Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iundisj2f Structured version   Visualization version   GIF version

Theorem iundisj2f 30516
Description: A disjoint union is disjoint. Cf. iundisj2 24314. (Contributed by Thierry Arnoux, 30-Dec-2016.)
Hypotheses
Ref Expression
iundisjf.1 𝑘𝐴
iundisjf.2 𝑛𝐵
iundisjf.3 (𝑛 = 𝑘𝐴 = 𝐵)
Assertion
Ref Expression
iundisj2f Disj 𝑛 ∈ ℕ (𝐴 𝑘 ∈ (1..^𝑛)𝐵)
Distinct variable group:   𝑘,𝑛
Allowed substitution hints:   𝐴(𝑘,𝑛)   𝐵(𝑘,𝑛)

Proof of Theorem iundisj2f
Dummy variables 𝑎 𝑏 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tru 1546 . . . 4
2 eqeq12 2753 . . . . . 6 ((𝑎 = 𝑥𝑏 = 𝑦) → (𝑎 = 𝑏𝑥 = 𝑦))
3 csbeq1 3803 . . . . . . . 8 (𝑎 = 𝑥𝑎 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) = 𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵))
4 csbeq1 3803 . . . . . . . 8 (𝑏 = 𝑦𝑏 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) = 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵))
53, 4ineqan12d 4115 . . . . . . 7 ((𝑎 = 𝑥𝑏 = 𝑦) → (𝑎 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑏 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)))
65eqeq1d 2741 . . . . . 6 ((𝑎 = 𝑥𝑏 = 𝑦) → ((𝑎 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑏 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅ ↔ (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅))
72, 6orbi12d 918 . . . . 5 ((𝑎 = 𝑥𝑏 = 𝑦) → ((𝑎 = 𝑏 ∨ (𝑎 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑏 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅) ↔ (𝑥 = 𝑦 ∨ (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅)))
8 eqeq12 2753 . . . . . . 7 ((𝑎 = 𝑦𝑏 = 𝑥) → (𝑎 = 𝑏𝑦 = 𝑥))
9 equcom 2030 . . . . . . 7 (𝑦 = 𝑥𝑥 = 𝑦)
108, 9bitrdi 290 . . . . . 6 ((𝑎 = 𝑦𝑏 = 𝑥) → (𝑎 = 𝑏𝑥 = 𝑦))
11 csbeq1 3803 . . . . . . . . 9 (𝑎 = 𝑦𝑎 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) = 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵))
12 csbeq1 3803 . . . . . . . . 9 (𝑏 = 𝑥𝑏 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) = 𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵))
1311, 12ineqan12d 4115 . . . . . . . 8 ((𝑎 = 𝑦𝑏 = 𝑥) → (𝑎 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑏 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = (𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)))
14 incom 4101 . . . . . . . 8 (𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵))
1513, 14eqtrdi 2790 . . . . . . 7 ((𝑎 = 𝑦𝑏 = 𝑥) → (𝑎 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑏 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)))
1615eqeq1d 2741 . . . . . 6 ((𝑎 = 𝑦𝑏 = 𝑥) → ((𝑎 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑏 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅ ↔ (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅))
1710, 16orbi12d 918 . . . . 5 ((𝑎 = 𝑦𝑏 = 𝑥) → ((𝑎 = 𝑏 ∨ (𝑎 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑏 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅) ↔ (𝑥 = 𝑦 ∨ (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅)))
