / 𝑥𝑀))(+g𝑃)𝑎 / 𝑥𝑀))
332, 3, 4cbvmpt 5252 . . . . . . . . . . . . . . . . 17 (𝑥𝑚𝑀) = (𝑦𝑚𝑦 / 𝑥𝑀)
3433eqcomi 2745 . . . . . . . . . . . . . . . 16 (𝑦𝑚𝑦 / 𝑥𝑀) = (𝑥𝑚𝑀)
3534oveq2i 7443 . . . . . . . . . . . . . . 15 (𝑃 Σg (𝑦𝑚𝑦 / 𝑥𝑀)) = (𝑃 Σg (𝑥𝑚𝑀))
3635oveq1i 7442 . . . . . . . . . . . . . 14 ((𝑃 Σg (𝑦𝑚𝑦 / 𝑥𝑀))(+g𝑃)𝑎 / 𝑥𝑀) = ((𝑃 Σg (𝑥𝑚𝑀))(+g𝑃)𝑎 / 𝑥𝑀)
3732, 36eqtrdi 2792 . . . . . . . . . . . . 13 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → (𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)) = ((𝑃 Σg (𝑥𝑚𝑀))(+g𝑃)𝑎 / 𝑥𝑀))
3837fveq2d 6909 . . . . . . . . . . . 12 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → (coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀))) = (coe1‘((𝑃 Σg (𝑥𝑚𝑀))(+g𝑃)𝑎 / 𝑥𝑀)))
3938fveq1d 6907 . . . . . . . . . . 11 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = ((coe1‘((𝑃 Σg (𝑥𝑚𝑀))(+g𝑃)𝑎 / 𝑥𝑀))‘𝐾))
4093ad2ant3 1135 . . . . . . . . . . . . 13 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → 𝑅 ∈ Ring)
4140ad2antrr 726 . . . . . . . . . . . 12 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → 𝑅 ∈ Ring)
42 simplr 768 . . . . . . . . . . . . 13 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → ∀𝑥𝑚 𝑀𝐵)
437, 16, 17, 42gsummptcl 19986 . . . . . . . . . . . 12 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → (𝑃 Σg (𝑥𝑚𝑀)) ∈ 𝐵)
44 coe1fzgsumd.k . . . . . . . . . . . . . 14 (𝜑𝐾 ∈ ℕ0)
45443ad2ant3 1135 . . . . . . . . . . . . 13 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → 𝐾 ∈ ℕ0)
4645ad2antrr 726 . . . . . . . . . . . 12 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → 𝐾 ∈ ℕ0)
47 eqid 2736 . . . . . . . . . . . . 13 (+g𝑅) = (+g𝑅)
4810, 7, 8, 47coe1addfv 22269 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ (𝑃 Σg (𝑥𝑚𝑀)) ∈ 𝐵𝑎 / 𝑥𝑀𝐵) ∧ 𝐾 ∈ ℕ0) → ((coe1‘((𝑃 Σg (𝑥𝑚𝑀))(+g𝑃)𝑎 / 𝑥𝑀))‘𝐾) = (((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾)(+g𝑅)((coe1𝑎 / 𝑥𝑀)‘𝐾)))
4941, 43, 29, 46, 48syl31anc 1374 . . . . . . . . . . 11 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → ((coe1‘((𝑃 Σg (𝑥𝑚𝑀))(+g𝑃)𝑎 / 𝑥𝑀))‘𝐾) = (((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾)(+g𝑅)((coe1𝑎 / 𝑥𝑀)‘𝐾)))
5039, 49eqtrd 2776 . . . . . . . . . 10 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾)(+g𝑅)((coe1𝑎 / 𝑥𝑀)‘𝐾)))
51 oveq1 7439 . . . . . . . . . 10 (((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾))) → (((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾)(+g𝑅)((coe1𝑎 / 𝑥𝑀)‘𝐾)) = ((𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))(+g𝑅)((coe1𝑎 / 𝑥𝑀)‘𝐾)))
5250, 51sylan9eq 2796 . . . . . . . . 9 (((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) ∧ ((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))) → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = ((𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))(+g𝑅)((coe1𝑎 / 𝑥𝑀)‘𝐾)))
53 nfcv 2904 . . . . . . . . . . . . . 14 𝑦((coe1𝑀)‘𝐾)
54 nfcsb1v 3922 . . . . . . . . . . . . . 14 𝑥𝑦 / 𝑥((coe1𝑀)‘𝐾)
55 csbeq1a 3912 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → ((coe1𝑀)‘𝐾) = 𝑦 / 𝑥((coe1𝑀)‘𝐾))
5653, 54, 55cbvmpt 5252 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾)) = (𝑦 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑦 / 𝑥((coe1𝑀)‘𝐾))
5756oveq2i 7443 . . . . . . . . . . . 12 (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾))) = (𝑅 Σg (𝑦 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑦 / 𝑥((coe1𝑀)‘𝐾)))
58 eqid 2736 . . . . . . . . . . . . 13 (Base‘𝑅) = (Base‘𝑅)
59 ringcmn 20280 . . . . . . . . . . . . . . . 16 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
609, 59syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑅 ∈ CMnd)
61603ad2ant3 1135 . . . . . . . . . . . . . 14 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → 𝑅 ∈ CMnd)