18 nnssre 11733 . . . . . 6 ℕ ⊆ ℝ
1918a1i 11 . . . . 5 (⊤ → ℕ ⊆ ℝ)
20 biidd 265 . . . . 5 ((⊤ ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) → ((𝑥 = 𝑦 ∨ (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅) ↔ (𝑥 = 𝑦 ∨ (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅)))
21 nesym 2991 . . . . . . . 8 (𝑦𝑥 ↔ ¬ 𝑥 = 𝑦)
22 nnre 11736 . . . . . . . . . 10 (𝑥 ∈ ℕ → 𝑥 ∈ ℝ)
23 nnre 11736 . . . . . . . . . 10 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ)
24 id 22 . . . . . . . . . 10 (𝑥𝑦𝑥𝑦)
25 leltne 10821 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥𝑦) → (𝑥 < 𝑦𝑦𝑥))
2622, 23, 24, 25syl3an 1161 . . . . . . . . 9 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥𝑦) → (𝑥 < 𝑦𝑦𝑥))
27 vex 3404 . . . . . . . . . . . . . . 15 𝑥 ∈ V
28 nfcsb1v 3824 . . . . . . . . . . . . . . . 16 𝑛𝑥 / 𝑛𝐴
29 nfcv 2900 . . . . . . . . . . . . . . . . 17 𝑛(1..^𝑥)
30 iundisjf.2 . . . . . . . . . . . . . . . . 17 𝑛𝐵
3129, 30nfiun 4921 . . . . . . . . . . . . . . . 16 𝑛 𝑘 ∈ (1..^𝑥)𝐵
3228, 31nfdif 4026 . . . . . . . . . . . . . . 15 𝑛(𝑥 / 𝑛𝐴 𝑘 ∈ (1..^𝑥)𝐵)
33 csbeq1a 3814 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑥𝐴 = 𝑥 / 𝑛𝐴)
34 oveq2 7191 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑥 → (1..^𝑛) = (1..^𝑥))
3534iuneq1d 4918 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑥 𝑘 ∈ (1..^𝑛)𝐵 = 𝑘 ∈ (1..^𝑥)𝐵)
3633, 35difeq12d 4024 . . . . . . . . . . . . . . 15 (𝑛 = 𝑥 → (𝐴 𝑘 ∈ (1..^𝑛)𝐵) = (𝑥 / 𝑛𝐴 𝑘 ∈ (1..^𝑥)𝐵))
3727, 32, 36csbief 3834 . . . . . . . . . . . . . 14 𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) = (𝑥 / 𝑛𝐴 𝑘 ∈ (1..^𝑥)𝐵)
38 vex 3404 . . . . . . . . . . . . . . 15 𝑦 ∈ V
39 nfcsb1v 3824 . . . . . . . . . . . . . . . 16 𝑛𝑦 / 𝑛𝐴
40 nfcv 2900 . . . . . . . . . . . . . . . . 17 𝑛(1..^𝑦)
4140, 30nfiun 4921 . . . . . . . . . . . . . . . 16 𝑛 𝑘 ∈ (1..^𝑦)𝐵
4239, 41nfdif 4026 . . . . . . . . . . . . . . 15 𝑛(𝑦 / 𝑛𝐴 𝑘 ∈ (1..^𝑦)𝐵)
43 csbeq1a 3814 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑦𝐴 = 𝑦 / 𝑛𝐴)
44 oveq2 7191 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑦 → (1..^𝑛) = (1..^𝑦))
4544iuneq1d 4918 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑦 𝑘 ∈ (1..^𝑛)𝐵 = 𝑘 ∈ (1..^𝑦)𝐵)
4643, 45difeq12d 4024 . . . . . . . . . . . . . . 15 (𝑛 = 𝑦 → (𝐴 𝑘 ∈ (1..^𝑛)𝐵) = (𝑦 / 𝑛𝐴 𝑘 ∈ (1..^𝑦)𝐵))
4738, 42, 46csbief 3834 . . . . . . . . . . . . . 14 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) = (𝑦 / 𝑛𝐴 𝑘 ∈ (1..^𝑦)𝐵)
4837, 47ineq12i 4111 . . . . . . . . . . . . 13 (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ((𝑥 / 𝑛𝐴 𝑘 ∈ (1..^𝑥)𝐵) ∩ (𝑦 / 𝑛𝐴 𝑘 ∈ (1..^𝑦)𝐵))
49 simp1 1137 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦) → 𝑥 ∈ ℕ)
50 nnuz 12376 . . . . . . . . . . . . . . . . . 18 ℕ = (ℤ‘1)
5149, 50eleqtrdi 2844 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦) → 𝑥 ∈ (ℤ‘1))
52 simp2 1138 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦) → 𝑦 ∈ ℕ)
5352nnzd 12180 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦) → 𝑦 ∈ ℤ)
54 simp3 1139 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦) → 𝑥 < 𝑦)
55 elfzo2 13145 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (1..^𝑦) ↔ (𝑥 ∈ (ℤ‘1) ∧ 𝑦 ∈ ℤ ∧ 𝑥 < 𝑦))
5651, 53, 54, 55syl3anbrc 1344 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦) → 𝑥 ∈ (1..^𝑦))
57 nfcv 2900 . . . . . . . . . . . . . . . . 17 𝑘(1..^𝑦)
58 nfcv 2900 . . . . . . . . . . . . . . . . 17 𝑘𝑥
59 iundisjf.1 . . . . . . . . . . . . . . . . . 18 𝑘𝐴
6058, 59nfcsbw 3826 . . . . . . . . . . . . . . . . 17 𝑘𝑥 / 𝑛𝐴
61 nfcv 2900 . . . . . . . . . . . . . . . . . . . 20 𝑛𝑘
62 iundisjf.3 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑘𝐴 = 𝐵)
6361, 30, 62csbhypf 3828 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑘𝑥 / 𝑛𝐴 = 𝐵)
6463equcoms 2032 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑥𝑥 / 𝑛𝐴 = 𝐵)
6564eqcomd 2745 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑥𝐵 = 𝑥 / 𝑛𝐴)
6657, 58, 60, 65ssiun2sf 30486 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (1..^𝑦) → 𝑥 / 𝑛𝐴 𝑘 ∈ (1..^𝑦)𝐵)
6756, 66syl 17 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦) → 𝑥 / 𝑛𝐴 𝑘 ∈ (1..^𝑦)𝐵)
6867ssdifssd 4043 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦) → (𝑥 / 𝑛𝐴 𝑘 ∈ (1..^𝑥)𝐵) ⊆ 𝑘 ∈ (1..^𝑦)𝐵)
6968ssrind 4136 . . . . . . . . . . . . 13 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦) → ((𝑥 / 𝑛𝐴 𝑘 ∈ (1..^𝑥)𝐵) ∩ (𝑦 / 𝑛𝐴 𝑘 ∈ (1..^𝑦)𝐵)) ⊆ ( 𝑘 ∈ (1..^𝑦)𝐵 ∩ (𝑦 / 𝑛𝐴 𝑘 ∈ (1..^𝑦)𝐵)))
7048, 69eqsstrid 3935 . . . . . . . . . . . 12 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦) → (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) ⊆ ( 𝑘 ∈ (1..^𝑦)𝐵 ∩ (𝑦 / 𝑛𝐴 𝑘 ∈ (1..^𝑦)𝐵)))
71 disjdif 4371 . . . . . . . . . . . 12 ( 𝑘 ∈ (1..^𝑦)𝐵 ∩ (𝑦 / 𝑛𝐴 𝑘 ∈ (1..^𝑦)𝐵)) = ∅
72 sseq0 4298 . . . . . . . . . . . 12 (((𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) ⊆ ( 𝑘 ∈ (1..^𝑦)𝐵 ∩ (𝑦 / 𝑛𝐴 𝑘 ∈ (1..^𝑦)𝐵)) ∧ ( 𝑘 ∈ (1..^𝑦)𝐵 ∩ (𝑦 / 𝑛𝐴 𝑘 ∈ (1..^𝑦)𝐵)) = ∅) → (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅)
7370, 71, 72sylancl 589 . . . . . . . . . . 11 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦) → (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅)
74733expia 1122 . . . . . . . . . 10 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑥 < 𝑦 → (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅))
75743adant3 1133 . . . . . . . . 9 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥𝑦) → (𝑥 < 𝑦 → (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅))
7626, 75sylbird 263 . . . . . . . 8 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥𝑦) → (𝑦𝑥 → (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅))
7721, 76syl5bir 246 . . . . . . 7 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥𝑦) → (¬ 𝑥 = 𝑦 → (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅))