6261ad2antrr 726 . . . . . . . . . . . . 13 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → 𝑅 ∈ CMnd)
63 csbfv12 6953 . . . . . . . . . . . . . . 15 𝑦 / 𝑥((coe1𝑀)‘𝐾) = (𝑦 / 𝑥(coe1𝑀)‘𝑦 / 𝑥𝐾)
64 csbfv2g 6954 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ V → 𝑦 / 𝑥(coe1𝑀) = (coe1𝑦 / 𝑥𝑀))
6564elv 3484 . . . . . . . . . . . . . . . 16 𝑦 / 𝑥(coe1𝑀) = (coe1𝑦 / 𝑥𝑀)
66 csbconstg 3917 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ V → 𝑦 / 𝑥𝐾 = 𝐾)
6766elv 3484 . . . . . . . . . . . . . . . 16 𝑦 / 𝑥𝐾 = 𝐾
6865, 67fveq12i 6911 . . . . . . . . . . . . . . 15 (𝑦 / 𝑥(coe1𝑀)‘𝑦 / 𝑥𝐾) = ((coe1𝑦 / 𝑥𝑀)‘𝐾)
6963, 68eqtri 2764 . . . . . . . . . . . . . 14 𝑦 / 𝑥((coe1𝑀)‘𝐾) = ((coe1𝑦 / 𝑥𝑀)‘𝐾)
70 eqid 2736 . . . . . . . . . . . . . . . . 17 (coe1𝑦 / 𝑥𝑀) = (coe1𝑦 / 𝑥𝑀)
7170, 7, 10, 58coe1f 22214 . . . . . . . . . . . . . . . 16 (𝑦 / 𝑥𝑀𝐵 → (coe1𝑦 / 𝑥𝑀):ℕ0⟶(Base‘𝑅))
7222, 71syl 17 . . . . . . . . . . . . . . 15 (((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) ∧ 𝑦𝑚) → (coe1𝑦 / 𝑥𝑀):ℕ0⟶(Base‘𝑅))
7345adantr 480 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) → 𝐾 ∈ ℕ0)
7473ad2antrr 726 . . . . . . . . . . . . . . 15 (((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) ∧ 𝑦𝑚) → 𝐾 ∈ ℕ0)
7572, 74ffvelcdmd 7104 . . . . . . . . . . . . . 14 (((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) ∧ 𝑦𝑚) → ((coe1𝑦 / 𝑥𝑀)‘𝐾) ∈ (Base‘𝑅))
7669, 75eqeltrid 2844 . . . . . . . . . . . . 13 (((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) ∧ 𝑦𝑚) → 𝑦 / 𝑥((coe1𝑀)‘𝐾) ∈ (Base‘𝑅))
77 eqid 2736 . . . . . . . . . . . . . . . 16 (coe1𝑎 / 𝑥𝑀) = (coe1𝑎 / 𝑥𝑀)
7877, 7, 10, 58coe1f 22214 . . . . . . . . . . . . . . 15 (𝑎 / 𝑥𝑀𝐵 → (coe1𝑎 / 𝑥𝑀):ℕ0⟶(Base‘𝑅))
7929, 78syl 17 . . . . . . . . . . . . . 14 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → (coe1𝑎 / 𝑥𝑀):ℕ0⟶(Base‘𝑅))
8079, 46ffvelcdmd 7104 . . . . . . . . . . . . 13 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → ((coe1𝑎 / 𝑥𝑀)‘𝐾) ∈ (Base‘𝑅))
81 nfcv 2904 . . . . . . . . . . . . . 14 𝑥𝑎
82 nfcv 2904 . . . . . . . . . . . . . . . 16 𝑥coe1
83 nfcsb1v 3922 . . . . . . . . . . . . . . . 16 𝑥𝑎 / 𝑥𝑀
8482, 83nffv 6915 . . . . . . . . . . . . . . 15 𝑥(coe1𝑎 / 𝑥𝑀)
85 nfcv 2904 . . . . . . . . . . . . . . 15 𝑥𝐾
8684, 85nffv 6915 . . . . . . . . . . . . . 14 𝑥((coe1𝑎 / 𝑥𝑀)‘𝐾)
87 csbeq1a 3912 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑎𝑀 = 𝑎 / 𝑥𝑀)
8887fveq2d 6909 . . . . . . . . . . . . . . 15 (𝑥 = 𝑎 → (coe1𝑀) = (coe1𝑎 / 𝑥𝑀))
8988fveq1d 6907 . . . . . . . . . . . . . 14 (𝑥 = 𝑎 → ((coe1𝑀)‘𝐾) = ((coe1𝑎 / 𝑥𝑀)‘𝐾))
9081, 86, 89csbhypf 3926 . . . . . . . . . . . . 13 (𝑦 = 𝑎𝑦 / 𝑥((coe1𝑀)‘𝐾) = ((coe1𝑎 / 𝑥𝑀)‘𝐾))
9158, 47, 62, 17, 76, 24, 25, 80, 90gsumunsn 19979 . . . . . . . . . . . 12 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → (𝑅 Σg (𝑦 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑦 / 𝑥((coe1𝑀)‘𝐾))) = ((𝑅 Σg (𝑦𝑚𝑦 / 𝑥((coe1𝑀)‘𝐾)))(+g𝑅)((coe1𝑎 / 𝑥𝑀)‘𝐾)))
9257, 91eqtrid 2788 . . . . . . . . . . 11 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾))) = ((𝑅 Σg (𝑦𝑚𝑦 / 𝑥((coe1𝑀)‘𝐾)))(+g𝑅)((coe1𝑎 / 𝑥𝑀)‘𝐾)))
9353, 54, 55cbvmpt 5252 . . . . . . . . . . . . . 14 (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)) = (𝑦𝑚𝑦 / 𝑥((coe1𝑀)‘𝐾))
9493eqcomi 2745 . . . . . . . . . . . . 13 (𝑦𝑚𝑦 / 𝑥((coe1𝑀)‘𝐾)) = (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾))
9594oveq2i 7443 . . . . . . . . . . . 12 (𝑅 Σg (𝑦𝑚𝑦 / 𝑥((coe1𝑀)‘𝐾))) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))
9695oveq1i 7442 . . . . . . . . . . 11 ((𝑅 Σg (𝑦𝑚𝑦 / 𝑥((coe1𝑀)‘𝐾)))(+g𝑅)((coe1𝑎 / 𝑥𝑀)‘𝐾)) = ((𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))(+g𝑅)((coe1𝑎 / 𝑥𝑀)‘𝐾))
9792, 96eqtr2di 2793 . . . . . . . . . 10 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → ((𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))(+g𝑅)((coe1𝑎 / 𝑥𝑀)‘𝐾)) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾))))
9897adantr 480 . . . . . . . . 9 (((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) ∧ ((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))) → ((𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))(+g𝑅)((coe1𝑎 / 𝑥𝑀)‘𝐾)) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾))))
9952, 98eqtrd 2776 . . . . . . . 8 (((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) ∧ ((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))) → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾))))
10099exp31 419 . . . . . . 7 (((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) → (∀𝑥 ∈ {𝑎}𝑀𝐵 → (((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾))) → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾))))))
101100com23 86 . . . . . 6 (((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝐵) → (((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾))) → (∀𝑥 ∈ {𝑎}𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾))))))
102101ex 412 . . . . 5 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → (∀𝑥𝑚 𝑀𝐵 → (((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾))) → (∀𝑥 ∈ {𝑎}𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾)))))))
103102a2d 29 . . . 4 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → ((∀𝑥𝑚 𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))) → (∀𝑥𝑚 𝑀𝐵 → (∀𝑥 ∈ {𝑎}𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾)))))))
104103imp4b 421 . . 3 (((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ (∀𝑥𝑚 𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾))))) → ((∀𝑥𝑚 𝑀𝐵 ∧ ∀𝑥 ∈ {𝑎}𝑀𝐵) → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾)))))
1051, 104biimtrid 242 . 2 (((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ (∀𝑥𝑚 𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾))))) → (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾)))))
106105ex 412 1 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → ((∀𝑥𝑚 𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝐾) = (𝑅 Σg (𝑥𝑚 ↦ ((coe1𝑀)‘𝐾)))) → (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝐵 → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1𝑀)‘𝐾))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  wral 3060  Vcvv 3479  csb 3898  cun 3948  {csn 4625  cmpt 5224  wf 6556  cfv 6560  (class class class)co 7432  Fincfn 8986  0cn0 12528  Basecbs 17248  +gcplusg 17298   Σg cgsu 17486  CMndccmn 19799  Ringcrg 20231  Poly1cpl1 22179  coe1cco1 22180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-ofr 7699  df-om 7889  df-1st 8015  df-2nd 8016  df-supp 8187  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-er 8746  df-map 8869  df-pm 8870  df-ixp 8939  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-fsupp 9403  df-sup 9483  df-oi 9551  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-uz 12880  df-fz 13549  df-fzo 13696  df-seq 14044  df-hash 14371  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-hom 17322  df-cco 17323  df-0g 17487  df-gsum 17488  df-prds 17493  df-pws 17495  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-mhm 18797  df-submnd 18798  df-grp 18955  df-minusg 18956  df-mulg 19087  df-subg 19142  df-ghm 19232  df-cntz 19336  df-cmn 19801  df-abl 19802  df-mgp 20139  df-rng 20151  df-ur 20180  df-ring 20233  df-subrng 20547  df-subrg 20571  df-psr 21930  df-mpl 21932  df-opsr 21934  df-psr1 22182  df-ply1 22184  df-coe1 22185
This theorem is referenced by:  coe1fzgsumd  22309
  Copyright terms: Public domain W3C validator