7877orrd 862 . . . . . 6 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥𝑦) → (𝑥 = 𝑦 ∨ (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅))
7978adantl 485 . . . . 5 ((⊤ ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥𝑦)) → (𝑥 = 𝑦 ∨ (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅))
807, 17, 19, 20, 79wlogle 11264 . . . 4 ((⊤ ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) → (𝑥 = 𝑦 ∨ (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅))
811, 80mpan 690 . . 3 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑥 = 𝑦 ∨ (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅))
8281rgen2 3116 . 2 𝑥 ∈ ℕ ∀𝑦 ∈ ℕ (𝑥 = 𝑦 ∨ (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅)
83 disjors 5021 . 2 (Disj 𝑛 ∈ ℕ (𝐴 𝑘 ∈ (1..^𝑛)𝐵) ↔ ∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ (𝑥 = 𝑦 ∨ (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅))
8482, 83mpbir 234 1 Disj 𝑛 ∈ ℕ (𝐴 𝑘 ∈ (1..^𝑛)𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 846  w3a 1088   = wceq 1542  wtru 1543  wcel 2114  wnfc 2880  wne 2935  wral 3054  csb 3800  cdif 3850  cin 3852  wss 3853  c0 4221   ciun 4891  Disj wdisj 5005   class class class wbr 5040  cfv 6350  (class class class)co 7183  cr 10627  1c1 10629   < clt 10766  cle 10767  cn 11729  cz 12075  cuz 12337  ..^cfzo 13137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-sep 5177  ax-nul 5184  ax-pow 5242  ax-pr 5306  ax-un 7492  ax-cnex 10684  ax-resscn 10685  ax-1cn 10686  ax-icn 10687  ax-addcl 10688  ax-addrcl 10689  ax-mulcl 10690  ax-mulrcl 10691  ax-mulcom 10692  ax-addass 10693  ax-mulass 10694  ax-distr 10695  ax-i2m1 10696  ax-1ne0 10697  ax-1rid 10698  ax-rnegex 10699  ax-rrecex 10700  ax-cnre 10701  ax-pre-lttri 10702  ax-pre-lttrn 10703  ax-pre-ltadd 10704  ax-pre-mulgt0 10705
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3402  df-sbc 3686  df-csb 3801  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4222  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-tp 4531  df-op 4533  df-uni 4807  df-iun 4893  df-disj 5006  df-br 5041  df-opab 5103  df-mpt 5121  df-tr 5147  df-id 5439  df-eprel 5444  df-po 5452  df-so 5453  df-fr 5493  df-we 5495  df-xp 5541  df-rel 5542  df-cnv 5543  df-co 5544  df-dm 5545  df-rn 5546  df-res 5547  df-ima 5548  df-pred 6139  df-ord 6186  df-on 6187  df-lim 6188  df-suc 6189  df-iota 6308  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7140  df-ov 7186  df-oprab 7187  df-mpo 7188  df-om 7613  df-1st 7727  df-2nd 7728  df-wrecs 7989  df-recs 8050  df-rdg 8088  df-er 8333  df-en 8569  df-dom 8570  df-sdom 8571  df-pnf 10768  df-mnf 10769  df-xr 10770  df-ltxr 10771  df-le 10772  df-sub 10963  df-neg 10964  df-nn 11730  df-n0 11990  df-z 12076  df-uz 12338  df-fz 12995  df-fzo 13138
This theorem is referenced by:  iundisj2cnt  30708
  Copyright terms: Public domain W3C validator